Modeling the Formation, Degradation, and Spatiotemporal Distribution of 2-Nitrofluoranthene and 2-Nitropyrene in the Global Atmosphere
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33112146
PubMed Central
PMC7676291
DOI
10.1021/acs.est.0c04319
Knihovny.cz E-zdroje
- MeSH
- atmosféra MeSH
- fluoreny MeSH
- látky znečišťující vzduch * analýza MeSH
- monitorování životního prostředí MeSH
- polycyklické aromatické uhlovodíky * analýza MeSH
- pyreny MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 2-nitrofluoranthene MeSH Prohlížeč
- 2-nitropyrene MeSH Prohlížeč
- fluoreny MeSH
- látky znečišťující vzduch * MeSH
- polycyklické aromatické uhlovodíky * MeSH
- pyreny MeSH
Polycyclic aromatic hydrocarbons (PAHs) are common atmospheric pollutants and known to cause adverse health effects. Nitrated PAHs (NPAHs) are formed in combustion activities and by nitration of PAHs in the atmosphere and may be equally or more toxic, but their spatial and temporal distribution in the atmosphere is not well characterized. Using the global EMAC model with atmospheric chemistry and surface compartments coupled, we investigate the formation, abundance, and fate of two secondarily formed NPAHs, 2-nitrofluoranthene (2-NFLT) and 2-nitropyrene (2-NPYR). The default reactivity scenario, the model with the simplest interpretation of parameters from the literature, tends to overestimate both absolute concentrations and NPAH/PAH ratios at observational sites. Sensitivity scenarios indicate that NO2-dependent NPAH formation leads to better agreement between measured and predicted NPAH concentrations and that photodegradation is the most important loss process of 2-NFLT and 2-NPYR. The highest concentrations of 2-NFLT and 2-NPYR are found in regions with strong PAH emissions, but because of continued secondary formation from the PAH precursors, these two NPAHs are predicted to be spread across the globe.
Bayreuth Centre for Ecology and Environmental Research University of Bayreuth 95448 Bayreuth Germany
Multiphase Chemistry Department Max Planck Institute for Chemistry 55128 Mainz Germany
Zobrazit více v PubMed
Pope C. A. III; Burnett R. T.; Thun M. J.; Calle E. E.; Krewski D.; Ito K.; Thurston G. D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 2002, 287, 1132–1141. 10.1001/jama.287.9.1132. PubMed DOI PMC
Loomis D.; Grosse Y.; Lauby-Secretan B.; Ghissassi F. E.; Bouvard V.; Benbrahim-Tallaa L.; Guha N.; Baan R.; Mattock H.; Straif K. The carcinogenicity of outdoor air pollution. Lancet Oncol. 2013, 14, 1262–1263. 10.1016/s1470-2045(13)70487-x. PubMed DOI
Shiraiwa M.; Ueda K.; Pozzer A.; Lammel G.; Kampf C. J.; Fushimi A.; Enami S.; Arangio A. M.; Fröhlich-Nowoisky J.; Fujitani Y.; Furuyama A.; Lakey P. S. J.; Lelieveld J.; Lucas K.; Morino Y.; Pöschl U.; Takahama S.; Takami A.; Tong H.; Weber B.; Yoshino A.; Sato K. Aerosol health effects from molecular to global scales. Environ. Sci. Technol. 2017, 51, 13545–13567. 10.1021/acs.est.7b04417. PubMed DOI
Lelieveld J.; Klingmüller K.; Pozzer A.; Pöschl U.; Fnais M.; Daiber A.; Münzel T. Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions. Eur. Heart J. 2019, 40, 1590–1596. 10.1093/eurheartj/ehz135. PubMed DOI PMC
