Modeling the Formation, Degradation, and Spatiotemporal Distribution of 2-Nitrofluoranthene and 2-Nitropyrene in the Global Atmosphere

. 2020 Nov 17 ; 54 (22) : 14224-14234. [epub] 20201028

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33112146

Polycyclic aromatic hydrocarbons (PAHs) are common atmospheric pollutants and known to cause adverse health effects. Nitrated PAHs (NPAHs) are formed in combustion activities and by nitration of PAHs in the atmosphere and may be equally or more toxic, but their spatial and temporal distribution in the atmosphere is not well characterized. Using the global EMAC model with atmospheric chemistry and surface compartments coupled, we investigate the formation, abundance, and fate of two secondarily formed NPAHs, 2-nitrofluoranthene (2-NFLT) and 2-nitropyrene (2-NPYR). The default reactivity scenario, the model with the simplest interpretation of parameters from the literature, tends to overestimate both absolute concentrations and NPAH/PAH ratios at observational sites. Sensitivity scenarios indicate that NO2-dependent NPAH formation leads to better agreement between measured and predicted NPAH concentrations and that photodegradation is the most important loss process of 2-NFLT and 2-NPYR. The highest concentrations of 2-NFLT and 2-NPYR are found in regions with strong PAH emissions, but because of continued secondary formation from the PAH precursors, these two NPAHs are predicted to be spread across the globe.

Zobrazit více v PubMed

Pope C. A. III; Burnett R. T.; Thun M. J.; Calle E. E.; Krewski D.; Ito K.; Thurston G. D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 2002, 287, 1132–1141. 10.1001/jama.287.9.1132. PubMed DOI PMC

Loomis D.; Grosse Y.; Lauby-Secretan B.; Ghissassi F. E.; Bouvard V.; Benbrahim-Tallaa L.; Guha N.; Baan R.; Mattock H.; Straif K. The carcinogenicity of outdoor air pollution. Lancet Oncol. 2013, 14, 1262–1263. 10.1016/s1470-2045(13)70487-x. PubMed DOI

Shiraiwa M.; Ueda K.; Pozzer A.; Lammel G.; Kampf C. J.; Fushimi A.; Enami S.; Arangio A. M.; Fröhlich-Nowoisky J.; Fujitani Y.; Furuyama A.; Lakey P. S. J.; Lelieveld J.; Lucas K.; Morino Y.; Pöschl U.; Takahama S.; Takami A.; Tong H.; Weber B.; Yoshino A.; Sato K. Aerosol health effects from molecular to global scales. Environ. Sci. Technol. 2017, 51, 13545–13567. 10.1021/acs.est.7b04417. PubMed DOI

Lelieveld J.; Klingmüller K.; Pozzer A.; Pöschl U.; Fnais M.; Daiber A.; Münzel T. Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions. Eur. Heart J. 2019, 40, 1590–1596. 10.1093/eurheartj/ehz135. PubMed DOI PMC

Siak J.; Chan T. L.; Gibson T. L.; Wolff G. T. Contribution to bacterial mutagenicity from nitro-PAH compounds in ambient aerosols. Atmos. Environ. 1967, 19, 369–376. 10.1016/0004-6981(85)90104-0. DOI

Boström C.-E.; Gerde P.; Hanberg A.; Jernström B.; Johansson C.; Kyrklund T.; Rannug A.; Törnqvist M.; Victorin K.; Westerholm R. Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ. Health Perspect. 2002, 110, 451–499. 10.1289/ehp.110-1241197. PubMed DOI PMC

IARC . Diesel and Gasoline Engine Exhausts and Some Nitroarenes. IARC Monographs on the Evaluation of Carciogenic Risks to Humans, 2014; Vol. 105,pp 9–699. PubMed PMC

Abdel-Shafy H. I.; Mansour M. S. M. A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 2016, 25, 107–123. 10.1016/j.ejpe.2015.03.011. DOI

Misaki K.; Takamura-Enya T.; Ogawa H.; Takamori K.; Yanagida M. Tumour-promoting activity of polycyclic aromatic hydrocarbons and their oxygenated or nitrated derivatives. Mutagenesis 2016, 31, 205–213. 10.1093/mutage/gev076. PubMed DOI

Idowu O.; Semple K. T.; Ramadass K.; O’Connor W.; Hansbro P.; Thavamani P. Beyond the obvious: environmental health implications of polar polycyclic aromatic hydrocarbons. Environ. Int. 2019, 123, 543–557. 10.1016/j.envint.2018.12.051. PubMed DOI

Rosenkranz H. S.; Mermelstein R. Mutagenicity and genotoxicity of nitroarenes. Mutat. Res., Rev. Genet. Toxicol. 1983, 114, 217–267. 10.1016/0165-1110(83)90034-9. PubMed DOI

Feilberg A.; Kamens R. M.; Strommen M. R.; Nielsen T. Modeling the formation, decay, and partitioning of semivolatile nitro-polycyclic aromatic hydrocarbons (nitronaphthalenes) in the atmosphere. Atmos. Environ. 1999, 33, 1231–1243. 10.1016/s1352-2310(98)00275-1. DOI

Finlayson-Pitts B. J.; Pitts J. N.. Chemistry of the Upper and Lower Atmosphere; Academic Press: San Diego, USA, 2000; 969 pp.

Kielhorn J.; Wahnschaffe U.; Mangelsdorf I.. Selected Nitro- and Nitro-Oxy-Polycyclic Aromatic Hydrocarbons; World Health Organization, 2003.

Albinet A.; Leoz-Garziandia E.; Budzinski H.; ViIlenave E. Polycyclic aromatic hydrocarbons (PAHs), nitrated PAHs and oxygenated PAHs in ambient air of the Marseilles area (South of France): concentrations and sources. Sci. Total Environ. 2007, 384, 280–292. 10.1016/j.scitotenv.2007.04.028. PubMed DOI

Bandowe B. A. M.; Meusel H. Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) in the environment – a review. Sci. Total Environ. 2017, 581–582, 237–257. 10.1016/j.scitotenv.2016.12.115. PubMed DOI

Geier M. C.; Chlebowski A. C.; Truong L.; Massey Simonich S. L.; Anderson K. A.; Tanguay R. L. Comparative developmental toxicity of a comprehensive suite of polycyclic aromatic hydrocarbons. Arch. Toxicol. 2018, 92, 571–586. 10.1007/s00204-017-2068-9. PubMed DOI PMC

Rosenkranz H. S. Direct-acting mutagens in diesel exhausts: Magnitude of the problem. Mutat. Res. 1982, 101, 1–10. 10.1016/0165-1218(82)90159-8. PubMed DOI

Salmeen I.; Durisin A. M.; Prater T. J.; Riley T.; Schuetzle D. Contribution of 1-nitropyrene to direct-acting Ames assay mutagenicities of diesel particulate extracts. Mutat. Res. Lett. 1982, 104, 17–23. 10.1016/0165-7992(82)90114-2. PubMed DOI

Bamford H. A.; Bezabeh D. Z.; Schantz M. M.; Wise S. A.; Baker J. E. Determination and comparison of nitrated-polycyclic aromatic hydrocarbons measured in air and diesel particulate reference materials. Chemosphere 2003, 50, 575–587. 10.1016/s0045-6535(02)00667-7. PubMed DOI

Bamford H. A.; Baker J. E. Nitro-polycyclic aromatic hydrocarbon concentrations and sources in urban and suburban atmospheres of the Mid-Atlantic region. Atmos. Environ. 2003, 37, 2077–2091. 10.1016/s1352-2310(03)00102-x. DOI

Kameda T.; Takenaka N.; Bandow H.; Inazu K.; Hisamatsu Y. Determination of atmospheric nitro-polycyclic aromatic hydrocarbons and their precursors at a heavy traffic roadside and at a residential area in Osaka, Japan. Polycyclic Aromat. Compd. 2004, 24, 657–666. 10.1080/10406630490471708. DOI

Reisen F.; Arey J. Atmospheric reactions influence seasonal PAH and nitro-PAH concentrations in the Los Angeles Basin. Environ. Sci. Technol. 2005, 39, 64–73. 10.1021/es035454l. PubMed DOI

