Nitro- and oxy-PAHs in grassland soils from decade-long sampling in central Europe
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
GACR #20-07117S
Czech Science Foundation
ACTRIS-CZ #LM2018122
Ministerstvo Školství, Mládeže a Tělovýchovy (CZ)
#CZ.02.1.01/0.0/0.0/16_013/0001315
Ministerstvo Školství, Mládeže a Tělovýchovy
#LM2018121
Ministerstvo Školství, Mládeže a Tělovýchovy
#02.1.01/0.0/0.0/18_046/0015975
Ministerstvo Školství, Mládeže a Tělovýchovy
19112616633
Českomoravský Cement a.s.
19112616634
Českomoravský Cement a.s.
#857560
Horizon 2020
PubMed
34415461
PubMed Central
PMC9213387
DOI
10.1007/s10653-021-01066-y
PII: 10.1007/s10653-021-01066-y
Knihovny.cz E-zdroje
- Klíčová slova
- Background, Nitrated PAHs, Polycyclic aromatic compounds, soil pollution, Soil exposure, Temporal variation,
- MeSH
- dusičnany MeSH
- látky znečišťující vzduch * analýza MeSH
- monitorování životního prostředí metody MeSH
- pastviny MeSH
- polycyklické aromatické uhlovodíky * analýza MeSH
- půda MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dusičnany MeSH
- látky znečišťující vzduch * MeSH
- polycyklické aromatické uhlovodíky * MeSH
- půda MeSH
Long-term exposure to polycyclic aromatic hydrocarbons (PAHs) and their nitrated (NPAHs) and oxygenated (OPAHs) derivatives can cause adverse health effects due to their carcinogenicity, mutagenicity and oxidative potential. The distribution of PAH derivatives in the terrestrial environment has hardly been studied, although several PAH derivatives are ubiquitous in air and long-lived in soil and water. We report the multi-annual variations in the concentrations of NPAHs, OPAHs and PAHs in soils sampled at a semi-urban (Mokrá, Czech Republic) and a regional background site (Košetice, Czech Republic) in central Europe. The concentrations of the Σ18NPAHs and the Σ11+2OPAHs and O-heterocycles were 0.31 ± 0.23 ng g-1 and 4.03 ± 3.03 ng g-1, respectively, in Košetice, while slightly higher concentrations of 0.54 ± 0.45 ng g-1 and 5.91 ± 0.45 ng g-1, respectively, were found in soil from Mokrá. Among the 5 NPAHs found in the soils, 1-nitropyrene and less so 6-nitrobenzo(a)pyrene were most abundant. The OPAHs were more evenly distributed. The ratios of the PAH derivatives to their parent PAHs in Košetice indicate that they were long-range transported to the background site. Our results show that several NPAHs and OPAHs are abundant in soil and that gas-particle partitioning is a major factor influencing the concentration of several semi-volatile NPAHs and OPAHs in the soils. Complete understanding of the long-term variations of NPAH and OPAH concentrations in soil is limited by the lack of kinetic data describing their formation and degradation.
Masaryk University Research Centre for Toxic Compounds in the Environment Brno Czech Republic
Max Planck Institute for Chemistry Multiphase Chemistry Dept Mainz Germany
Zobrazit více v PubMed
Akhtar MN, Boyd DR, Thomas NJ, Koreeda M, Gibson DT, Mahadevan V, Jerina DM. Absolute stereochemistry of the dihydroanthracene-cis- and -trans-,2-diols produced from anthracene by mammals and bacteria. Journal of the Chemical Society, Perkin Transactions. 1975;1:2506–2511. doi: 10.1039/p19750002506. PubMed DOI
Andersson JT, Achten C. Time to say goodbye to the 16 EPA PAHs? Toward an up-to-date use of PACs for environmental purposes. Polycyclic Aromatic Compounds. 2015;35:330–354. doi: 10.1080/10406638.2014.991042. PubMed DOI PMC
Arp HPH, Lundstedt S, Josefsson S, Cornelissen G, Enell A, Allard A-S, Kleja DB. Native oxy-PAHs, N-PACs, and PAHs in historically contaminated soils from Sweden, Belgium, and France: Their soil-porewater partitioning behavior, bioaccumulation in Enchytraeus crypticus, and bioavailability. Environmental Science and Technology. 2014;48:11187–11195. doi: 10.1021/es5034469. PubMed DOI
