Different Densities of Na-Ca Exchange Current in T-Tubular and Surface Membranes and Their Impact on Cellular Activity in a Model of Rat Ventricular Cardiomyocyte
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
28321411
PubMed Central
PMC5340987
DOI
10.1155/2017/6343821
Knihovny.cz E-zdroje
- MeSH
- buněčná membrána metabolismus MeSH
- kardiomyocyty metabolismus MeSH
- krysa rodu Rattus MeSH
- membránové potenciály fyziologie MeSH
- modely kardiovaskulární * MeSH
- sodík metabolismus MeSH
- srdeční komory metabolismus MeSH
- vápník metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- sodík MeSH
- vápník MeSH
The ratio of densities of Na-Ca exchanger current (INaCa) in the t-tubular and surface membranes (INaCa-ratio) computed from the values of INaCa and membrane capacitances (Cm) measured in adult rat ventricular cardiomyocytes before and after detubulation ranges between 1.7 and 25 (potentially even 40). Variations of action potential waveform and of calcium turnover within this span of the INaCa-ratio were simulated employing previously developed model of rat ventricular cell incorporating separate description of ion transport systems in the t-tubular and surface membranes. The increase of INaCa-ratio from 1.7 to 25 caused a prolongation of APD (duration of action potential at 90% repolarisation) by 12, 9, and 6% and an increase of peak intracellular Ca2+ transient by 45, 19, and 6% at 0.1, 1, and 5 Hz, respectively. The prolonged APD resulted from the increase of INaCa due to the exposure of a larger fraction of Na-Ca exchangers to higher Ca2+ transients under the t-tubular membrane. The accompanying rise of Ca2+ transient was a consequence of a higher Ca2+ load in sarcoplasmic reticulum induced by the increased Ca2+ cycling between the surface and t-tubular membranes. However, the reason for large differences in the INaCa-ratio assessed from measurements in adult rat cardiomyocytes remains to be explained.
Department of Physiology Faculty of Medicine Masaryk University Kamenice 5 62500 Brno Czech Republic
Laboratoire de Neurocardiologie EA4612 Université Lyon 1 69003 Lyon France
Zobrazit více v PubMed
Kimura J., Noma A., Irisawa H. Na-Ca exchange current in mammalian heart cells. Nature. 1986;319(6054):596–597. doi: 10.1038/319596a0. PubMed DOI
Langer G. A. Sodium-calcium exchange in the heart. Annual Review of Physiology. 1982;44:435–449. doi: 10.1146/annurev.ph.44.030182.002251. PubMed DOI
Mullins L. J. A mechanism for Na/Ca transport. Journal of General Physiology. 1977;70(6):681–695. doi: 10.1085/jgp.70.6.681. PubMed DOI PMC
Chu L., Greenstein J. L., Winslow R. L. Modeling Na+-Ca2+ exchange in the heart: allosteric activation, spatial localization, sparks and excitation-contraction coupling. Journal of Molecular and Cellular Cardiology. 2016;99:174–187. doi: 10.1016/j.yjmcc.2016.06.068. PubMed DOI PMC
Levi A. J., Spitzer K. W., Kohmoto O., Bridge J. H. B. Depolarization-induced Ca entry via Na-Ca exchange triggers SR release in guinea pig cardiac myocytes. American Journal of Physiology—Heart and Circulatory Physiology. 1994;266(4):H1422–H1433. PubMed
Horackova M., Vassort G. Sodium-calcium exchange in regulation of cardiac contractility. Evidence for an electrogenic, voltage-dependent mechanism. Journal of General Physiology. 1979;73(4):403–424. doi: 10.1085/jgp.73.4.403. PubMed DOI PMC
Goldhaber J. I., Philipson K. D. Cardiac sodium-calcium exchange and efficient excitation-contraction coupling: implications for heart disease. Advances in Experimental Medicine and Biology. 2013;961:355–364. doi: 10.1007/978-1-4614-4756-6-30. PubMed DOI PMC
Bers D. M., Despa S. Cardiac myocytes Ca2+ and Na+ regulation in normal and failing hearts. Journal of Pharmacological Sciences. 2006;100(5):315–322. doi: 10.1254/jphs.cpj06001x. PubMed DOI
