Specifically Targeting Capture and Photoinactivation of Viruses through Phosphatidylcholine-Ganglioside Vesicles with Photosensitizer

. 2024 Aug 26 ; 4 (8) : 2826-2831. [epub] 20240801

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39211626

Herein, we performed a simple virus capture and photoinactivation procedure using visible light on phosphatidylcholine vesicles. l-α-Phosphatidylcholine vesicles were enriched by viral receptors, GT1b gangliosides, and the nonpolar photosensitizer 5,10,15,20-tetraphenylporphyrin. These vesicles absorb in the blue region of visible light with a high quantum yield of antiviral singlet oxygen, O2 (1Δg). Through the successful incorporation of gangliosides into the structure of vesicles and the encapsulation of photosensitizers in their photoactive and monomeric state, the photogeneration of O2(1Δg) was achieved with high efficiency on demand; this process was triggered by light, and specifically targeting/inactivating viruses were captured on ganglioside receptors due to the short lifetime (3.3 μs) and diffusion pathway (approximately 100 nm) of O2(1Δg). Time-resolved and steady-state luminescence as well as absorption spectroscopy were used to monitor the photoactivity of the photosensitizer and the photogeneration of O2(1Δg) on the surface of the vesicles. The capture of model mouse polyomavirus and its inactivation were achieved using immunofluorescence methods, and loss of infectivity toward mouse fibroblast 3T6 cells was detected.

Zobrazit více v PubMed

Tam E. H.; Peng Y.; Cheah M. X. Y.; Yan C.; Xiao T. Neutralizing antibodies to block viral entry and for identification of entry inhibitors. Antiviral Res. 2024, 224, 105834.10.1016/j.antiviral.2024.105834. PubMed DOI

Kim T.-H.; Lee S.-W. Aptamers for Anti-Viral Therapeutics and Diagnostics. Int. J. Mol. Sci. 2021, 22, 4168.10.3390/ijms22084168. PubMed DOI PMC

Lang K.; Mosinger J.; Wagnerová D. M. Photophysical properties of porphyrinoid sensitizers non-covalently bound to host molecules; models for photodynamic therapy. Coord. Chem. Rev. 2004, 248, 321–350. 10.1016/j.ccr.2004.02.004. DOI

Mosinger J.; Lang K.; Kubát P., Photoactivatable Nanostructured Surfaces for Biomedical Applications. In Light-Responsive Nanostructured Systems for Applications in Nanomedicine; Sortino S., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp 135–168. PubMed

Kubát P.; Henke P.; Berzediová V.; Štěpánek M.; Lang K.; Mosinger J. Nanoparticles with Embedded Porphyrin Photosensitizers for Photooxidation Reactions and Continuous Oxygen Sensing. ACS Appl.Mater. Interfaces 2017, 9, 36229–36238. 10.1021/acsami.7b12009. PubMed DOI

Henke P.; Dolanský J.; Kubát P.; Mosinger J. Multifunctional Photosensitizing and Biotinylated Polystyrene Nanofiber Membranes/Composites for Binding of Biologically Active Compounds. ACS Appl. Mater. Interfaces 2020, 12, 18792–18802. 10.1021/acsami.9b23104. PubMed DOI

Dalianis T.; Hirsch H. H. Human polyomaviruses in disease and cancer. Virology 2013, 437, 63–72. 10.1016/j.virol.2012.12.015. PubMed DOI

Bennett S. M.; Broekema N. M.; Imperiale M. J. BK polyomavirus: emerging pathogen. Microbes Infect 2012, 14, 672–683. 10.1016/j.micinf.2012.02.002. PubMed DOI PMC

Bellizzi A.; Nardis C.; Anzivino E.; Rodìo D. M.; Fioriti D.; Mischitelli M.; Chiarini F.; Pietropaolo V. Human polyomavirus JC reactivation and pathogenetic mechanisms of progressive multifocal leukoencephalopathy and cancer in the era of monoclonal antibody therapies. J. NeuroVirol. 2012, 18, 1–11. 10.1007/s13365-012-0080-7. PubMed DOI PMC

Feng H.; Shuda M.; Chang Y.; Moore P. S. Clonal Integration of a Polyomavirus in Human Merkel Cell Carcinoma. Science 2008, 319, 1096–1100. 10.1126/science.1152586. PubMed DOI PMC

White M. K.; Gordon J.; Khalili K. The Rapidly Expanding Family of Human Polyomaviruses: Recent Developments in Understanding Their Life Cycle and Role in Human Pathology. PLOS Pathog. 2013, 9, e100320610.1371/journal.ppat.1003206. PubMed DOI PMC

