Virucidal nanofiber textiles based on photosensitized production of singlet oxygen
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
F32 NS010093
NINDS NIH HHS - United States
PubMed
23139839
PubMed Central
PMC3490908
DOI
10.1371/journal.pone.0049226
PII: PONE-D-12-07728
Knihovny.cz E-zdroje
- MeSH
- anthraceny chemie MeSH
- antivirové látky farmakologie MeSH
- Baculoviridae účinky léků MeSH
- fotosenzibilizující látky farmakologie MeSH
- inaktivace viru účinky léků MeSH
- kapsida chemie MeSH
- myši MeSH
- nanovlákna chemie ultrastruktura MeSH
- oxidace-redukce MeSH
- polyestery chemie MeSH
- Polyomavirus účinky léků MeSH
- polyurethany chemie MeSH
- porfyriny farmakologie MeSH
- rekombinace genetická genetika MeSH
- singletový kyslík metabolismus MeSH
- textilie * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- anthraceny MeSH
- antivirové látky MeSH
- fotosenzibilizující látky MeSH
- polycaprolactone MeSH Prohlížeč
- polyestery MeSH
- polyurethany MeSH
- porfyriny MeSH
- singletový kyslík MeSH
- tetraphenylporphyrin MeSH Prohlížeč
Novel biomaterials based on hydrophilic polycaprolactone and polyurethane (Tecophilic®) nanofibers with an encapsulated 5,10,5,20-tetraphenylporphyrin photosensitizer were prepared by electrospinning. The doped nanofiber textiles efficiently photo-generate O(2)((1)Δ(g)), which oxidize external chemical and biological substrates/targets. Strong photo-virucidal effects toward non-enveloped polyomaviruses and enveloped baculoviruses were observed on the surface of these textiles. The photo-virucidal effect was confirmed by a decrease in virus infectivity. In contrast, no virucidal effect was detected in the absence of light and/or the encapsulated photosensitizer.
Zobrazit více v PubMed
Hamblin MR, Hasan T (2004) Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci 3: 436–450. PubMed PMC
Di Poto A, Sbarra MS, Provenza G, Visai L, Speziale P (2009) The effect of photodynamic treatment combined with antibiotic action or host defence mechanisms on Staphylococcus aureus biofilms. Biomaterials 30: 3158–3166. PubMed
Dai T, Huang YY, Hamblin MR (2009) Photodynamic therapy for localized infections–State of the art. Photodiagn. Photodyn. Therapy 6: 170–188. PubMed PMC
Triesscheijn M, Baas P, Schellens JHM, Stewart FA (2006) Photodynamic Therapy in Oncology. Oncologist 11: 1034–1044. PubMed
Bonnett R (1995) Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy. Chem Soc Rev 24: 19–33.
DeRosa MC, Crutchley RJ (2002) Photosensitized singlet oxygen and its applications. Coord Chem Rev 233–234: 351–371.
Lang K, Mosinger J, Wagnerová DM (2004) Photophysical properties of porphyrinoid sensitizers non-covalently bound to host molecules; models for photodynamic therapy. Coord Chem Rev 248: 321–350.
Reneker DH, Chun I (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7: 216–223.
Li D, Xia YN (2004) Electrospinning of nanofibers: Reinventing the wheel? Adv Mater 16: 1151–1170.
Greiner A, Wendorff JH (2007) Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers. Angewandte Chem Int Ed 46: 5670–5703. PubMed
Martins A, Chung S, Pedro AJ, Sousa RA, Marques AP, et al. (2009) Hierarchical starch–based fibrous scaffold for bone tissue engineering applications. J Tissue Eng Regen Med 3: 37–42. PubMed
Kenawy ER, Abdel-Hay FI, El-Newehy MH, Wnek GE (2009) Processing of polymer nanofibers through electrospinning as drug delivery systems. Mater Chem Phys 113: 296–302.
Yarin AL, Zussman E, Wendorff JH, Greiner A (2007) Material encapsulation and transport in core-shell micro/nanofibers, polymer and carbon nanotubes and micro/nanochannels. J Mater Chem 17: 2585–2599.
Duan Y, Jia J, Wang S, Yan W, Jin L, et al. (2007) Preparation of antimicrobial poly(γ-caprolactone) electrospun nanofibers containing silver-loaded zirconium phosphate nanoparticles. J Appl Polymer Sci 106: 1208–1214.
Wang J, Zhu Y, Bawa HK, Ng G, Wu Y, et al. (2011) Oxygen-Generating Nanofiber Cell Scaffolds with Antimicrobial Properties. ACS Appl Mater Interfaces 3: 67–73. PubMed
Mosinger J, Jirsák O, Kubát P, Lang K, Mosinger B (2007) Bactericidal nanofabrics based on photoproduction of singlet oxygen. J Mater Chem 17: 164–166.
Mosinger J, Lang K, Kubát P, Sýkora J, Hof M, et al. (2009) Photofunctional Polyurethane Nanofabrics Doped by Zinc Tetraphenylporphyrin and Zinc Phthalocyanine Photosensitizers. J Fluoresc 19: 705–713. PubMed
Jesenská S, Plíštil L, Kubát P, Lang K, Brožová L, et al. (2011) Antibacterial nanofiber materials activated by light. J Biomed Mater Res A 99A: 676–683. PubMed
Wilkinson F, Helman WP, Ross AB (1993) Quantum yields for the photosensitized formation of the lowest electronically excited singlet-state of molecular oxygen in solution. J Phys Chem Ref Data 22: 113–262.