Siak J.; Chan T. L.; Gibson T. L.; Wolff G. T. Contribution to bacterial mutagenicity from nitro-PAH compounds in ambient aerosols. Atmos. Environ. 1967, 19, 369–376. 10.1016/0004-6981(85)90104-0. DOI
Boström C.-E.; Gerde P.; Hanberg A.; Jernström B.; Johansson C.; Kyrklund T.; Rannug A.; Törnqvist M.; Victorin K.; Westerholm R. Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ. Health Perspect. 2002, 110, 451–499. 10.1289/ehp.110-1241197. PubMed DOI PMC
IARC . Diesel and Gasoline Engine Exhausts and Some Nitroarenes. IARC Monographs on the Evaluation of Carciogenic Risks to Humans, 2014; Vol. 105,pp 9–699. PubMed PMC
Abdel-Shafy H. I.; Mansour M. S. M. A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 2016, 25, 107–123. 10.1016/j.ejpe.2015.03.011. DOI
Misaki K.; Takamura-Enya T.; Ogawa H.; Takamori K.; Yanagida M. Tumour-promoting activity of polycyclic aromatic hydrocarbons and their oxygenated or nitrated derivatives. Mutagenesis 2016, 31, 205–213. 10.1093/mutage/gev076. PubMed DOI
Idowu O.; Semple K. T.; Ramadass K.; O’Connor W.; Hansbro P.; Thavamani P. Beyond the obvious: environmental health implications of polar polycyclic aromatic hydrocarbons. Environ. Int. 2019, 123, 543–557. 10.1016/j.envint.2018.12.051. PubMed DOI
Rosenkranz H. S.; Mermelstein R. Mutagenicity and genotoxicity of nitroarenes. Mutat. Res., Rev. Genet. Toxicol. 1983, 114, 217–267. 10.1016/0165-1110(83)90034-9. PubMed DOI
Feilberg A.; Kamens R. M.; Strommen M. R.; Nielsen T. Modeling the formation, decay, and partitioning of semivolatile nitro-polycyclic aromatic hydrocarbons (nitronaphthalenes) in the atmosphere. Atmos. Environ. 1999, 33, 1231–1243. 10.1016/s1352-2310(98)00275-1. DOI
Finlayson-Pitts B. J.; Pitts J. N.. Chemistry of the Upper and Lower Atmosphere; Academic Press: San Diego, USA, 2000; 969 pp.
Kielhorn J.; Wahnschaffe U.; Mangelsdorf I.. Selected Nitro- and Nitro-Oxy-Polycyclic Aromatic Hydrocarbons; World Health Organization, 2003.
Albinet A.; Leoz-Garziandia E.; Budzinski H.; ViIlenave E. Polycyclic aromatic hydrocarbons (PAHs), nitrated PAHs and oxygenated PAHs in ambient air of the Marseilles area (South of France): concentrations and sources. Sci. Total Environ. 2007, 384, 280–292. 10.1016/j.scitotenv.2007.04.028. PubMed DOI
Bandowe B. A. M.; Meusel H. Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) in the environment – a review. Sci. Total Environ. 2017, 581–582, 237–257. 10.1016/j.scitotenv.2016.12.115. PubMed DOI
Geier M. C.; Chlebowski A. C.; Truong L.; Massey Simonich S. L.; Anderson K. A.; Tanguay R. L. Comparative developmental toxicity of a comprehensive suite of polycyclic aromatic hydrocarbons. Arch. Toxicol. 2018, 92, 571–586. 10.1007/s00204-017-2068-9. PubMed DOI PMC
Rosenkranz H. S. Direct-acting mutagens in diesel exhausts: Magnitude of the problem. Mutat. Res. 1982, 101, 1–10. 10.1016/0165-1218(82)90159-8. PubMed DOI
Salmeen I.; Durisin A. M.; Prater T. J.; Riley T.; Schuetzle D. Contribution of 1-nitropyrene to direct-acting Ames assay mutagenicities of diesel particulate extracts. Mutat. Res. Lett. 1982, 104, 17–23. 10.1016/0165-7992(82)90114-2. PubMed DOI
