Specifically Targeting Capture and Photoinactivation of Viruses through Phosphatidylcholine-Ganglioside Vesicles with Photosensitizer
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39211626
PubMed Central
PMC11350727
DOI
10.1021/jacsau.4c00453
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Herein, we performed a simple virus capture and photoinactivation procedure using visible light on phosphatidylcholine vesicles. l-α-Phosphatidylcholine vesicles were enriched by viral receptors, GT1b gangliosides, and the nonpolar photosensitizer 5,10,15,20-tetraphenylporphyrin. These vesicles absorb in the blue region of visible light with a high quantum yield of antiviral singlet oxygen, O2 (1Δg). Through the successful incorporation of gangliosides into the structure of vesicles and the encapsulation of photosensitizers in their photoactive and monomeric state, the photogeneration of O2(1Δg) was achieved with high efficiency on demand; this process was triggered by light, and specifically targeting/inactivating viruses were captured on ganglioside receptors due to the short lifetime (3.3 μs) and diffusion pathway (approximately 100 nm) of O2(1Δg). Time-resolved and steady-state luminescence as well as absorption spectroscopy were used to monitor the photoactivity of the photosensitizer and the photogeneration of O2(1Δg) on the surface of the vesicles. The capture of model mouse polyomavirus and its inactivation were achieved using immunofluorescence methods, and loss of infectivity toward mouse fibroblast 3T6 cells was detected.
Faculty of Science BIOCEV Charles University Průmyslová 595 Vestec 252 50 Czech Republic
Faculty of Science Charles University Hlavova 2030 Prague 2 128 43 Czech Republic
Zobrazit více v PubMed
Tam E. H.; Peng Y.; Cheah M. X. Y.; Yan C.; Xiao T. Neutralizing antibodies to block viral entry and for identification of entry inhibitors. Antiviral Res. 2024, 224, 105834.10.1016/j.antiviral.2024.105834. PubMed DOI
Kim T.-H.; Lee S.-W. Aptamers for Anti-Viral Therapeutics and Diagnostics. Int. J. Mol. Sci. 2021, 22, 4168.10.3390/ijms22084168. PubMed DOI PMC
Lang K.; Mosinger J.; Wagnerová D. M. Photophysical properties of porphyrinoid sensitizers non-covalently bound to host molecules; models for photodynamic therapy. Coord. Chem. Rev. 2004, 248, 321–350. 10.1016/j.ccr.2004.02.004. DOI
Mosinger J.; Lang K.; Kubát P., Photoactivatable Nanostructured Surfaces for Biomedical Applications. In Light-Responsive Nanostructured Systems for Applications in Nanomedicine; Sortino S., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp 135–168. PubMed
Kubát P.; Henke P.; Berzediová V.; Štěpánek M.; Lang K.; Mosinger J. Nanoparticles with Embedded Porphyrin Photosensitizers for Photooxidation Reactions and Continuous Oxygen Sensing. ACS Appl.Mater. Interfaces 2017, 9, 36229–36238. 10.1021/acsami.7b12009. PubMed DOI
Henke P.; Dolanský J.; Kubát P.; Mosinger J. Multifunctional Photosensitizing and Biotinylated Polystyrene Nanofiber Membranes/Composites for Binding of Biologically Active Compounds. ACS Appl. Mater. Interfaces 2020, 12, 18792–18802. 10.1021/acsami.9b23104. PubMed DOI
Dalianis T.; Hirsch H. H. Human polyomaviruses in disease and cancer. Virology 2013, 437, 63–72. 10.1016/j.virol.2012.12.015. PubMed DOI
Bennett S. M.; Broekema N. M.; Imperiale M. J. BK polyomavirus: emerging pathogen. Microbes Infect 2012, 14, 672–683. 10.1016/j.micinf.2012.02.002. PubMed DOI PMC
Bellizzi A.; Nardis C.; Anzivino E.; Rodìo D. M.; Fioriti D.; Mischitelli M.; Chiarini F.; Pietropaolo V. Human polyomavirus JC reactivation and pathogenetic mechanisms of progressive multifocal leukoencephalopathy and cancer in the era of monoclonal antibody therapies. J. NeuroVirol. 2012, 18, 1–11. 10.1007/s13365-012-0080-7. PubMed DOI PMC