Atlas E, Giam CS. Ambient concentration and precipitation scavenging of atmospheric organic pollutants. Water Air Soil Pollution. 1988;38:19–36. doi: 10.1007/BF00279583. DOI
Atsumi T, Murata J, Kamiyanagi I, Fujisawa S, Ueha T. Cytotoxicity of photosensitizers camphorquinone and 9-fluore-none with visible light irradiation on a human submandibular-duct cell line in vitro. Archives of Oral Biology. 1998;43:73–81. doi: 10.1016/S0003-9969(97)00073-3. PubMed DOI
Baek SO, Field RA, Goldstone ME, Kirk PW, Lester JN, Perry R. A review of atmospheric polycyclic aromatic hydrocarbons: Sources, fate and behaviour. Water, Air, and Soil Pollution. 1991;60:279–300. doi: 10.1007/BF00282628. DOI
Bamford HA, Bezabeh DZ, Schantz MM, Wise SA, Baker JE. Determination and comparison of nitrated-polycyclic aromatic hydrocarbons measured in air and diesel particulate reference materials. Chemosphere. 2003;50:575–587. doi: 10.1016/S0045-6535(02)00667-7. PubMed DOI
Bandowe BAM, Shukurov N, Kersten M, Wilcke W. Polycyclic aromatic hydrocarbons (PAHs) and their oxygen-containing derivatives (OPAHs) in soils from the Angren industrial area, Uzbekistan. Environmental Pollution. 2010;158:2888–2899. doi: 10.1016/j.envpol.2010.06.012. PubMed DOI
Bandowe BAM, Wilcke W. Analysis of polycyclic aromatic hydrocarbons and their oxygen-containing derivatives and metabolites in soil. Journal of Environmental Quality. 2010;39:1349–1358. doi: 10.2134/jeq2009.0298. PubMed DOI
Bandowe BAM, Sobocka J, Wilcke W. Oxygen-containing polycyclic aromatic hydrocarbons (OPAHs) in urban soils of Bratislava, Slovakia: Patterns, relation to PAHs and vertical distribution. Environmental Pollution. 2011;159:539–549. doi: 10.1016/j.envpol.2010.10.011. PubMed DOI
Bandowe BAM, Gómez LM, Wilcke W. Oxygenated polycyclic aromatic hydrocarbons and azaarenes in urban soils: A comparison of a tropical city (Bangkok) with two temperate cities (Bratislava and Gothenburg) Chemosphere. 2014;107:407–414. doi: 10.1016/j.chemosphere.2014.01.017. PubMed DOI
Bandowe BAM, Meusel H. Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) in the environment—a review. Science of the Total Environment. 2017;581–582:237–257. doi: 10.1016/j.scitotenv.2016.12.115. PubMed DOI
Bandowe BAM, Leimer S, Meusel H, Velescu A, Dassen S, Eisenhauer N, Hoffmann T, Oelmann Y, Wilcke W. Plant diversity enhances the natural attenuation of polycyclic aromatic compounds (PAHs and oxygenated PAHs) in grassland soils. Soil Biology and Biochemistry. 2019;129:60–70. doi: 10.1016/j.soilbio.2018.10.017. DOI
Becker S, Halsall CJ, Tych W, Hung H, Attewell S, Blanchard P, Li H, Fellin P, Stern G, Billeck B, Friesen S. Resolving the long-term trends of polycyclic aromatic hydrocarbons in the Canadian Arctic atmosphere. Environmental Science and Technology. 2006;40:3217–3222. doi: 10.1021/es052346l. PubMed DOI
Bidleman TF. Atmospheric processes Wet and dry deposition of organic compounds are controlled by their vapor-particle partitioning. Environmental Science and Technology. 1988;22:361–367. doi: 10.1021/es00169a002. DOI
Bolton JL, Trush MA, Penning TM, Dryhurst G, Monks TJ. Role of quinones in Toxicology. Chemical Research in Toxicology. 2000;13:135–160. doi: 10.1021/tx9902082. PubMed DOI
Brinkmann M, Maletz S, Krauss M, Bluhm K, Schiwy S, Kuckelkorn J, Tiehm A, Brack W, Hollert H. Heterocyclic aromatic hydrocarbons show estrogenic activity upon metabolization in a recombinant transactivation assay. Environmental Science and Technology. 2014;48:5892–5901. doi: 10.1021/es405731j. PubMed DOI
Brorström-Lundén, E., Remberger, M., Kaj, L., Hansson, K., Palm-Cousins, A., Andersson, H., Haglund, P., Ghebremeskel, M., & Schlabach, M. (2010). Results from the Swedish National Screening Programme 2008: Screening of unintentionally produced organic contaminants. Swedish Environmental Research Institute (IVL) report B1944, Göteborg, Sweden.
Brubaker WW, Hites RA. OH reaction kinetics of polycyclic aromatic hydrocarbons andpolychlorinated dibenzo-p-dioxins and dibenzofurans. The Journal of Physical Chemistry A. 1998;102:915–921. doi: 10.1021/jp9721199. DOI
Cai CY, Li JY, Wu D, Wang XL, Tsang DCW, Li XD, Sun JT, Zhu LZ, Shen HZ, Tao S, Liu WX. Spatial distribution, emission source and health risk of parent PAHs and derivatives in surface soils from the Yangtze River Delta, eastern China. Chemosphere. 2017;178:301–308. doi: 10.1016/j.chemosphere.2017.03.057. PubMed DOI
Cajthaml T, Pacakova V, Sasek V. Study of fungal degradation products of polycyclic aromatic hydrocarbons using gas chromatography with ion trap mass spectrometry detection. Journal of Chromatography A. 2002;974:213–222. doi: 10.1016/S0021-9673(02)00904-4. PubMed DOI
Cajthaml T, Erbanova P, Sasek V, Moeder M. Breakdown products on metabolic pathway of degradation of benz[a]anthracene by a ligninolytic fungus. Chemosphere. 2006;64:560–564. doi: 10.1016/j.chemosphere.2005.11.034. PubMed DOI
Cerniglia CE. Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation. 1992;3:351–368. doi: 10.1007/BF00129093. DOI
Collins JF, Brown JP, Alexeeff GV, Salmon AG. Potency equivalency factors for some polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbon derivatives. Regulatory Toxicology and Pharmacology. 1998;28:45–54. doi: 10.1006/rtph.1998.1235. PubMed DOI
Cui, S., Zhang, Z., Fu, Q., Hough, R., Yates, K., & Osprey, M. (2020). Long-term spatial and temporal patterns of polycyclic aromatic hydrocarbons (PAHs) in Scottish soils over 20 years (1990–2009): A national picture. Geoderma,361, 114135.
Czech Hydrometeorological Institute. (2006). Annual report 2006 (in Czech), CHMI, Prague.
Czech Statistical Office. (2019). Number of population in municipalities—population of municipalities. Publication Code: 130072-19.
Dean-Ross D, Moody JD, Freeman JP, Doerge DR, Cerniglia CE. Metabolism of anthracene by a Rhodococcus species. FEMS Microbiology Letters. 2001;204:205–211. doi: 10.1111/j.1574-6968.2001.tb10886.x. PubMed DOI
Degrendele, C., Fiedler, H., Kocan, A., Kukučka, P., Přibylová, P., Prokeš, R., Klánová, J., & Lammel, G. (2020). Multiyear levels of PCDD/Fs, dl-PCBs and PAHs in background air in central Europe and implications for deposition. Chemosphere,240, 124852. PubMed
Ding ZZ, Yi YY, Zhang QZ, Zhuang T. Theoretical investigation on atmospheric oxidation of fluorene initiated by OH radical. Science of the Total Environment. 2019;669:920–929. doi: 10.1016/j.scitotenv.2019.02.400. PubMed DOI
Doick KJ, Klingelmann E, Burauel P, Jones KC, Semple KT. Long-term fate of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in an agricultural soil. Environmental Science & Technology. 2005;39:3663–3670. doi: 10.1021/es048181i. PubMed DOI
Duarte FV, Simoes AM, Teodoro JS, Rolo AP, Palmeira CM. Exposure to dibenzofuran affects lung mitochondrial function in vitro. Toxicology Mechanisms and Methods. 2011;21:571–576. doi: 10.3109/15376516.2011.576714. PubMed DOI
Duarte FV, Teodoro JS, Rolo AP, Palmeira CM. Exposure to dibenzofuran triggers autophagy in lung cells. Toxicology Letters. 2012;209:35–42. doi: 10.1016/j.toxlet.2011.11.029. PubMed DOI
Durant JL, Busby WF, Jr, Lafleur AL, Penman BW, Crespi CL. Human cell mutagenicity of oxygenated, nitrated and unsubstituted polycyclic aromatic hydrocarbons associated with urban aerosols. Mutation Research/genetic Toxicology. 1996;371:123–157. doi: 10.1016/S0165-1218(96)90103-2. PubMed DOI
Dvorská A, Komprdová K, Lammel G, Klánová J, Plachá H. Polycyclic aromatic hydrocarbons in background air in central Europe - Seasonal levels and limitations for source apportionment. Atmospheric Environment. 2012;46:147–154. doi: 10.1016/j.atmosenv.2011.10.007. DOI
el Alawi YS, McConkey BJ, Dixon DG, Greenberg BM. Measurement of short and long-term toxicity of polycyclic aromatic hydrocarbons using luminescent bacteria. Ecotoxicology and Environmental Safety. 2002;51:12–21. doi: 10.1006/eesa.2001.2108. PubMed DOI
Enya T, Suzuki H, Watanabe T, Hirayama T, Hisamatsu Y. 3-Nitrobenzanthrone, a powerful bacterial mutagen and suspected human carcinogen found in diesel exhaust and airborne particulates. Environmental Science and Technology. 1997;31:2772–2776. doi: 10.1021/es961067i. DOI
Evans WC, Fernley HN, Griffiths E. Oxidative metabolism of phenanthrene and anthracene by soil pseudomonads. Biochemical Journal. 1965;95:819–831. doi: 10.1042/bj0950819. PubMed DOI PMC
Fan Z, Chen D, Birla P, Kamens M. Modeling of nitro-polycyclic aromatic: Hydrocarbon formation and decay in the atmosphere. Atmospheric Environment. 1995;29:1171–1181. doi: 10.1016/1352-2310(94)00347-N. DOI
Fernández P, Carrera G, Grimalt JO, Ventura M, Camarero L, Catalan J, Nickus U, Thies H, Psenner R. Factors governing the atmospheric deposition of polycyclic aromatic hydrocarbons to remote areas. Environmental Science and Technology. 2003;37:3261–3267. doi: 10.1021/es020137k. PubMed DOI
Finlayson-Pitts BJ, Pitts JN., Jr . Chemistry of the upper and lower atmosphere. Academic Press; 2000. p. 969.