Bamford H. A.; Bezabeh D. Z.; Schantz M. M.; Wise S. A.; Baker J. E. Determination and comparison of nitrated-polycyclic aromatic hydrocarbons measured in air and diesel particulate reference materials. Chemosphere 2003, 50, 575–587. 10.1016/s0045-6535(02)00667-7. PubMed DOI
Bamford H. A.; Baker J. E. Nitro-polycyclic aromatic hydrocarbon concentrations and sources in urban and suburban atmospheres of the Mid-Atlantic region. Atmos. Environ. 2003, 37, 2077–2091. 10.1016/s1352-2310(03)00102-x. DOI
Kameda T.; Takenaka N.; Bandow H.; Inazu K.; Hisamatsu Y. Determination of atmospheric nitro-polycyclic aromatic hydrocarbons and their precursors at a heavy traffic roadside and at a residential area in Osaka, Japan. Polycyclic Aromat. Compd. 2004, 24, 657–666. 10.1080/10406630490471708. DOI
Reisen F.; Arey J. Atmospheric reactions influence seasonal PAH and nitro-PAH concentrations in the Los Angeles Basin. Environ. Sci. Technol. 2005, 39, 64–73. 10.1021/es035454l. PubMed DOI
Zimmermann K.; Jariyasopit N.; Massey Simonich S. L.; Tao S.; Atkinson R.; Arey J. Formation of nitro-PAHs from the heterogeneous reaction of ambient particle-bound PAHs with N2O5/NO3/NO2. Environ. Sci. Technol. 2013, 47, 8434–8442. 10.1021/es401789x. PubMed DOI PMC
Huang B.; Liu M.; Bi X.; Chaemfa C.; Ren Z.; Wang X.; Sheng G.; Fu J. Phase distribution, sources and risk assessment of PAHs, NPAHs and OPAHs in a rural site of Pearl River Delta Region, China. Atmos. Pollut. Res. 2014, 5, 210–218. 10.5094/apr.2014.026. DOI
Li X.; Zheng Y.; Guan C.; Cheung C. S.; Huang Z. Effect of biodiesel on PAH, OPAH, and NPAH emissions from a direct injection diesel engine. Environ. Sci. Pollut. Res. 2018, 25, 34131–34138. 10.1007/s11356-018-3382-3. PubMed DOI
Zimmermann K.; Atkinson R.; Arey J.; Kojima Y.; Inazu K. Isomer distributions of molecular weight 247 and 273 nitro-PAHs in ambient samples, NIST Diesel SRM, and from radical-initiated chamber reactions. Atmos. Environ. 2012, 55, 431–439. 10.1016/j.atmosenv.2012.03.016. DOI
Zhao J.; Zhang Y.; Chang J.; Peng S.; Hong N.; Hu J.; Lv J.; Wang T.; Mao H. Emission characteristics and temporal variation of PAHs and their derivatives from an ocean-going cargo vessel. Chemosphere 2020, 249, 126194.10.1016/j.chemosphere.2020.126194. PubMed DOI
Huang W.; Huang B.; Bi X.; Lin Q.; Liu M.; Ren Z.; Zhang G.; Wang X.; Sheng G.; Fu J. Emission of PAHs, NPAHs and OPAHs from residential honeycomb coal briquette combustion. Energy Fuels 2014, 28, 636–642. 10.1021/ef401901d. DOI
Nalin F.; Golly B.; Besombes J.-L.; Pelletier C.; Aujay-Plouzeau R.; Verlhac S.; Dermigny A.; Fievet A.; Karoski N.; Dubois P.; Collet S.; Favez O.; Albinet A. Fast oxidation processes from emission to ambient air introduction of aerosol emitted by residential log wood stoves. Atmos. Environ. 2016, 143, 15–26. 10.1016/j.atmosenv.2016.08.002. DOI
Orakij W.; Chetiyanukornkul T.; Kasahara C.; Boongla Y.; Chuesaard T.; Furuuchi M.; Hata M.; Tang N.; Hayakawa K.; Toriba A. Polycyclic aromatic hydrocarbons and their nitro derivatives from indoor biomass-fueled cooking in two rural areas of Thailand: a case study. Air Qual Atmos Hlth 2017, 10, 747–761. 10.1007/s11869-017-0467-y. DOI
Howard P. C.; Hecht S. S.; Beland F. A.. Nitroarenes: Occurrence, Metabolism, and Biological Impact; Springer Science & Business Media, 1990.