Moens U.; Prezioso C.; Pietropaolo V. Genetic Diversity of the Noncoding Control Region of the Novel Human Polyomaviruses. Viruses 2020, 12, 1406.10.3390/v12121406. PubMed DOI PMC

O’Hara S. D.; Stehle T.; Garcea R. Glycan receptors of the Polyomaviridae: structure, function, and pathogenesis. Curr. Opin. Virol. 2014, 7, 73–78. 10.1016/j.coviro.2014.05.004. PubMed DOI

Erickson K. D.; Garcea R. L.; Tsai B. Ganglioside GT1b Is a Putative Host Cell Receptor for the Merkel Cell Polyomavirus. J. Virol. 2009, 83, 10275–10279. 10.1128/JVI.00949-09. PubMed DOI PMC

Tsai B.; Gilbert J. M.; Stehle T.; Lencer W.; Benjamin T. L.; Rapoport T. A. Gangliosides are receptors for murine polyoma virus and SV40. EMBO J. 2003, 22, 4346–4355. 10.1093/emboj/cdg439. PubMed DOI PMC

Buch M. H. C.; Liaci A. M.; O’Hara S. D.; Garcea R. L.; Neu U.; Stehle T. Structural and Functional Analysis of Murine Polyomavirus Capsid Proteins Establish the Determinants of Ligand Recognition and Pathogenicity. PLOS Pathog. 2015, 11, e100510410.1371/journal.ppat.1005104. PubMed DOI PMC

Mayberry C. L.; Bond A. C. S.; Wilczek M. P.; Mehmood K.; Maginnis M. S. Sending mixed signals: polyomavirus entry and trafficking. Curr. Opin. Virol. 2021, 47, 95–105. 10.1016/j.coviro.2021.02.004. PubMed DOI PMC

Kubát P.; Lang K.; Procházková K.; Anzenbacher Jr P. Self-aggregates of cationic meso-tetratolylporphyrins in aqueous solutions. Langmuir 2003, 19, 422–428. 10.1021/la026183f. DOI

Bregnhøj M.; Westberg M.; Jensen F.; Ogilby P. R. Solvent-dependent singlet oxygen lifetimes: temperature effects implicate tunneling and charge-transfer interactions. Phys. Chem. Chem. Phys. 2016, 18, 22946–22961. 10.1039/C6CP01635A. PubMed DOI

Baier J.; Maier M.; Engl R.; Landthaler M.; Bäumler W. Time-Resolved Investigations of Singlet Oxygen Luminescence in Water, in Phosphatidylcholine, and in Aqueous Suspensions of Phosphatidylcholine or HT29 Cells. J. Phys. Chem. B 2005, 109, 3041–3046. 10.1021/jp0455531. PubMed DOI

Smith A. E.; Lilie H.; Helenius A. Ganglioside-dependent cell attachment and endocytosis of murine polyomavirus-like particles. FEBS Lett. 2003, 555, 199–203. 10.1016/S0014-5793(03)01220-1. PubMed DOI

Bouřa E.; Liebl D.; Špíšek R.; Frič J.; Marek M.; Štokrová J.; Holáň V.; Forstová J. Polyomavirus EGFP-pseudocapsids: Analysis of model particles for introduction of proteins and peptides into mammalian cells. FEBS Lett. 2005, 579, 6549–6558. 10.1016/j.febslet.2005.10.062. PubMed DOI

Lhotáková Y.; Plíštil L.; Morávková A.; Kubát P.; Lang K.; Forstová J.; Mosinger J. Virucidal Nanofiber Textiles Based on Photosensitized Production of Singlet Oxygen. PLoS One 2012, 7, e4922610.1371/journal.pone.0049226. PubMed DOI PMC

Henke P.; Kirakci K.; Kubát P.; Fraiberk M.; Forstová J.; Mosinger J. Antibacterial, Antiviral, and Oxygen-Sensing Nanoparticles Prepared from Electrospun Materials. ACS Appl. Mater. Interfaces 2016, 8, 25127–25136. 10.1021/acsami.6b08234. PubMed DOI

Horníková L.; Žíla V.; Španielová H.; Forstová J. Mouse Polyomavirus: Propagation, Purification, Quantification, and Storage. Curr. Protoc. Microbiol. 2015, 38, 14F.1.1–14F.1.26. 10.1002/9780471729259.mc14f01s38. PubMed DOI

Dilworth S. M.; Griffin B. E. Monoclonal antibodies against polyoma virus tumor antigens. Proc. Natl. Acad. Sci. U.S.A. 1982, 79, 1059–1063. 10.1073/pnas.79.4.1059. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace