Role of t-tubules in the control of trans-sarcolemmal ion flux and intracellular Ca2+ in a model of the rat cardiac ventricular myocyte
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
PG/10/91/28644
British Heart Foundation - United Kingdom
- MeSH
- difuze MeSH
- ionty analýza MeSH
- kardiomyocyty cytologie fyziologie MeSH
- krysa rodu Rattus MeSH
- membránové potenciály MeSH
- modely kardiovaskulární * MeSH
- počítačová simulace MeSH
- sarkolema fyziologie MeSH
- sarkoplazmatické retikulum fyziologie MeSH
- vápník analýza MeSH
- výpočetní biologie metody MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ionty MeSH
- vápník MeSH
The t-tubules of mammalian ventricular myocytes are invaginations of the surface membrane that form a complex network within the cell, with restricted diffusion to the bulk extracellular space. The trans-sarcolemmal flux of many ions, including Ca(2+), occurs predominantly across the t-tubule membrane and thus into and out of this restricted diffusion space. It seems possible, therefore, that ion concentration changes may occur in the t-tubule lumen, which would alter ion flux across the t-tubule membrane. We have used a computer model of the ventricular myocyte, incorporating a t-tubule compartment and experimentally determined values for diffusion between the t-tubule lumen and bulk extracellular space, and ion fluxes across the t-tubule membrane, to investigate this possibility. The results show that influx and efflux of different ion species across the t-tubule membrane are similar, but not equal. Changes of ion concentration can therefore occur close to the t-tubular membrane, thereby altering trans-sarcolemmal ion flux and thus cell function, although such changes are reduced by diffusion to the bulk extracellular space. Slowing diffusion results in larger changes in luminal ion concentrations. These results provide a deeper understanding of the role of the t-tubules in normal cell function, and are a basis for understanding the changes that occur in heart failure as a result of changes in t-tubule structure and ion fluxes.
Zobrazit více v PubMed
Circ Res. 2004 Jul 9;95(1):e1-7 PubMed
J Physiol. 1988 Nov;405:233-55 PubMed
Prog Biophys Mol Biol. 2008 Jan-Apr;96(1-3):244-57 PubMed
Gen Physiol Biophys. 2003 Sep;22(3):355-68 PubMed
Biophys J. 2011 May 18;100(10):L53-5 PubMed
Q Rev Biophys. 1979 Aug;12(3):213-61 PubMed
J Mol Cell Cardiol. 2010 Jul;49(1):121-31 PubMed
Philos Trans A Math Phys Eng Sci. 2006 May 15;364(1842):1187-206 PubMed
Philos Trans R Soc Lond B Biol Sci. 1985 Jan 10;307(1133):353-98 PubMed
Cell Calcium. 1997 Dec;22(6):431-8 PubMed
J Physiol. 1995 Nov 1;488 ( Pt 3):577-86 PubMed
Prog Biophys Mol Biol. 2003 May-Jul;82(1-3):221-7 PubMed
Cardiovasc Res. 1998 Jun;38(3):589-604 PubMed
J Gen Physiol. 1985 Feb;85(2):291-320 PubMed
Exp Physiol. 2009 May;94(5):509-19 PubMed
J Appl Physiol (1985). 2006 Oct;101(4):1170-6 PubMed
J Mol Cell Cardiol. 2004 Feb;36(2):265-75 PubMed
J Physiol. 1978 Jul;280:537-58 PubMed
J Mol Cell Cardiol. 2011 Jan;50(1):187-93 PubMed
J Physiol. 2001 Dec 15;537(Pt 3):979-92 PubMed
J Gen Physiol. 1977 Aug;70(2):149-69 PubMed
Inward rectifying potassium currents resolved into components: modeling of complex drug actions