Yaffe D.; Cohen Y.; Arey J.; Grosovsky A. J. Multimedia analysis of PAHs and nitro-PAH daughter products in the Los Angeles Basin. Risk Anal. 2001, 21, 275–294. 10.1111/0272-4332.212111. PubMed DOI
Ciccioli P.; Cecinato A.; Brancaleoni E.; Frattoni M.; Zacchei P.; Miguel A. H.; de Castro Vasconcellos P. Formation and transport of 2-nitrofluoranthene and 2-nitropyrene of photochemical origin in the troposphere. J. Geophys. Res. 1996, 101, 19567.10.1029/95jd02118. DOI
Nielsen T.; Seitz B.; Ramdahl T. Occurrence of nitro-PAH in the atmosphere in a rural area. Atmos. Environ. 1984, 18, 2159–2165. 10.1016/0004-6981(84)90203-8. DOI
Tsapakis M.; Stephanou E. G. Diurnal cycle of PAHs, nitro-PAHs, and oxy-PAHs in a high oxidation capacity marine background atmosphere. Environ. Sci. Technol. 2007, 41, 8011–8017. 10.1021/es071160e. PubMed DOI
Lammel G.; Mulder M. D.; Shahpoury P.; Kukučka P.; Lišková H.; Přibylová P.; Prokeš R.; Wotawa G. Nitro-polycyclic aromatic hydrocarbons - gas-particle partitioning, mass size distribution, and formation along transport in marine and continental background air. Atmos. Chem. Phys. 2017, 17, 6257–6270. 10.5194/acp-17-6257-2017. DOI
Becker S.; Halsall C. J.; Tych W.; Hung H.; Attewell S.; Blanchard P.; Li H.; Fellin P.; Stern G.; Billeck B.; Friesen S. Resolving the long-term trends of polycyclic aromatic hydrocarbons in the Canadian Arctic atmosphere. Environ. Sci. Technol. 2006, 40, 3217–3222. 10.1021/es052346l. PubMed DOI
Lohmann R.; Klanova J.; Pribylova P.; Liskova H.; Yonis S.; Bollinger K. PAHs on a West-to-East transect across the tropical Atlantic Ocean. Environ. Sci. Technol. 2013, 47, 2570–2578. 10.1021/es304764e. PubMed DOI
Ramdahl T.; Zielinska B.; Arey J.; Atkinson R.; Winer A. M.; Pitts J. N. Jr. Ubiquitous occurrence of 2-nitroftuoranthene and 2-nitropyrene in air. Nature 1986, 321, 425–427. 10.1038/321425a0. PubMed DOI
Fan Z.; Chen D.; Birla P.; Kamens R. M. Modeling of nitro-polycyclic aromatic hydrocarbon formation and decay in the atmosphere. Atmos. Environ. 1995, 29, 1171–1181. 10.1016/1352-2310(94)00347-n. DOI
Mulder M. D.; Dumanoglu Y.; Efstathiou C.; Kukučka P.; Matejovičová J.; Maurer C.; Přibylová P.; Prokeš R.; Sofuoglu A.; Sofuoglu S. C.; Wilson J.; Zetzsch C.; Wotawa G.; Lammel G. Fast formation of nitro-PAHs in the marine atmosphere constrained in a regional-scale Lagrangian field experiment. Environ. Sci. Technol. 2019, 53, 8914–8924. 10.1021/acs.est.9b03090. PubMed DOI
Huang L.; Batterman S. A. Multimedia model for polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs in Lake Michigan. Environ. Sci. Technol. 2014, 48, 13817–13825. 10.1021/es503137b. PubMed DOI PMC
Schulte J. K.; Fox J. R.; Oron A. P.; Larson T. V.; Simpson C. D.; Paulsen M.; Beaudet N.; Kaufman J. D.; Magzamen S. Neighborhood-scale spatial models of diesel exhaust concentration profile using 1-nitropyrene and other nitroarenes. Environ. Sci. Technol. 2015, 49, 13422–13430. 10.1021/acs.est.5b03639. PubMed DOI PMC
Lin Y.; Qiu X.; Ma Y.; Ma J.; Zheng M.; Shao M. Concentrations and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs (NPAHs) in the atmosphere of North China, and the transformation from PAHs to NPAHs. Environ. Pollut. 2015, 196, 164–170. 10.1016/j.envpol.2014.10.005. PubMed DOI
