Effect of Ca2+ efflux pathway distribution and exogenous Ca2+ buffers on intracellular Ca2+ dynamics in the rat ventricular myocyte: a simulation study
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
PG/10/91/28644
British Heart Foundation - United Kingdom
RG/12/10/29802
British Heart Foundation - United Kingdom
PubMed
24971358
PubMed Central
PMC4058148
DOI
10.1155/2014/920208
Knihovny.cz E-zdroje
- MeSH
- biologické modely MeSH
- časové faktory MeSH
- EGTA analogy a deriváty farmakologie MeSH
- gating iontového kanálu účinky léků MeSH
- intracelulární prostor účinky léků metabolismus MeSH
- kardiomyocyty účinky léků metabolismus MeSH
- kompartmentace buňky MeSH
- krysa rodu Rattus MeSH
- počítačová simulace MeSH
- pufry MeSH
- pumpa pro výměnu sodíku a vápníku metabolismus MeSH
- sarkolema účinky léků metabolismus MeSH
- srdeční komory cytologie MeSH
- vápník metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid MeSH Prohlížeč
- EGTA MeSH
- pufry MeSH
- pumpa pro výměnu sodíku a vápníku MeSH
- vápník MeSH
We have used a previously published computer model of the rat cardiac ventricular myocyte to investigate the effect of changing the distribution of Ca(2+) efflux pathways (SERCA, Na(+)/Ca(2+) exchange, and sarcolemmal Ca(2+) ATPase) between the dyad and bulk cytoplasm and the effect of adding exogenous Ca(2+) buffers (BAPTA or EGTA), which are used experimentally to differentially buffer Ca(2+) in the dyad and bulk cytoplasm, on cellular Ca(2+) cycling. Increasing the dyadic fraction of a particular Ca(2+) efflux pathway increases the amount of Ca(2+) removed by that pathway, with corresponding changes in Ca(2+) efflux from the bulk cytoplasm. The magnitude of these effects varies with the proportion of the total Ca(2+) removed from the cytoplasm by that pathway. Differences in the response to EGTA and BAPTA, including changes in Ca(2+)-dependent inactivation of the L-type Ca(2+) current, resulted from the buffers acting as slow and fast "shuttles," respectively, removing Ca(2+) from the dyadic space. The data suggest that complex changes in dyadic Ca(2+) and cellular Ca(2+) cycling occur as a result of changes in the location of Ca(2+) removal pathways or the presence of exogenous Ca(2+) buffers, although changing the distribution of Ca(2+) efflux pathways has relatively small effects on the systolic Ca(2+) transient.
Department of Physiology Faculty of Medicine Masaryk University Kamenice 5 62500 Brno Czech Republic
School of Physiology and Pharmacology University of Bristol Bristol BS8 1TD UK
Zobrazit více v PubMed
Stern MD. Theory of excitation-contraction coupling in cardiac muscle. Biophysical Journal. 1992;63(2):497–517. PubMed PMC
Santana LF, Cheby H, Gomez AM, Cannell MB, Lederer WJ. Relation between the sarcolemmal Ca2+ current and Ca2+ sparks and local control theories for cardiac excitation-contraction coupling. Circulation Research. 1996;78(1):166–171. PubMed
Trafford AW, Diaz ME, O’Neill SC, Eisner DA. Comparison of subsarcolemmal and bulk calcium concentration during spontaneous calcium release in rat ventricular myocytes. The Journal of Physiology. 1995;488(3):577–586. PubMed PMC
Zühlke RD, Pittt GS, Deisseroth K, Tsien RW, Reuter H. Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature. 1999;399(6732):159–162. PubMed
Orchard C, Brette F. t-tubules and sarcoplasmic reticulum function in cardiac ventricular myocytes. Cardiovascular Research. 2008;77(2):237–244. PubMed
Eisner DA, Trafford AW, Díaz ME, Overend CL, O’Neill SC. The control of Ca release from the cardiac sarcoplasmic reticulum: regulation versus autoregulation. Cardiovascular Research. 1998;38(3):589–604. PubMed
Kass RS, Lederer WJ, Tsien RW, Weingart R. Role of calcium ions in transient inward currents and aftercontractions induced by strophanthidin in cardiac Purkinje fibres. The Journal of Physiology. 1978;281:187–208. PubMed PMC
Mechmann S, Pott L. Identification of Na-Ca exchange current in single cardiac myocytes. Nature. 1986;319(6054):597–599. PubMed
Despa S, Brette F, Orchard CH, Bers DM. Na/Ca exchange and Na/K-ATPase function are equally concentrated in transverse tubules of rat ventricular myocytes,“. Biophysical Journal. 2003;85(5):3388–3396. PubMed PMC
Chase A, Orchard CH. Ca efflux via the sarcolemmal Ca ATPase occurs only in the t-tubules of rat ventricular myocytes. Journal of Molecular and Cellular Cardiology. 2011;50(1):187–193. PubMed
Jorgensen AO, Jones LR. Immunoelectron microscopical localization of phospholamban in adult canine ventricular muscle. Journal of Cell Biology. 1987;104(5):1343–1352. PubMed PMC
Greene AL, Lalli MJ, Ji Y, et al. Overexpression of SERCA2b in the heart leads to an increase in sarcoplasmic reticulum calcium transport function and increased cardiac contractility. The Journal of Biological Chemistry. 2000;275(32):24722–24727. PubMed
Pásek M, Šimurda J, Orchard CH. Role of t-tubules in the control of trans-sarcolemmal ion flux and intracellular Ca2+ in a model of the rat cardiac ventricular myocyte. European Biophysics Journal. 2012;41(6):491–503. PubMed
Brette F, Sallé L, Orchard CH. Quantification of calcium entry at the T-tubules and surface membrane in rat ventricular myocytes. Biophysical Journal. 2006;90(1):381–389. PubMed PMC
Brette F, Sallé L, Orchard CH. Differential modulation of L-type Ca2+ current by SR Ca2+ release at the T-tubules and surface membrane of rat ventricular myocytes. Circulation Research. 2004;95(1):e1–e7. PubMed
Janczewski AM, Lakatta EG. Buffering of calcium influx by sarcoplasmic reticulum during the action potential in guinea-pig ventricular myocytes. The Journal of Physiology. 1993;471:343–363. PubMed PMC
Fabiato A. Stimulated calcium current can both cause calcium loading in and trigger calcium release from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. Journal of General Physiology. 1985;85(2):291–320. PubMed PMC
Negretti N, O’Neill SC, Eisner DA. The relative contributions of different intracellular and sarcolemmal systems to relaxations in rat ventricular myocytes. Cardiovascular Research. 1993;27(10):1826–1830. PubMed
Sham JSK, Cleemann L, Morad M. Functional coupling of Ca2+ channels and ryanodine receptors in cardiac myocytes. Proceedings of the National Academy of Sciences of the United States of America. 1995;92(1):121–125. PubMed PMC
Sham JS. Ca2+ release-induced inactivation of Ca2+ current in rat ventricular myocytes: evidence for local Ca2+ signalling. The Journal of Physiology. 1997;500, part 2:285–295. PubMed PMC