Egger M., Niggli E. Regulatory function of Na-Ca exchange in the heart: milestones and outlook. Journal of Membrane Biology. 1999;168(2):107–130. doi: 10.1007/s002329900502. PubMed DOI
Dan P., Lin E., Huang J., Biln P., Tibbits G. F. Three-dimensional distribution of cardiac Na+-Ca2+ exchanger and ryanodine receptor during development. Biophysical Journal. 2007;93(7):2504–2518. doi: 10.1529/biophysj.107.104943. PubMed DOI PMC
Scriven D. R. L., Dan P., Moore E. D. W. Distribution of proteins implicated in excitation-contraction coupling in rat ventricular myocytes. Biophysical Journal. 2000;79(5):2682–2691. doi: 10.1016/S0006-3495(00)76506-4. PubMed DOI PMC
Chen F., Mottino G., Klitzner T. S., Philipson K. D., Frank J. S. Distribution of the Na+/Ca2+ exchange protein in developing rabbit myocytes. American Journal of Physiology—Cell Physiology. 1995;268(5):C1126–C1132. PubMed
Frank J. S., Mottino G., Reid D., Molday R. S., Philipson K. D. Distribution of the Na+-Ca2+ exchange protein in mammalian cardiac myocytes: an immunofluorescence and immunocolloidal gold-labeling study. Journal of Cell Biology. 1992;117(2):337–345. doi: 10.1083/jcb.117.2.337. PubMed DOI PMC
Brette F., Komukai K., Orchard C. H. Validation of formamide as a detubulation agent in isolated rat cardiac cells. American Journal of Physiology—Heart and Circulatory Physiology. 2002;283(4):H1720–H1728. doi: 10.1152/ajpheart.00347.2002. PubMed DOI
Gadeberg H. C., Bryant S. M., James A. F., Orchard C. H. Altered Na/Ca exchange distribution in ventricular myocytes from failing hearts. American Journal of Physiology—Heart and Circulatory Physiology. 2016;310(2):H262–H268. doi: 10.1152/ajpheart.00597.2015. PubMed DOI PMC
Thomas M. J., Sjaastad I., Andersen K., et al. Localization and function of the Na+/Ca2+-exchanger in normal and detubulated rat cardiomyocytes. Journal of Molecular and Cellular Cardiology. 2003;35(11):1325–1337. doi: 10.1016/j.yjmcc.2003.08.005. PubMed DOI
Despa S., Brette F., Orchard C. H., Bers D. M. Na/Ca exchange and Na/K-ATPase function are equally concentrated in transverse tubules of rat ventricular myocytes. Biophysical Journal. 2003;85(5):3388–3396. doi: 10.1016/s0006-3495(03)74758-4. PubMed DOI PMC
Yang Z., Pascarel C., Steele D. S., Komukai K., Brette F., Orchard C. H. Na+-Ca2+ exchange activity is localized in the t-tubules of rat ventricular myocytes. Circulation Research. 2002;91(4):315–322. doi: 10.1161/01.res.0000030180.06028.23. PubMed DOI
Pásek M., Šimurda J., Orchard C. H. Role of t-tubules in the control of trans-sarcolemmal ion flux and intracellular Ca2+ in a model of the rat cardiac ventricular myocyte. European Biophysics Journal. 2012;41(6):491–503. doi: 10.1007/s00249-012-0804-x. PubMed DOI
Pásek M., Brette F., Nelson A., et al. Quantification of t-tubule area and protein distribution in rat cardiac ventricular myocytes. Progress in Biophysics and Molecular Biology. 2008;96(1–3):244–257. doi: 10.1016/j.pbiomolbio.2007.07.016. PubMed DOI
Bryant S. M., Kong C. H. T., Watson J., Cannell M. B., James A. F., Orchard C. H. Altered distribution of ICa impairs Ca release at the t-tubules of ventricular myocytes from failing hearts. Journal of Molecular and Cellular Cardiology. 2015;86:23–31. doi: 10.1016/j.yjmcc.2015.06.012. PubMed DOI PMC
Bassani J. W., Bassani R. A., Bers D. M. Relaxation in rabbit and rat cardiac cells: species‐dependent differences in cellular mechanisms. The Journal of Physiology. 1994;476(2):279–293. doi: 10.1113/jphysiol.1994.sp020130. PubMed DOI PMC
Pásek M., Šimurda J., Orchard C. H. Effect of Ca2+ efflux pathway distribution and exogenous Ca2+ buffers on intracellular Ca2+ dynamics in the rat ventricular myocyte: a simulation study. BioMed Research International. 2014;2014:12. doi: 10.1155/2014/920208.920208 PubMed DOI PMC