George EJ, Neufeld RD. Degradation of fluorene in soil by fungus Phanerochaete chrysosporium. Biotechnology and Bioengineering. 1989;33:1306–1310. doi: 10.1002/bit.260331012. PubMed DOI
Gibson DT, Mahadaven V, Jerina DM, Yagi H, Yeh HJC. Oxidation of the carcinogens benzo[a]pyrene and benzo[a]anthracene to dihydrodiols by bacterium. Science. 1975;189:295–297. doi: 10.1126/science.1145203. PubMed DOI
Greim, H. (2008). Gesundheitsschädliche Arbeitsstoffe, Toxikologisch arbeitsmedizinische Begründungen von MAK-Werten und Einstufungen. Weinheim, Germany Wiley-VCH.
Gubler A, Wachter D, Blumb F, Buchelib TD. Remarkably constant PAH concentrations in Swiss soils over the last 30 years. Environmental Science: Processes Impacts. 2015;17:1816–1828. PubMed
Hadibarata T, Yusoff ARM, Aris A, Kristanti RA. Identification of naphthalene metabolism by white rot fungus Armillaria sp. F022. Journal of Environmental Sciences. 2012;24:728–732. doi: 10.1016/S1001-0742(11)60843-7. PubMed DOI
Hecht T. Elementare statistische Bewertung von Messdaten der analytischen Chemie mit Excel. Springer; 2020.
Holoubek I, Klánová J, Jarkovský J, Kohoutek J. Trends in background levels of persistent organic pollutants at Kosetice observatory, Czech Republic, Part I: Ambient air and wet deposition 1996–2005. Journal of Environmental Monitoring. 2007;9:557–563. doi: 10.1039/B700750G. PubMed DOI
Holoubek I, Klánová J, Jarkovský J, Kubík V, Helešic J. Trends in background levels of persistent organic pollutants at Kosetice observatory, Czech Republic, Part II. Aquatic and terrestrial environments 1996–2005. Journal of Environmental Monitoring. 2007;9:564–571. doi: 10.1039/B701096F. PubMed DOI
Holoubek I, Dušek L, Sáňka M, Hofman J, Čupra P, Jarkovský J, Zbíral J, Klánová J. Soil burdens of persistent organic pollutants—their levels, fate and risk. Part I. Variation of concentration ranges according to different soil uses and locations. Environmental Pollution. 2009;157:3207–3217. doi: 10.1016/j.envpol.2009.05.031. PubMed DOI
Horstmann M, McLachlan MS. Forests as filters of airborne organic pollutants: A model. Environmental Science and Technology. 1998;32:413–420. doi: 10.1021/es970592u. DOI
Honda K, Mizukami M, Ueda Y, Hamada N, Seike N. Residue level of polycyclic aromatic hydrocarbons in Japanese paddy soils from 1959 to 2002. Chemosphere. 2007;68:1763–1771. doi: 10.1016/j.chemosphere.2007.03.040. PubMed DOI
IARC Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. 2010;92:1–852. PubMed PMC
IARC Diesel and gasoline engine exhausts and some nitroarenes. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. 2012;105:1–703. PubMed PMC
Idowu O, Semple KT, Ramadass K, O'Connor W, Hansbro P, Thavamani P. Beyond the obvious: Environmental health implications of polar polycyclic aromatic hydrocarbons. Environment International. 2019;123:543–557. doi: 10.1016/j.envint.2018.12.051. PubMed DOI
International POPs Elimination Project—IPEP. (2006). Persistent organic pollutants in the Czech Republic—country situation report.