Zimmermann K.; Jariyasopit N.; Massey Simonich S. L.; Tao S.; Atkinson R.; Arey J. Formation of nitro-PAHs from the heterogeneous reaction of ambient particle-bound PAHs with N2O5/NO3/NO2. Environ. Sci. Technol. 2013, 47, 8434–8442. 10.1021/es401789x. PubMed DOI PMC

Huang B.; Liu M.; Bi X.; Chaemfa C.; Ren Z.; Wang X.; Sheng G.; Fu J. Phase distribution, sources and risk assessment of PAHs, NPAHs and OPAHs in a rural site of Pearl River Delta Region, China. Atmos. Pollut. Res. 2014, 5, 210–218. 10.5094/apr.2014.026. DOI

Li X.; Zheng Y.; Guan C.; Cheung C. S.; Huang Z. Effect of biodiesel on PAH, OPAH, and NPAH emissions from a direct injection diesel engine. Environ. Sci. Pollut. Res. 2018, 25, 34131–34138. 10.1007/s11356-018-3382-3. PubMed DOI

Zimmermann K.; Atkinson R.; Arey J.; Kojima Y.; Inazu K. Isomer distributions of molecular weight 247 and 273 nitro-PAHs in ambient samples, NIST Diesel SRM, and from radical-initiated chamber reactions. Atmos. Environ. 2012, 55, 431–439. 10.1016/j.atmosenv.2012.03.016. DOI

Zhao J.; Zhang Y.; Chang J.; Peng S.; Hong N.; Hu J.; Lv J.; Wang T.; Mao H. Emission characteristics and temporal variation of PAHs and their derivatives from an ocean-going cargo vessel. Chemosphere 2020, 249, 126194.10.1016/j.chemosphere.2020.126194. PubMed DOI

Huang W.; Huang B.; Bi X.; Lin Q.; Liu M.; Ren Z.; Zhang G.; Wang X.; Sheng G.; Fu J. Emission of PAHs, NPAHs and OPAHs from residential honeycomb coal briquette combustion. Energy Fuels 2014, 28, 636–642. 10.1021/ef401901d. DOI

Nalin F.; Golly B.; Besombes J.-L.; Pelletier C.; Aujay-Plouzeau R.; Verlhac S.; Dermigny A.; Fievet A.; Karoski N.; Dubois P.; Collet S.; Favez O.; Albinet A. Fast oxidation processes from emission to ambient air introduction of aerosol emitted by residential log wood stoves. Atmos. Environ. 2016, 143, 15–26. 10.1016/j.atmosenv.2016.08.002. DOI

Orakij W.; Chetiyanukornkul T.; Kasahara C.; Boongla Y.; Chuesaard T.; Furuuchi M.; Hata M.; Tang N.; Hayakawa K.; Toriba A. Polycyclic aromatic hydrocarbons and their nitro derivatives from indoor biomass-fueled cooking in two rural areas of Thailand: a case study. Air Qual Atmos Hlth 2017, 10, 747–761. 10.1007/s11869-017-0467-y. DOI

Howard P. C.; Hecht S. S.; Beland F. A.. Nitroarenes: Occurrence, Metabolism, and Biological Impact; Springer Science & Business Media, 1990.

Yaffe D.; Cohen Y.; Arey J.; Grosovsky A. J. Multimedia analysis of PAHs and nitro-PAH daughter products in the Los Angeles Basin. Risk Anal. 2001, 21, 275–294. 10.1111/0272-4332.212111. PubMed DOI

Ciccioli P.; Cecinato A.; Brancaleoni E.; Frattoni M.; Zacchei P.; Miguel A. H.; de Castro Vasconcellos P. Formation and transport of 2-nitrofluoranthene and 2-nitropyrene of photochemical origin in the troposphere. J. Geophys. Res. 1996, 101, 19567.10.1029/95jd02118. DOI

Nielsen T.; Seitz B.; Ramdahl T. Occurrence of nitro-PAH in the atmosphere in a rural area. Atmos. Environ. 1984, 18, 2159–2165. 10.1016/0004-6981(84)90203-8. DOI