Octaviani M.; Tost H.; Lammel G. Global simulation of semivolatile organic compounds – development and evaluation of the MESSy submodel SVOC (v1.0). Geosci. Model Dev. 2019, 12, 3585–3607. 10.5194/gmd-12-3585-2019. DOI
Jöckel P.; Tost H.; Pozzer A.; Brühl C.; Buchholz J.; Ganzeveld L.; Hoor P.; Kerkweg A.; Lawrence M. G.; Sander R.; Steil B.; Stiller G.; Tanarhte M.; Taraborrelli D.; van Aardenne J.; Lelieveld J. The atmospheric chemistry general circulation model ECHAM5/MESSy1: Consistent simulation of ozone from the surface to the mesosphere. Atmos. Chem. Phys. 2006, 6, 5067–5104. 10.5194/acp-6-5067-2006. DOI
Jöckel P.; Kerkweg A.; Pozzer A.; Sander R.; Tost H.; Riede H.; Baumgaertner A.; Gromov S.; Kern B. Development cycle 2 of the Modular Earth Submodel System (MESSy2). Geosci. Model Dev. 2010, 3, 717–752. 10.5194/gmd-3-717-2010. DOI
Sander R.; Baumgaertner A.; Gromov S.; Harder H.; Jöckel P.; Kerkweg A.; Kubistin D.; Regelin E.; Riede H.; Sandu A.; Taraborrelli D.; Tost H.; Xie Z.-Q. The atmospheric chemistry box model CAABA/MECCA-3.0.. Geosci. Model Dev. 2011, 4, 373–380. 10.5194/gmd-4-373-2011. DOI
Tost H.; Jöckel P.; Kerkweg A.; Sander R.; Lelieveld J. Technical note: A new comprehensive SCAVenging submodel for global atmospheric chemistry modelling. Atmos. Chem. Phys. 2006, 6, 565–574. 10.5194/acp-6-565-2006. DOI
Kerkweg A.; Buchholz J.; Ganzeveld L.; Pozzer A.; Tost H.; Jöckel P. Technical note: An implementation of the dry removal processes DRY DEPosition and SEDImentation in the modular Earth submodel system (MESSy). Atmos. Chem. Phys. 2006, 6, 4617–4632. 10.5194/acp-6-4617-2006. DOI
Pringle K. J.; Tost H.; Message S.; Steil B.; Giannadaki D.; Nenes A.; Fountoukis C.; Stier P.; Vignati E.; Lelieveld J. Description and evaluation of GMXe: A new aerosol submodel for global simulations (V1). Geosci. Model Dev. 2010, 3, 391–412. 10.5194/gmd-3-391-2010. DOI
Tomaz S.; Shahpoury P.; Jaffrezo J.-L.; Lammel G.; Perraudin E.; Villenave E.; Albinet A. One-year study of polycyclic aromatic compounds at an urban site in Grenoble (France): Seasonal variations, gas/particle partitioning and cancer risk estimation. Sci. Total Environ. 2016, 565, 1071–1083. 10.1016/j.scitotenv.2016.05.137. PubMed DOI
Albinet A.; Leoz-Garziandia E.; Budzinski H.; Villenave E.; Jaffrezo J.-L. Nitrated and oxygenated derivatives of polycyclic aromatic hydrocarbons in the ambient air of two French alpine valleys Part 2: Particle size distribution. Atmos. Environ. 2008, 42, 55–64. 10.1016/j.atmosenv.2007.10.008. DOI
Ringuet J.; Leoz-Garziandia E.; Budzinski H.; Villenave E.; Albinet A. Particle size distribution of nitrated and oxygenated polycyclic aromatic hydrocarbons (NPAHs and OPAHs) on traffic and suburban sites of a European megacity: Paris (France). Atmos. Chem. Phys. 2012, 12, 8877–8887. 10.5194/acp-12-8877-2012. DOI
Kitanovski Z.; Shahpoury P.; Samara C.; Voliotis A.; Lammel G. Composition and mass size distribution of nitrated and oxygenated aromatic compounds in ambient particulate matter from Southern and Central Europe – implications for the origin. Atmos. Chem. Phys. 2020, 20, 2471–2487. 10.5194/acp-20-2471-2020. DOI
Lammel G.; Kitanovski Z.; Kukučka P.; Novák J.; Arangio A. M.; Codling G. P.; Filippi A.; Hovorka J.; Kuta J.; Leoni C.; Příbylová P.; Prokeš R.; Sáňka O.; Shahpoury P.; Tong H.; Wietzoreck M. Oxygenated and nitrated polycyclic aromatic hydrocarbons in ambient air—levels, phase partitioning, mass size distributions, and inhalation bioaccessibility. Environ. Sci. Technol. 2020, 54, 2615–2625. 10.1021/acs.est.9b06820. PubMed DOI PMC
Dee D. P.; Uppala S. M.; Simmons A. J.; Berrisford P.; Poli P.; Kobayashi S.; Andrae U.; Balmaseda M. A.; Balsamo G.; Bauer P.; Bechtold P.; Beljaars A. C. M.; van de Berg L.; Bidlot J.; Bormann N.; Delsol C.; Dragani R.; Fuentes M.; Geer A. J.; Haimberger L.; Healy S. B.; Hersbach H.; Hólm E. V.; Isaksen L.; Kållberg P.; Köhler M.; Matricardi M.; McNally A. P.; Monge-Sanz B. M.; Morcrette J.-J.; Park B.-K.; Peubey C.; de Rosnay P.; Tavolato C.; Thépaut J.-N.; Vitart F. The ERA-Interim reanalysis: Configuration and performance of the data assimilation System. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. 10.1002/qj.828. DOI
Miet K.; le Menach K.; Flaud P.-M.; Budzinski H.; Villenave E. Heterogeneous reactivity of pyrene and 1-nitropyrene with NO2: Kinetics, product yields and mechanism. Atmos. Environ. 2009, 43, 837–843. 10.1016/j.atmosenv.2008.10.041. DOI
Cochran R. E.; Jeong H.; Haddadi S.; Fisseha Derseh R.; Gowan A.; Beránek J.; Kubátová A. Identification of products formed during the heterogeneous nitration and ozonation of polycyclic aromatic hydrocarbons. Atmos. Environ. 2016, 128, 92–103. 10.1016/j.atmosenv.2015.12.036. DOI
Kameda T.; Azumi E.; Fukushima A.; Tang N.; Matsuki A.; Kamiya Y.; Toriba A.; Hayakawa K. Mineral dust aerosols Promote the formation of toxic nitropolycyclic aromatic compounds. Sci. Rep. 2016, 6, 24427.10.1038/srep24427. PubMed DOI PMC
Cazoir D.; Brigante M.; Ammar R.; D’Anna B.; George C. Heterogeneous photochemistry of gaseous NO2 on solid fluoranthene films: A source of gaseous nitrous acid (HONO) in the urban environment. J. Photochem. Photobiol., A 2014, 273, 23–28. 10.1016/j.jphotochem.2013.07.016. DOI
Zhang P.; Sun W.; Li N.; Wang Y.; Shu J.; Yang B.; Dong L. Effects of Humidity and [NO3]/[N2O5] Ratio on the Heterogeneous Reaction of Fluoranthene and Pyrene with N2O5/NO3/NO2. Environ. Sci. Technol. 2014, 48, 13130–13137. 10.1021/es504508v. PubMed DOI
Zhang P.; Sun W.; Yang B.; Shu J.; Dong L. Effect of the blocked-sites phenomenon on the heterogeneous reaction of pyrene with N2O5/NO3/NO2. RSC Adv. 2016, 6, 10358–10364. 10.1039/c5ra24368h. DOI
Atkinson R.; Arey J. Mechanisms of the gas-phase reactions of aromatic hydrocarbons and PAHs with OH and NO3 radicals. Polycyclic Aromat. Compd. 2007, 27, 15–40. 10.1080/10406630601134243. DOI
Atkinson R.; Arey J.; Zielinska B.; Aschmann S. M. Kinetics and nitro-products of the gas-phase OH and NO3 radical-initiated reactions of naphthalene-d8, fluoranthene-d10, and pyrene. Int. J. Chem. Kinet. 1990, 22, 999–1014. 10.1002/kin.550220910. DOI
Brubaker W. W.; Hites R. OH reaction kinetics of polycyclic aromatic hydrocarbons and polychlorinated dibenzo-p-dioxins and dibenzofurans. J. Phys. Chem. A 1998, 102, 915–921. 10.1021/jp9721199. DOI