Jaiswal PK, Srivastava S, Gupta J, Thakur IS. Dibenzofuran induces oxidative stress, disruption of trans-mitochondrial membrane potential and G1 arrest in human hepatoma cell line. Toxicology Letters. 2012;214:137–144. doi: 10.1016/j.toxlet.2012.08.014. PubMed DOI
Jerina DM, van Bladeren PF, Yagi H, Gibson DT, Mahadeven V, Neese AS, Koreeda M, Sharma ND, Boyd., D. Synthesis and absolute configuration of cis-1-2-, 8-, 9- and 10,11-dihydrodiol metabolites of benz[a]anthracene formed by a strain of Beijerinckia. Journal of Organic Chemistry. 1984;49:1075–1082. doi: 10.1021/jo00193a033. DOI
Jones KC, Stratford JA, Waterhouse KS, Furlong ET, Giger W, Hites RA, Schaffner C, Johnston AE. Increases in the polynuclear aromatic hydrocarbon content of an agricultural soil over the last Century. Environmental Science and Technology. 1989;23:95–101. doi: 10.1021/es00178a012. DOI
Jones KC, Stratford JA, Tidridge P, Waterhouse KS, Johnston AE. Polynuclear aromatic hydrocarbons in an agricultural soil: Long-term changes in profile distribution. Environmental Pollution. 1989;56:337–351. doi: 10.1016/0269-7491(89)90079-1. PubMed DOI
Kawamura K, Kaplan IR. Organic compounds in the rainwater of Los Angeles. Environmental Science and Technology. 1983;17:497–501. doi: 10.1021/es00114a011. PubMed DOI
Keyte IJ, Harrison RM, Lammel G. Chemical reactivity and long-range transport potential of polycyclic aromatic hydrocarbons—a review. Chemical Society Reviews. 2013;42:9333–9391. doi: 10.1039/c3cs60147a. PubMed DOI
Klánová J, Matykiewiczová N, Máčka Z, Prošek P, Láska K, Klán P. Persistent organic pollutants in soils and sediments from James Ross Island, Antarctica. Environmental Pollution. 2008;152:416–423. doi: 10.1016/j.envpol.2007.06.026. PubMed DOI
Krauss M, Wilcke W, Zech W. Polycyclic aromatic hydrocarbons and polychlorinated biphenyls in forest soils: Depth distribution as indicator of different fate. Environmental Pollution. 2000;110:79–88. doi: 10.1016/S0269-7491(99)00280-8. PubMed DOI
Krivobok S, Miriouchkine E, Seiglemurandi F, Benoit-Guyod JL. Biodegradation of Anthracene by Soil Fungi. Chemosphere. 1998;31:523–530. doi: 10.1016/S0045-6535(98)00067-8. PubMed DOI
Kuśmierz M, Oleszczuk P, Kraska P, Pałys E, Andruszczak S. Persistence of polycyclic aromatic hydrocarbons (PAHs) in biochar-amended soil. Chemosphere. 2016;146:272–279. doi: 10.1016/j.chemosphere.2015.12.010. PubMed DOI
Lammel G. Polycyclic aromatic compounds in the atmosphere—a review identifying research needs. Polycyclic Aromatic Compounds. 2015;35:316–329. doi: 10.1080/10406638.2014.931870. DOI
Lammel G, Sehili AM, Bond TC, Feichter J, Grassl H. Gas/particle partitioning and global distribution of polycyclic aromatic hydrocarbons—a modelling approach. Chemosphere. 2009;76:98–106. doi: 10.1016/j.chemosphere.2009.02.017. PubMed DOI
Lammel G, Novák J, Landlová L, Dvorská A, Klánová J, Čupr P, Kohoutek J, Reimer E, Škrdlíková L. Sources and distributions of polycyclic aromatic hydrocarbons and toxicity of polluted atmosphere aerosols. In: Zereini F, Wiseman CLS, editors. Urban airborne particulate matter: Origins, chemistry, fate and health impacts. Springer; 2010. pp. 39–62.
Lammel G, Kitanovski Z, Kukučka P, Novák J, Arangio A, Codling GP, Filippi A, Hovorka J, Kuta J, Leoni C, Příbylová P, Prokeš R, Sáňka O, Shahpoury P, Tong HJ, Wietzoreck M. Levels, phase partitioning, mass size distributions and bioaccessibility of oxygenated and nitrated polycyclic aromatic hydrocarbons (OPAHs, NPAHs) in ambient air. Environmental Science and Technology. 2020;54:2615–2625. doi: 10.1021/acs.est.9b06820. PubMed DOI PMC
Lampi MA, Gurska J, McDonald KIC, Xie FL, Huang XD, Dixon DG, Greenberg BM. Photoinduced toxicity of polycyclic aromatic hydrocarbons to Daphnia magna: Ultraviolet-mediated effects and the toxicity of polycyclic aromatic hydrocarbon photoproducts. Environmental Toxicology and Chemistry. 2006;25:1079–1087. doi: 10.1897/05-276R.1. PubMed DOI
Landlová L, Čupr P, Franců J, Klánová J, Lammel G. Composition and effects of inhalable size fractions of atmospheric aerosols in the polluted atmosphere. Part I. PAHs, PCBs and OCPs and the matrix chemical composition. Environmental Science and Pollution Research. 2014;21:6188–6204. doi: 10.1007/s11356-014-2571-y. PubMed DOI
Leary JA, Lafleur A, L., Liber, H.L., Biemann, K. Chemical and toxicologic characterization of fossil fuel combustion product phenalen-l-one. Analytical Chemistry. 1983;55:758–761. doi: 10.1021/ac00255a038. PubMed DOI