Feng H.; Shuda M.; Chang Y.; Moore P. S. Clonal Integration of a Polyomavirus in Human Merkel Cell Carcinoma. Science 2008, 319, 1096–1100. 10.1126/science.1152586. PubMed DOI PMC
White M. K.; Gordon J.; Khalili K. The Rapidly Expanding Family of Human Polyomaviruses: Recent Developments in Understanding Their Life Cycle and Role in Human Pathology. PLOS Pathog. 2013, 9, e100320610.1371/journal.ppat.1003206. PubMed DOI PMC
Moens U.; Prezioso C.; Pietropaolo V. Genetic Diversity of the Noncoding Control Region of the Novel Human Polyomaviruses. Viruses 2020, 12, 1406.10.3390/v12121406. PubMed DOI PMC
O’Hara S. D.; Stehle T.; Garcea R. Glycan receptors of the Polyomaviridae: structure, function, and pathogenesis. Curr. Opin. Virol. 2014, 7, 73–78. 10.1016/j.coviro.2014.05.004. PubMed DOI
Erickson K. D.; Garcea R. L.; Tsai B. Ganglioside GT1b Is a Putative Host Cell Receptor for the Merkel Cell Polyomavirus. J. Virol. 2009, 83, 10275–10279. 10.1128/JVI.00949-09. PubMed DOI PMC
Tsai B.; Gilbert J. M.; Stehle T.; Lencer W.; Benjamin T. L.; Rapoport T. A. Gangliosides are receptors for murine polyoma virus and SV40. EMBO J. 2003, 22, 4346–4355. 10.1093/emboj/cdg439. PubMed DOI PMC
Buch M. H. C.; Liaci A. M.; O’Hara S. D.; Garcea R. L.; Neu U.; Stehle T. Structural and Functional Analysis of Murine Polyomavirus Capsid Proteins Establish the Determinants of Ligand Recognition and Pathogenicity. PLOS Pathog. 2015, 11, e100510410.1371/journal.ppat.1005104. PubMed DOI PMC
Mayberry C. L.; Bond A. C. S.; Wilczek M. P.; Mehmood K.; Maginnis M. S. Sending mixed signals: polyomavirus entry and trafficking. Curr. Opin. Virol. 2021, 47, 95–105. 10.1016/j.coviro.2021.02.004. PubMed DOI PMC
Kubát P.; Lang K.; Procházková K.; Anzenbacher Jr P. Self-aggregates of cationic meso-tetratolylporphyrins in aqueous solutions. Langmuir 2003, 19, 422–428. 10.1021/la026183f. DOI
Bregnhøj M.; Westberg M.; Jensen F.; Ogilby P. R. Solvent-dependent singlet oxygen lifetimes: temperature effects implicate tunneling and charge-transfer interactions. Phys. Chem. Chem. Phys. 2016, 18, 22946–22961. 10.1039/C6CP01635A. PubMed DOI
Baier J.; Maier M.; Engl R.; Landthaler M.; Bäumler W. Time-Resolved Investigations of Singlet Oxygen Luminescence in Water, in Phosphatidylcholine, and in Aqueous Suspensions of Phosphatidylcholine or HT29 Cells. J. Phys. Chem. B 2005, 109, 3041–3046. 10.1021/jp0455531. PubMed DOI
Smith A. E.; Lilie H.; Helenius A. Ganglioside-dependent cell attachment and endocytosis of murine polyomavirus-like particles. FEBS Lett. 2003, 555, 199–203. 10.1016/S0014-5793(03)01220-1. PubMed DOI
Bouřa E.; Liebl D.; Špíšek R.; Frič J.; Marek M.; Štokrová J.; Holáň V.; Forstová J. Polyomavirus EGFP-pseudocapsids: Analysis of model particles for introduction of proteins and peptides into mammalian cells. FEBS Lett. 2005, 579, 6549–6558. 10.1016/j.febslet.2005.10.062. PubMed DOI
Lhotáková Y.; Plíštil L.; Morávková A.; Kubát P.; Lang K.; Forstová J.; Mosinger J. Virucidal Nanofiber Textiles Based on Photosensitized Production of Singlet Oxygen. PLoS One 2012, 7, e4922610.1371/journal.pone.0049226. PubMed DOI PMC
Henke P.; Kirakci K.; Kubát P.; Fraiberk M.; Forstová J.; Mosinger J. Antibacterial, Antiviral, and Oxygen-Sensing Nanoparticles Prepared from Electrospun Materials. ACS Appl. Mater. Interfaces 2016, 8, 25127–25136. 10.1021/acsami.6b08234. PubMed DOI
Horníková L.; Žíla V.; Španielová H.; Forstová J. Mouse Polyomavirus: Propagation, Purification, Quantification, and Storage. Curr. Protoc. Microbiol. 2015, 38, 14F.1.1–14F.1.26. 10.1002/9780471729259.mc14f01s38. PubMed DOI
Dilworth S. M.; Griffin B. E. Monoclonal antibodies against polyoma virus tumor antigens. Proc. Natl. Acad. Sci. U.S.A. 1982, 79, 1059–1063. 10.1073/pnas.79.4.1059. PubMed DOI PMC