Tsapakis M.; Stephanou E. G. Diurnal cycle of PAHs, nitro-PAHs, and oxy-PAHs in a high oxidation capacity marine background atmosphere. Environ. Sci. Technol. 2007, 41, 8011–8017. 10.1021/es071160e. PubMed DOI

Lammel G.; Mulder M. D.; Shahpoury P.; Kukučka P.; Lišková H.; Přibylová P.; Prokeš R.; Wotawa G. Nitro-polycyclic aromatic hydrocarbons - gas-particle partitioning, mass size distribution, and formation along transport in marine and continental background air. Atmos. Chem. Phys. 2017, 17, 6257–6270. 10.5194/acp-17-6257-2017. DOI

Becker S.; Halsall C. J.; Tych W.; Hung H.; Attewell S.; Blanchard P.; Li H.; Fellin P.; Stern G.; Billeck B.; Friesen S. Resolving the long-term trends of polycyclic aromatic hydrocarbons in the Canadian Arctic atmosphere. Environ. Sci. Technol. 2006, 40, 3217–3222. 10.1021/es052346l. PubMed DOI

Lohmann R.; Klanova J.; Pribylova P.; Liskova H.; Yonis S.; Bollinger K. PAHs on a West-to-East transect across the tropical Atlantic Ocean. Environ. Sci. Technol. 2013, 47, 2570–2578. 10.1021/es304764e. PubMed DOI

Ramdahl T.; Zielinska B.; Arey J.; Atkinson R.; Winer A. M.; Pitts J. N. Jr. Ubiquitous occurrence of 2-nitroftuoranthene and 2-nitropyrene in air. Nature 1986, 321, 425–427. 10.1038/321425a0. PubMed DOI

Fan Z.; Chen D.; Birla P.; Kamens R. M. Modeling of nitro-polycyclic aromatic hydrocarbon formation and decay in the atmosphere. Atmos. Environ. 1995, 29, 1171–1181. 10.1016/1352-2310(94)00347-n. DOI

Mulder M. D.; Dumanoglu Y.; Efstathiou C.; Kukučka P.; Matejovičová J.; Maurer C.; Přibylová P.; Prokeš R.; Sofuoglu A.; Sofuoglu S. C.; Wilson J.; Zetzsch C.; Wotawa G.; Lammel G. Fast formation of nitro-PAHs in the marine atmosphere constrained in a regional-scale Lagrangian field experiment. Environ. Sci. Technol. 2019, 53, 8914–8924. 10.1021/acs.est.9b03090. PubMed DOI

Huang L.; Batterman S. A. Multimedia model for polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs in Lake Michigan. Environ. Sci. Technol. 2014, 48, 13817–13825. 10.1021/es503137b. PubMed DOI PMC

Schulte J. K.; Fox J. R.; Oron A. P.; Larson T. V.; Simpson C. D.; Paulsen M.; Beaudet N.; Kaufman J. D.; Magzamen S. Neighborhood-scale spatial models of diesel exhaust concentration profile using 1-nitropyrene and other nitroarenes. Environ. Sci. Technol. 2015, 49, 13422–13430. 10.1021/acs.est.5b03639. PubMed DOI PMC

Lin Y.; Qiu X.; Ma Y.; Ma J.; Zheng M.; Shao M. Concentrations and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs (NPAHs) in the atmosphere of North China, and the transformation from PAHs to NPAHs. Environ. Pollut. 2015, 196, 164–170. 10.1016/j.envpol.2014.10.005. PubMed DOI

Octaviani M.; Tost H.; Lammel G. Global simulation of semivolatile organic compounds – development and evaluation of the MESSy submodel SVOC (v1.0). Geosci. Model Dev. 2019, 12, 3585–3607. 10.5194/gmd-12-3585-2019. DOI

Jöckel P.; Tost H.; Pozzer A.; Brühl C.; Buchholz J.; Ganzeveld L.; Hoor P.; Kerkweg A.; Lawrence M. G.; Sander R.; Steil B.; Stiller G.; Tanarhte M.; Taraborrelli D.; van Aardenne J.; Lelieveld J. The atmospheric chemistry general circulation model ECHAM5/MESSy1: Consistent simulation of ozone from the surface to the mesosphere. Atmos. Chem. Phys. 2006, 6, 5067–5104. 10.5194/acp-6-5067-2006. DOI