Lu R, Wu J, Turco RP, Winer AM, Atkinson R, Arey J, Paulson SE, Lurmann FW, Miguel AH, Eiguren-Fernandez A. Naphthalene distributions and human exposure in Southern California. Atmospheric Environment. 2005;39:489–507. doi: 10.1016/j.atmosenv.2004.09.045. DOI
Lübcke-von Varel U, Bataineh M, Lohrmann S, Löffler I, Schulze T, Flückiger-Isler S, et al. Identification and quantitative confirmation of dinitropyrenes and 3- nitrobenzanthrone as major mutagens in contaminated sediments. Environment International. 2012;44:31–39. doi: 10.1016/j.envint.2012.01.010. PubMed DOI
Lundstedt S, Haglund P, Öberg L. Degradation and formation of polycyclic aromatic compounds during bioslurry treatment of an acid aged gasworks soil. Environmental Toxicology and Chemistry. 2003;22:1413–1420. doi: 10.1002/etc.5620220701. PubMed DOI
Lundstedt S, White PA, Lemieux CL, Lynes KD, Lambert LB, Öberg L, et al. Sources, fate, and toxic hazards of oxygenated polycyclic aromatic hydrocarbons (PAHs) at PAH-contaminated sites. Ambio. 2007;36:475–485. doi: 10.1579/0044-7447(2007)36[475:SFATHO]2.0.CO;2. PubMed DOI
Mahaffey WR, Gibson DT, Cerniglia CE. Bacterial oxidation of chemical carcinogens: Formation of polycyclic aromatic acids from benz[a]anthracene. Applied and Environmental Microbiology. 1988;54:2415–2423. doi: 10.1128/aem.54.10.2415-2423.1988. PubMed DOI PMC
Marquès M, Sierra J, Drotikova T, Mari M, Nadal M, Domingo J. Concentrations of polycyclic aromatic hydrocarbons and trace elements in Arctic soils: A case-study in Svalbard. Environmental Research. 2017;159:202–211. doi: 10.1016/j.envres.2017.08.003. PubMed DOI
Matscheko N, Lundstedt S, Svensson L, Harju M, Tysklind M. Accumulation and elimination of 16 polycyclic aromatic compounds in the earthworm (Eisenia fetida) Environmental Toxicology and Chemistry. 2002;21:1724–1729. doi: 10.1002/etc.5620210826. PubMed DOI
Matsumoto M, Ando M, Ohta Y. Mutagenicity of monochlorodibenzofurans detected in the environment. Toxicology Letters. 1988;40:21–28. doi: 10.1016/0378-4274(88)90179-8. PubMed DOI
Moody JD, Freeman JP, Doerge DR, Cerniglia CE. Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp. Strain PYR-1. Applied and Environmental Microbiology. 2001;67:1476–1483. doi: 10.1128/AEM.67.4.1476-1483.2001. PubMed DOI PMC
Moody JD, Freeman JP, Cerniglia CE. Degradation of benz[a]anthracene by Mycobacterium vanbaalenii strain PYR-1. Biodegradation. 2005;16:513–526. doi: 10.1007/s10532-004-7217-1. PubMed DOI
Mortelmans K, Haworth S, Speck W, Zeiger E. Mutagenicity testing of agent orange components and related chemicals. Toxicology and Applied Pharmacology. 1984;75:137–146. doi: 10.1016/0041-008X(84)90084-X. PubMed DOI
Nam JJ, Thomas GO, Jaward FM, Steinnes E, Gustafsson O, Jones KC. PAHs in background soils from Western Europe: Influence of atmospheric deposition and soil organic matter. Chemosphere. 2008;70:1596–1602. doi: 10.1016/j.chemosphere.2007.08.010. PubMed DOI
Nežiková, B., Degrendele, C., Bandowe, B.A.M., Holubová Šmejkalová, A., Kukučka, P., Martiník, J., Prokeš, R., Přibylová, P., Klánová, J., & Lammel, G. (2021). Atmospheric concentrations of nitrated and oxygenated polycyclic aromatic hydrocarbons and oxygen heterocycles are declining in Central Europe. Chemosphere,269,128738. PubMed
Niederer M. Determination of polycyclic aromatic hydrocarbons and substitutes (nitro-, oxy-PAHs) in urban soil and airborne particulate by GCMS and NCI-MS/MS. Environmental Science and Pollution Research. 1998;5:209–216. doi: 10.1007/BF02986403. PubMed DOI
Nováková, Z., Novák, J., Kitanovski, Z., Kukučka, P., Smutá, M., Wietzoreck, M., Lammel, G., & Hilscherová, K. (2020). Toxic potentials of particulate and gaseous air pollutant mixtures and the role of PAHs and their derivatives. Environment International,139, 105634. PubMed
Obrist D, Zielinska B, Perlinger JA. Accumulation of polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAHs (OPAHs) in organic and mineral soil horizons from four U.S. remote forests. Chemosphere. 2015;134:98–105. doi: 10.1016/j.chemosphere.2015.03.087. PubMed DOI
Pham CT, Tang N, Toriba A. Polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in atmospheric particles and soil at a traffic site in Hanoi, Vietnam. Polycyclic Aromatic Compounds. 2015;35:353–371. doi: 10.1080/10406638.2014.903284. DOI
PubChem. (2021a). Dibenzofuran. US national library for medicine. National Center for Biotechnology Information, Bethesda, USA. https://pubchem.ncbi.nlm.nih.gov/. Accessed 06 June 2021.