Attieh BS, Ioannovich J, Al-Amm CA, El-Musa KA (2002) Management of Acute and Chronic Open Wounds: The Importance of Moist Environment in Optimal Wound Healing. Curr Pharm Biotechnol 3: 179–195. PubMed
Straight R, Spikes JD (1978) Sensitized photooxidation of amino acids: effects on the reactivity of their primary amine groups with fluorescamine and o-phthalaldehyde. Photochem Photobiol 27: 565–569.
Michaeli A, Feitelson J (1994) Reactivity of singlet oxygen toward amino acids and peptides. Photochem Photobiol 59: 284–289. PubMed
Brew BJ, Davies NW, Cinque P, Clifford DB, Nath A (2010) Progressive multifocal leukoencephalopathy and other forms of JC virus disease. Nat Rev Neurol 6: 667–679. PubMed
Hirsch HH (2002) PolyomavirusBK nephropathy: a (re)emerging complication in renal transplantation. Am J Transplant 2: 25–30. PubMed
Schowalter RM, Pastrana DV, Pumphrey KA, Moyer AL, Buck CB (2010) Merkel cell polyomavirus and two previously unknown polyomaviruses are chronically shed from human skin. Cell Host Microbe 7: 509–515. PubMed PMC
Babakir-Mina M, Ciccozzi M, Perno CF, Ciotti M (2011) The novel KI, WU, MC polyomaviruses: possible human pathogens? New Microbiol 34: 1–8. PubMed
van der Meijden E, Janssens RW, Lauber C, Bouwes Bavinck JN, Gorbalenya AE, et al. (2010) Discovery of a new human polyomavirus associated with trichodysplasia spinulosa in immunocompromized patient. PLoS Pathog 6: e1001024. PubMed PMC
Dong S, Wang M, Qiu Z, Deng F, Vlak JM, et al. (2010) Autographa californica multicapsid nucleopolyhedrovirus efficiently infects Sf9 cells and transduces mammalian cells via direct fusion with the plasma membrane at low pH. J Virol 84: 5351–5359. PubMed PMC
Li Z, Blissard GW (2009) The pre-transmembrane domain of the Autographa californica multicapsid nucleopolyhedrovirus GP64 protein is critical for membrane fusion and virus infectivity. J Virol 2009 83: 10993–11004. PubMed PMC
Mosinger J, Lang K, Plíštil L, Jesenská S, Hostomský J, et al. (2010) Fluorescent Polyurethane Nanofabrics: A Source of Singlet Oxygen and Oxygen Sensing. Langmuir 26: 10050–10056. PubMed
Mosinger J, Lang K, Hostomský J, Franc J, Sýkora J, et al. (2010) Singlet Oxygen Imaging in Polymeric Nanofibers by Delayed Fluorescence. J Phys Chem B 114: 15773–15779. PubMed
Egorov SY, Kamalov VF, Koroteev NI, Krasnovsky AA, Toleutaev BN, et al. (1989) Rise and decay kinetics of photosensitized singlet oxygen luminescence in water. Measurements with nanosecond time-correlated single photon counting technique. Chem Phys Letters 163: 421–424.
Aubry JM, Pierlot C, Rigaudy J, Schmidt R (2003) Reversible binding of oxygen to aromatic compounds. Acc Chem Res 36: 668–675. PubMed
Triantaphylidès C, Krischke M, Hoeberichts FA, Ksas B, Gresser G, et al. (2008) Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. Plant Physiol 148: 960–968. PubMed PMC
Pattison DI, Rahmanto AS, Davies MJ (2012) Photo-oxidation of proteins. Photochem Photobiol Sci 11: 38–53. PubMed
Korytovski W, Girotti AW (1999) Singlet oxygen adducts of cholesterol: photogeneration and reductive turnover in membrane systems. Photochem Photobiol 70: 484–489. PubMed
Wen WH, Lin M, Su CY, Wang SY, Cheng YSE, et al. (2009) Synergistic Effect of Zanamivir-Porphyrin Conjugates on Inhibition of Neuraminidase and Inactivation of Influenza virus. J Med Chem 52: 4903–4910. PubMed
Liddington RC, Yan Y, Moulai YY, Sahli R, Benjamin TL, et al. (1994) Structure of simian virus 40 at 3.8-A resolution. Nature 354: 278–284. PubMed
Stehle T, Harrison SC (1996) Crystal structures of murine polyomavirus in complex with straight-chain and branched-chain sialyloligosaccharide receptor fragments. Structure 4: 183–194. PubMed
Cho M, Lee J, Mackeyev Y, Wilson LJ, Hughes JB, et al. (2010) Visible Light sensitized Inactivation of MS-2 8bacteriophage by a cationic amine-functionalized C60 derivative. Environ Sci Technol 44: 6685–6691. PubMed
Jirsák O, Sametrník F, Lukáš D, Kotek V, Martinová L, et al.. (2005) A method of nanofibres production from a polymer solution using electrostatic spinning and a device for carrying out the method. WO 2005/024101. Available: http://patentscope.wipo.int/search/en/WO2005024101. Accessed 2012 Nov 10.
Hink WF (1970) Established insect cell line from the cabbage looper Trichplusia ni. . Nature (London) 226: 466–467. PubMed
Forstová J, Krauzewicz N, Wallace S, Street AJ, Dilworth SM, et al. (1993) Cooperation of structural proteins during late events in the life cycle of polyomavirus. J Virol 67: 1405–1413. PubMed PMC
Türler H, Beard P (1985) Simian virus 40 and polyomavirus: growth, titration, transformation and purification of viral components, P. 169–192. In B.W.J. Mahy (ed.), Virology: a practical approach. IRL Press, Oxford.
Dilworth SM, Griffin BE (1982) Monoclonal antibodies against polyomavirus tumour antigens. Proc Natl Acad Sci USA 79: 1059–1063. PubMed PMC