Jöckel P.; Kerkweg A.; Pozzer A.; Sander R.; Tost H.; Riede H.; Baumgaertner A.; Gromov S.; Kern B. Development cycle 2 of the Modular Earth Submodel System (MESSy2). Geosci. Model Dev. 2010, 3, 717–752. 10.5194/gmd-3-717-2010. DOI

Sander R.; Baumgaertner A.; Gromov S.; Harder H.; Jöckel P.; Kerkweg A.; Kubistin D.; Regelin E.; Riede H.; Sandu A.; Taraborrelli D.; Tost H.; Xie Z.-Q. The atmospheric chemistry box model CAABA/MECCA-3.0.. Geosci. Model Dev. 2011, 4, 373–380. 10.5194/gmd-4-373-2011. DOI

Tost H.; Jöckel P.; Kerkweg A.; Sander R.; Lelieveld J. Technical note: A new comprehensive SCAVenging submodel for global atmospheric chemistry modelling. Atmos. Chem. Phys. 2006, 6, 565–574. 10.5194/acp-6-565-2006. DOI

Kerkweg A.; Buchholz J.; Ganzeveld L.; Pozzer A.; Tost H.; Jöckel P. Technical note: An implementation of the dry removal processes DRY DEPosition and SEDImentation in the modular Earth submodel system (MESSy). Atmos. Chem. Phys. 2006, 6, 4617–4632. 10.5194/acp-6-4617-2006. DOI

Pringle K. J.; Tost H.; Message S.; Steil B.; Giannadaki D.; Nenes A.; Fountoukis C.; Stier P.; Vignati E.; Lelieveld J. Description and evaluation of GMXe: A new aerosol submodel for global simulations (V1). Geosci. Model Dev. 2010, 3, 391–412. 10.5194/gmd-3-391-2010. DOI

Tomaz S.; Shahpoury P.; Jaffrezo J.-L.; Lammel G.; Perraudin E.; Villenave E.; Albinet A. One-year study of polycyclic aromatic compounds at an urban site in Grenoble (France): Seasonal variations, gas/particle partitioning and cancer risk estimation. Sci. Total Environ. 2016, 565, 1071–1083. 10.1016/j.scitotenv.2016.05.137. PubMed DOI

Albinet A.; Leoz-Garziandia E.; Budzinski H.; Villenave E.; Jaffrezo J.-L. Nitrated and oxygenated derivatives of polycyclic aromatic hydrocarbons in the ambient air of two French alpine valleys Part 2: Particle size distribution. Atmos. Environ. 2008, 42, 55–64. 10.1016/j.atmosenv.2007.10.008. DOI

Ringuet J.; Leoz-Garziandia E.; Budzinski H.; Villenave E.; Albinet A. Particle size distribution of nitrated and oxygenated polycyclic aromatic hydrocarbons (NPAHs and OPAHs) on traffic and suburban sites of a European megacity: Paris (France). Atmos. Chem. Phys. 2012, 12, 8877–8887. 10.5194/acp-12-8877-2012. DOI

Kitanovski Z.; Shahpoury P.; Samara C.; Voliotis A.; Lammel G. Composition and mass size distribution of nitrated and oxygenated aromatic compounds in ambient particulate matter from Southern and Central Europe – implications for the origin. Atmos. Chem. Phys. 2020, 20, 2471–2487. 10.5194/acp-20-2471-2020. DOI

Lammel G.; Kitanovski Z.; Kukučka P.; Novák J.; Arangio A. M.; Codling G. P.; Filippi A.; Hovorka J.; Kuta J.; Leoni C.; Příbylová P.; Prokeš R.; Sáňka O.; Shahpoury P.; Tong H.; Wietzoreck M. Oxygenated and nitrated polycyclic aromatic hydrocarbons in ambient air—levels, phase partitioning, mass size distributions, and inhalation bioaccessibility. Environ. Sci. Technol. 2020, 54, 2615–2625. 10.1021/acs.est.9b06820. PubMed DOI PMC