PubChem. (2021b). 9-Fluorenone. US national library for medicine. National Center for Biotechnology Information, Bethesda, USA. https://pubchem.ncbi.nlm.nih.gov/. Accessed 06 June 2021.
Richter-Brockmann S, Achten C. Analysis and toxicity of 59 PAH in petrogenic and pyrogenic environmental samples including dibenzopyrenes, 7H-benzo[c]fluorene, 5-methylchrysene and 1-methylpyrene. Chemosphere. 2018;200:495–503. doi: 10.1016/j.chemosphere.2018.02.146. PubMed DOI
Ruby MV, Lowney YW, Bunge AL, Roberts SM, Gomez-Eyles JL, Ghosh U, Kissel JC, Tomlinson P, Menzie C. Oral bioavailability, bioaccessibility, and dermal absorption of PAHs from soil—state of the science. Environmental Science and Technology. 2016;50:2151–2164. doi: 10.1021/acs.est.5b04110. PubMed DOI
Schantz, M., Wise, S.A., & Lewtas, J. (2005). Intercomparison Program for Organic Speciation in PM2.5 Air Particulate Matter: Description and Results for Trials I and II; Materials: Air Particulate Extract I, Air Particulate I and PM2.5 Interim RM, NIST Interagency/Internal Report (NISTIR) Vol. 7229.
Schlanges I, Meyer D, Palm WU, Ruck W. Identification, quantification and distribution of PAC-metabolites, heterocyclic PAC and substituted PAC in groundwater samples of tar-contaminated sites from Germany. Polycyclic Aromatic Compounds. 2008;28:320–328. doi: 10.1080/10406630802377807. DOI
Schneider J, Grosser R, Jayasimhulu K, Xue W, Warshawsky D. Degradation of pyrene, benz[a]anthracene, and benzo[a]pyrene by Mycobacterium sp. RJGII-135, isolated from a former coal gasification site. Applied and Environmental Microbiology. 1996;62:13–19. doi: 10.1128/aem.62.1.13-19.1996. PubMed DOI PMC
Semple KT, Morriss AWJ, Paton GI. Bioavailability of hydrophobic organic contaminants in soils: Fundamental concepts and techniques for analysis. European Journal of Soil Science. 2003;54:809–818. doi: 10.1046/j.1351-0754.2003.0564.x. DOI
Shahpoury P, Lammel G, Holubová Šmejkalová A, Klánová J, Přibylová P, Váňa M. Polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and chlorinated pesticides in background air in central Europe—investigating parameters affecting wet scavenging of polycyclic aromatic hydrocarbons. Atmospheric Chemistry and Physics. 2015;15:1795–1805. doi: 10.5194/acp-15-1795-2015. DOI
Shahpoury P, Kitanovski Z, Lammel G. Snow scavenging and phase partitioning of nitrated and oxygenated aromatic hydrocarbons in polluted and remote environments in central Europe and the European Arctic. Atmospheric Chemistry and Physics. 2018;18:13495–13510. doi: 10.5194/acp-18-13495-2018. DOI
Škrdlíková L, Landlová L, Klánová J, Lammel G. Wet deposition and scavenging efficiency of gaseous and particulate phase polycyclic aromatic compounds at a central European suburban site. Atmospheric Environment. 2011;45:4305–4312. doi: 10.1016/j.atmosenv.2011.04.072. DOI
Sun Z, Zhu Y, Zhuo SJ, Liu WP, Zeng EY, Wang XL, Xing BS, Tao S. Occurrence of nitro- and oxy-PAHs in agricultural soils in eastern China and excess lifetime cancer risks from human exposure through soil ingestion. Environment International. 2017;108:261–270. doi: 10.1016/j.envint.2017.09.001. PubMed DOI
Sverdrup LE, Ekelund F, Krogh PH, Nielsen T, Johnsen K. Soil microbial toxicity of eight polycyclic aromatic compounds: Effects on nitrification, the genetic diversity of bacteria, and the total number of protozoans. Environmental Toxicology and Chemistry. 2002;21:1644–1650. doi: 10.1002/etc.5620210815. PubMed DOI
Sverdrup LE, Krogh PH, Nielsen T, Stenersen J. Relative sensitivity of three terrestrial invertebrate tests to polycyclic aromatic compounds. Environmental Toxicology and Chemistry. 2002;21:1927–1933. doi: 10.1002/etc.5620210921. PubMed DOI
Tomaz S, Shahpoury P, Jaffrezo J-L, Lammel G, Perraudi E, Villenave E, Albinet A. One-year study of polycyclic aromatic compounds at an urban site in Grenoble (France): Seasonal variations, gas/particle partitioning and cancer risk estimation. Science of the Total Environment. 2016;565:1071–1083. doi: 10.1016/j.scitotenv.2016.05.137. PubMed DOI
USEPA. (2019). Estimation Programs Interface Suite™ for Microsoft® Windows, v 4.11. United States Environmental Protection Agency, Washington, DC, USA.