Shahpoury P.; Lammel G.; Albinet A.; Sofuoǧlu A.; Dumanoğlu Y.; Sofuoǧlu S. C.; Wagner Z.; Ždimal V. Evaluation of a conceptual model for gas-particle partitioning of polycyclic aromatic hydrocarbons using polyparameter linear free energy relationships. Environ. Sci. Technol. 2016, 50, 12312–12319. 10.1021/acs.est.6b02158. PubMed DOI
Arce R.; Pino E. F.; Valle C.; Ágreda J. Photophysics and photochemistry of 1-nitropyrene. J. Phys. Chem. A 2008, 112, 10294–10304. 10.1021/jp803051x. PubMed DOI
García-Berríos Z. I.; Arce R. Photodegradation mechanisms of 1-nitropyrene, an environmental pollutant: The effect of organic solvents, water, oxygen, phenols, and polycyclic aromatics on the destruction and product yields. J. Phys. Chem. A 2012, 116, 3652–3664. 10.1021/jp2126416. PubMed DOI PMC
Fan Z.; Kamens R. M.; Hu J.; Zhang J.; McDow S. Photostability of nitro-polycyclic aromatic hydrocarbons on combustion soot particles in sunlight. Environ. Sci. Technol. 1996, 30, 1358–1364. 10.1021/es9505964. DOI
Feilberg A.; Nielsen T. Effect of aerosol chemical composition on the photodegradation of nitro-polycyclic aromatic hydrocarbons. Environ. Sci. Technol. 2000, 34, 789–797. 10.1021/es990566r. DOI
Plaza-Medina E. F.; Rodríguez-Córdoba W.; Peon J. Role of upper triplet states on the photophysics of nitrated polyaromatic compounds: S(1) lifetimes of singly nitrated pyrenes. J. Phys. Chem. A 2011, 115, 9782–9789. 10.1021/jp204321h. PubMed DOI
García-Berríos Z. I.; Arce R.; Burgos-Martínez M.; Burgos-Polanco N. D. Phototransformations of environmental contaminants in models of the aerosol: 2 and 4-nitropyrene. J. Photochem. Photobiol., A 2017, 332, 131–140. 10.1016/j.jphotochem.2016.08.018. DOI
Warner S. D.; Farant J.-P.; Butler I. S. Photochemical degradation of selected nitropolycyclic aromatic hydrocarbons in solution and adsorbed to solid particles. Chemosphere 2004, 54, 1207–1215. 10.1016/j.chemosphere.2003.09.020. PubMed DOI
AOPWIN of Estimation Programs Interface suite for Microsoft Windows, v4.11; US Environmental Protection Agency, 2012.
Shen H.; Huang Y.; Wang R.; Zhu D.; Li W.; Shen G.; Wang B.; Zhang Y.; Chen Y.; Lu Y.; Chen H.; Li T.; Sun K.; Li B.; Liu W.; Liu J.; Tao S. Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions. Environ. Sci. Technol. 2013, 47, 6415–6424. 10.1021/es400857z. PubMed DOI PMC
Janssens-Maenhout G.; Crippa M.; Guizzardi D.; Dentener F.; Muntean M.; Pouliot G.; Keating T.; Zhang Q.; Kurokawa J.; Wankmüller R.; Denier van der Gon H.; Kuenen J. J. P.; Klimont Z.; Frost G.; Darras S.; Koffi B.; Li M. HTAP_v2.2: A mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution. Atmos. Chem. Phys. 2015, 15, 11411–11432. 10.5194/acp-15-11411-2015. DOI
Lammel G.; Sehili A. M.; Bond T. C.; Feichter J.; Grassl H. Gas/particle partitioning and global distribution of polycyclic aromatic hydrocarbons – a modelling approach. Chemosphere 2009, 76, 98–106. 10.1016/j.chemosphere.2009.02.017. PubMed DOI
EEA . European Union Emission Inventory Report 1990–2016 under the UNECE Convention on Long-Range Transboundary Air Pollution (LRTAP); European Environment Agency: Copenhagen, Rep. No 6/18, 2018.