Dee D. P.; Uppala S. M.; Simmons A. J.; Berrisford P.; Poli P.; Kobayashi S.; Andrae U.; Balmaseda M. A.; Balsamo G.; Bauer P.; Bechtold P.; Beljaars A. C. M.; van de Berg L.; Bidlot J.; Bormann N.; Delsol C.; Dragani R.; Fuentes M.; Geer A. J.; Haimberger L.; Healy S. B.; Hersbach H.; Hólm E. V.; Isaksen L.; Kållberg P.; Köhler M.; Matricardi M.; McNally A. P.; Monge-Sanz B. M.; Morcrette J.-J.; Park B.-K.; Peubey C.; de Rosnay P.; Tavolato C.; Thépaut J.-N.; Vitart F. The ERA-Interim reanalysis: Configuration and performance of the data assimilation System. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. 10.1002/qj.828. DOI

Miet K.; le Menach K.; Flaud P.-M.; Budzinski H.; Villenave E. Heterogeneous reactivity of pyrene and 1-nitropyrene with NO2: Kinetics, product yields and mechanism. Atmos. Environ. 2009, 43, 837–843. 10.1016/j.atmosenv.2008.10.041. DOI

Cochran R. E.; Jeong H.; Haddadi S.; Fisseha Derseh R.; Gowan A.; Beránek J.; Kubátová A. Identification of products formed during the heterogeneous nitration and ozonation of polycyclic aromatic hydrocarbons. Atmos. Environ. 2016, 128, 92–103. 10.1016/j.atmosenv.2015.12.036. DOI

Kameda T.; Azumi E.; Fukushima A.; Tang N.; Matsuki A.; Kamiya Y.; Toriba A.; Hayakawa K. Mineral dust aerosols Promote the formation of toxic nitropolycyclic aromatic compounds. Sci. Rep. 2016, 6, 24427.10.1038/srep24427. PubMed DOI PMC

Cazoir D.; Brigante M.; Ammar R.; D’Anna B.; George C. Heterogeneous photochemistry of gaseous NO2 on solid fluoranthene films: A source of gaseous nitrous acid (HONO) in the urban environment. J. Photochem. Photobiol., A 2014, 273, 23–28. 10.1016/j.jphotochem.2013.07.016. DOI

Zhang P.; Sun W.; Li N.; Wang Y.; Shu J.; Yang B.; Dong L. Effects of Humidity and [NO3]/[N2O5] Ratio on the Heterogeneous Reaction of Fluoranthene and Pyrene with N2O5/NO3/NO2. Environ. Sci. Technol. 2014, 48, 13130–13137. 10.1021/es504508v. PubMed DOI

Zhang P.; Sun W.; Yang B.; Shu J.; Dong L. Effect of the blocked-sites phenomenon on the heterogeneous reaction of pyrene with N2O5/NO3/NO2. RSC Adv. 2016, 6, 10358–10364. 10.1039/c5ra24368h. DOI

Atkinson R.; Arey J. Mechanisms of the gas-phase reactions of aromatic hydrocarbons and PAHs with OH and NO3 radicals. Polycyclic Aromat. Compd. 2007, 27, 15–40. 10.1080/10406630601134243. DOI

Atkinson R.; Arey J.; Zielinska B.; Aschmann S. M. Kinetics and nitro-products of the gas-phase OH and NO3 radical-initiated reactions of naphthalene-d8, fluoranthene-d10, and pyrene. Int. J. Chem. Kinet. 1990, 22, 999–1014. 10.1002/kin.550220910. DOI

Brubaker W. W.; Hites R. OH reaction kinetics of polycyclic aromatic hydrocarbons and polychlorinated dibenzo-p-dioxins and dibenzofurans. J. Phys. Chem. A 1998, 102, 915–921. 10.1021/jp9721199. DOI

Shahpoury P.; Lammel G.; Albinet A.; Sofuoǧlu A.; Dumanoğlu Y.; Sofuoǧlu S. C.; Wagner Z.; Ždimal V. Evaluation of a conceptual model for gas-particle partitioning of polycyclic aromatic hydrocarbons using polyparameter linear free energy relationships. Environ. Sci. Technol. 2016, 50, 12312–12319. 10.1021/acs.est.6b02158. PubMed DOI