USEPA. (2020). U.S. Environmental Protection Agency’s Integrated Risk Information System (IRIS). Summary on Dibenzofuran (132-64-9). https://www.epa.gov/iris/.
Vasilieva S, Tanirbergenov T, Abilev S, Migachev G, Huttunen MT. A comparative study of mutagenic and SOS-inducing activity of biphenyls, phenanthrenequinones and fluorenones. Mutation Research. 1990;244:321–329. doi: 10.1016/0165-7992(90)90080-4. PubMed DOI
Vikelsøe, J., Thomsen, M., Carlsen, L., & Johansen, E. (2002). Persistent organic pollutants in soil, sludge and sediment. A multianalytical field study of selected organic chlorinated and brominated compounds. National Environmental Research Institute, Denmark. NERI Technical Report No. 402, 100 pp. http://technical-reports.dmu.dk.
Walgraeve C, Demeestere K, Dewulf J, Zimmermann R, Van Langenhove H. Oxygenated polycyclic aromatic hydrocarbons in atmospheric particulate matter: Molecular characterization and occurrence. Atmospheric Environment. 2010;44:1831–1846. doi: 10.1016/j.atmosenv.2009.12.004. DOI
Wang Z, Ma X, Na G, Lin Z, Ding Q, Yao Z. Correlations between physicochemical properties of PAHs and their distribution in soil, moss and reindeer dung at Ny-Ålesund of the Arctic. Environmental Pollution. 2009;157:3132–3136. doi: 10.1016/j.envpol.2009.05.014. PubMed DOI
Watanabe T, Ohe T, Hirayama T. Occurrence and origin of mutagenicity in soil and water environment. Environmental Sciences. 2005;12:325–346. PubMed
WHO. (2003). Selected nitro- and nitrooxy-polycyclic aromatic hydrocarbons. World Health Organization, Environmental health criteria 229. I. International Programme for Chemical Safety II. Series.
Wilcke W. Synopsis polycyclic aromatic hydrocarbons (PAHs) in soil—a review. Journal of Plant Nutrition and Soil Science. 2000;163:229–248. doi: 10.1002/1522-2624(200006)163:3<229::AID-JPLN229>3.0.CO;2-6. DOI
Wilcke W, Amelung W. Persistent organic pollutants (POPs) in native grassland soils along a climosequence in North America. Soil Science Society of America Journal. 2000;64:2140–2148. doi: 10.2136/sssaj2000.6462140x. DOI
Wilcke W, Bandowe BAM, Gomez Lueso M, Ruppenthal M, del Valle H, Oelmann Y. Polycyclic aromatic hydrocarbons (PAHs) and their polar derivatives (oxygenated PAHs, azaarenes) in soils along a climosequence in Argentina. Science of the Total Environment. 2014;473–474:317–325. doi: 10.1016/j.scitotenv.2013.12.037. PubMed DOI
Wilcke W, Kiesewetter M, Bandowe BAM. Microbial formation and degradation of oxygen-containing polycyclic aromatic hydrocarbons (OPAHs) in soil during short-term incubation. Environmental Pollution. 2014;184:385–390. doi: 10.1016/j.envpol.2013.09.020. PubMed DOI
Wild SR, Berrow ML, Jones KC. The Persistence of Polynuelear Aromatic Hydrocarbons (PAHs) in sewage sludge amended agricultural soils. Environmental Pollution. 1991;72:141–157. doi: 10.1016/0269-7491(91)90064-4. PubMed DOI
Wild SR, Jones KC. Polynuclear aromatic hydrocarbons in the United Kingdom environment: A preliminary source inventory and budget. Environmental Pollution. 1995;88:91–108. doi: 10.1016/0269-7491(95)91052-M. PubMed DOI
Wilson J, Octaviani M, Bandowe BAM, Wietzoreck M, Zetzsch C, Pöschl U, Berkemeier T, Lammel G. Modeling the formation, degradation and spatiotemporal distribution of 2–1 nitrofluoranthene and 2-nitropyrene in the global atmosphere. Environmental Science and Technology. 2020;54:14224. doi: 10.1021/acs.est.0c04319. PubMed DOI PMC
Wu Y-R, Luo Z-H, Vrijmoed LLP. Biodegradation of anthracene and benz[a]anthracene by two Fusarium solani strains isolated from mangrove sediments. Bioresource Technology. 2010;101:9666–9672. doi: 10.1016/j.biortech.2010.07.049. PubMed DOI
Ye J-S, Yin H, Qiang J, Peng J, Qin H-M, Zhang N, He B-Y. Biodegradation of anthracene by Aspergillus fumigatus. Journal of Hazardous Materials. 2011;185:174–181. doi: 10.1016/j.jhazmat.2010.09.015. PubMed DOI
Zimmermann K, Jariyasopit N, Massey Simonich SL, Tao S, Atkinson R, Arey J. Formation of nitro-PAHs from the heterogeneous reaction of ambient particle-bound PAHs with N2O5/NO3/NO2. Environmental Science and Technology. 2013;47:8434–8442. doi: 10.1021/es402969c. PubMed DOI PMC