Hayakawa K. Environmental behaviors and toxicities of polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons. Chem. Pharm. Bull. 2016, 64, 83–94. 10.1248/cpb.c15-00801. PubMed DOI
Hayakawa K.; Tang N.; Nagato E. G.; Toriba A.; Sakai S.; Kano F.; Goto S.; Endo O.; Arashidani K.-i.; Kakimoto H. Long term trends in atmospheric concentrations of polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons: A study of Japanese cities from 1997 to 2014. Environ. Pollut. 2018, 233, 474–482. 10.1016/j.envpol.2017.10.038. PubMed DOI
Elguindi N.; Clark H.; Ordóñez C.; Thouret V.; Flemming J.; Stein O.; Huijnen V.; Moinat P.; Inness A.; Peuch V.-H.; Stohl A.; Turquety S.; Athier G.; Cammas J.-P.; Schultz M. Current status of the ability of the GEMS/MACC models to reproduce the tropospheric CO vertical distribution as measured by MOZAIC. Geosci. Model Dev. 2010, 3, 501–518. 10.5194/gmd-3-501-2010. DOI
Wagner A.; Blechschmidt A.-M.; Bouarar I.; Brunke E.-G.; Clerbaux C.; Cupeiro M.; Cristofanelli P.; Eskes H.; Flemming J.; Flentje H.; George M.; Gilge S.; Hilboll A.; Inness A.; Kapsomenakis J.; Richter A.; Ries L.; Spangl W.; Stein O.; Weller R.; Zerefos C. Evaluation of the MACC operational forecast system – potential and challenges of global near-real-time modelling with respect to reactive gases in the Troposphere. Atmos. Chem. Phys. 2015, 15, 14005–14030. 10.5194/acp-15-14005-2015. DOI
Shrivastava M.; Lou S.; Zelenyuk A.; Easter R. C.; Corley R. A.; Thrall B. D.; Rasch P. J.; Fast J. D.; Massey Simonich S. L.; Shen H.; Tao S. Global long-range transport and lung cancer risk from polycyclic aromatic hydrocarbons shielded by coatings of organic aerosol. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 1246–1251. 10.1073/pnas.1618475114. PubMed DOI PMC
Giussani A. Toward the Understanding of the photophysics and photochemistry of 1-nitronaphthalene under solar radiation: The first theoretical evidence of a photodegradation intramolecular rearrangement mechanism involving the triplet states. J. Chem. Theory Comput. 2014, 10, 3987–3995. 10.1021/ct500395f. PubMed DOI
Giussani A.; Worth G. A. Insights into the complex photophysics and photochemistry of the simplest nitroaromatic compound: A CASPT2//CASSCF study on nitrobenzene. J. Chem. Theory Comput. 2017, 13, 2777–2788. 10.1021/acs.jctc.6b01149. PubMed DOI
Tang N.; Sato K.; Tokuda T.; Tatematsu M.; Hama H.; Suematsu C.; Kameda T.; Toriba A.; Hayakawa K. Factors affecting atmospheric 1-, 2-nitropyrenes and 2-nitrofluoranthene in winter at Noto peninsula, a remote background site, Japan. Chemosphere 2014, 107, 324–330. 10.1016/j.chemosphere.2013.12.077. PubMed DOI
Arey J.; Zielinska B.; Atkinson R.; Winer A. M. Polycyclic aromatic hydrocarbon and nitroarene concentrations in ambient air during a wintertime high-NOx episode in the Los Angeles Basin. Atmos. Environ. 1967, 21, 1437–1444. 10.1016/0004-6981(67)90091-1. DOI
Atkinson R.; Arey J. Atmospheric chemistry of gas-phase polycyclic aromatic hydrocarbons: Formation of atmospheric mutagens. Environ. Health Perspect. 1994, 102, 117–126. 10.1289/ehp.94102s4117. PubMed DOI PMC
Albinet A.; Leoz-Garziandia E.; Budzinski H.; Villenave E.; Jaffrezo J.-L. Nitrated and oxygenated derivatives of polycyclic aromatic hydrocarbons in the ambient air of two French alpine valleys. Part 1: Concentrations, sources and gas/particle partitioning. Atmos. Environ. 2008, 42, 43–54. 10.1016/j.atmosenv.2007.10.009. DOI
Nitro- and oxy-PAHs in grassland soils from decade-long sampling in central Europe