Arce R.; Pino E. F.; Valle C.; Ágreda J. Photophysics and photochemistry of 1-nitropyrene. J. Phys. Chem. A 2008, 112, 10294–10304. 10.1021/jp803051x. PubMed DOI

García-Berríos Z. I.; Arce R. Photodegradation mechanisms of 1-nitropyrene, an environmental pollutant: The effect of organic solvents, water, oxygen, phenols, and polycyclic aromatics on the destruction and product yields. J. Phys. Chem. A 2012, 116, 3652–3664. 10.1021/jp2126416. PubMed DOI PMC

Fan Z.; Kamens R. M.; Hu J.; Zhang J.; McDow S. Photostability of nitro-polycyclic aromatic hydrocarbons on combustion soot particles in sunlight. Environ. Sci. Technol. 1996, 30, 1358–1364. 10.1021/es9505964. DOI

Feilberg A.; Nielsen T. Effect of aerosol chemical composition on the photodegradation of nitro-polycyclic aromatic hydrocarbons. Environ. Sci. Technol. 2000, 34, 789–797. 10.1021/es990566r. DOI

Plaza-Medina E. F.; Rodríguez-Córdoba W.; Peon J. Role of upper triplet states on the photophysics of nitrated polyaromatic compounds: S(1) lifetimes of singly nitrated pyrenes. J. Phys. Chem. A 2011, 115, 9782–9789. 10.1021/jp204321h. PubMed DOI

García-Berríos Z. I.; Arce R.; Burgos-Martínez M.; Burgos-Polanco N. D. Phototransformations of environmental contaminants in models of the aerosol: 2 and 4-nitropyrene. J. Photochem. Photobiol., A 2017, 332, 131–140. 10.1016/j.jphotochem.2016.08.018. DOI

Warner S. D.; Farant J.-P.; Butler I. S. Photochemical degradation of selected nitropolycyclic aromatic hydrocarbons in solution and adsorbed to solid particles. Chemosphere 2004, 54, 1207–1215. 10.1016/j.chemosphere.2003.09.020. PubMed DOI

AOPWIN of Estimation Programs Interface suite for Microsoft Windows, v4.11; US Environmental Protection Agency, 2012.

Shen H.; Huang Y.; Wang R.; Zhu D.; Li W.; Shen G.; Wang B.; Zhang Y.; Chen Y.; Lu Y.; Chen H.; Li T.; Sun K.; Li B.; Liu W.; Liu J.; Tao S. Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions. Environ. Sci. Technol. 2013, 47, 6415–6424. 10.1021/es400857z. PubMed DOI PMC

Janssens-Maenhout G.; Crippa M.; Guizzardi D.; Dentener F.; Muntean M.; Pouliot G.; Keating T.; Zhang Q.; Kurokawa J.; Wankmüller R.; Denier van der Gon H.; Kuenen J. J. P.; Klimont Z.; Frost G.; Darras S.; Koffi B.; Li M. HTAP_v2.2: A mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution. Atmos. Chem. Phys. 2015, 15, 11411–11432. 10.5194/acp-15-11411-2015. DOI

Lammel G.; Sehili A. M.; Bond T. C.; Feichter J.; Grassl H. Gas/particle partitioning and global distribution of polycyclic aromatic hydrocarbons – a modelling approach. Chemosphere 2009, 76, 98–106. 10.1016/j.chemosphere.2009.02.017. PubMed DOI

EEA . European Union Emission Inventory Report 1990–2016 under the UNECE Convention on Long-Range Transboundary Air Pollution (LRTAP); European Environment Agency: Copenhagen, Rep. No 6/18, 2018.

Hayakawa K. Environmental behaviors and toxicities of polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons. Chem. Pharm. Bull. 2016, 64, 83–94. 10.1248/cpb.c15-00801. PubMed DOI

Hayakawa K.; Tang N.; Nagato E. G.; Toriba A.; Sakai S.; Kano F.; Goto S.; Endo O.; Arashidani K.-i.; Kakimoto H. Long term trends in atmospheric concentrations of polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons: A study of Japanese cities from 1997 to 2014. Environ. Pollut. 2018, 233, 474–482. 10.1016/j.envpol.2017.10.038. PubMed DOI

Elguindi N.; Clark H.; Ordóñez C.; Thouret V.; Flemming J.; Stein O.; Huijnen V.; Moinat P.; Inness A.; Peuch V.-H.; Stohl A.; Turquety S.; Athier G.; Cammas J.-P.; Schultz M. Current status of the ability of the GEMS/MACC models to reproduce the tropospheric CO vertical distribution as measured by MOZAIC. Geosci. Model Dev. 2010, 3, 501–518. 10.5194/gmd-3-501-2010. DOI

Wagner A.; Blechschmidt A.-M.; Bouarar I.; Brunke E.-G.; Clerbaux C.; Cupeiro M.; Cristofanelli P.; Eskes H.; Flemming J.; Flentje H.; George M.; Gilge S.; Hilboll A.; Inness A.; Kapsomenakis J.; Richter A.; Ries L.; Spangl W.; Stein O.; Weller R.; Zerefos C. Evaluation of the MACC operational forecast system – potential and challenges of global near-real-time modelling with respect to reactive gases in the Troposphere. Atmos. Chem. Phys. 2015, 15, 14005–14030. 10.5194/acp-15-14005-2015. DOI

Shrivastava M.; Lou S.; Zelenyuk A.; Easter R. C.; Corley R. A.; Thrall B. D.; Rasch P. J.; Fast J. D.; Massey Simonich S. L.; Shen H.; Tao S. Global long-range transport and lung cancer risk from polycyclic aromatic hydrocarbons shielded by coatings of organic aerosol. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 1246–1251. 10.1073/pnas.1618475114. PubMed DOI PMC

Giussani A. Toward the Understanding of the photophysics and photochemistry of 1-nitronaphthalene under solar radiation: The first theoretical evidence of a photodegradation intramolecular rearrangement mechanism involving the triplet states. J. Chem. Theory Comput. 2014, 10, 3987–3995. 10.1021/ct500395f. PubMed DOI

Giussani A.; Worth G. A. Insights into the complex photophysics and photochemistry of the simplest nitroaromatic compound: A CASPT2//CASSCF study on nitrobenzene. J. Chem. Theory Comput. 2017, 13, 2777–2788. 10.1021/acs.jctc.6b01149. PubMed DOI

Tang N.; Sato K.; Tokuda T.; Tatematsu M.; Hama H.; Suematsu C.; Kameda T.; Toriba A.; Hayakawa K. Factors affecting atmospheric 1-, 2-nitropyrenes and 2-nitrofluoranthene in winter at Noto peninsula, a remote background site, Japan. Chemosphere 2014, 107, 324–330. 10.1016/j.chemosphere.2013.12.077. PubMed DOI

Arey J.; Zielinska B.; Atkinson R.; Winer A. M. Polycyclic aromatic hydrocarbon and nitroarene concentrations in ambient air during a wintertime high-NOx episode in the Los Angeles Basin. Atmos. Environ. 1967, 21, 1437–1444. 10.1016/0004-6981(67)90091-1. DOI

Atkinson R.; Arey J. Atmospheric chemistry of gas-phase polycyclic aromatic hydrocarbons: Formation of atmospheric mutagens. Environ. Health Perspect. 1994, 102, 117–126. 10.1289/ehp.94102s4117. PubMed DOI PMC

Albinet A.; Leoz-Garziandia E.; Budzinski H.; Villenave E.; Jaffrezo J.-L. Nitrated and oxygenated derivatives of polycyclic aromatic hydrocarbons in the ambient air of two French alpine valleys. Part 1: Concentrations, sources and gas/particle partitioning. Atmos. Environ. 2008, 42, 43–54. 10.1016/j.atmosenv.2007.10.009. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Nitro- and oxy-PAHs in grassland soils from decade-long sampling in central Europe

. 2022 Aug ; 44 (8) : 2743-2765. [epub] 20210820

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...