Mitochondrial Contact Site and Cristae Organization System and F1FO-ATP Synthase Crosstalk Is a Fundamental Property of Mitochondrial Cristae
Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
34133204
PubMed Central
PMC8265648
DOI
10.1128/msphere.00327-21
Knihovny.cz E-zdroje
- Klíčová slova
- ATP synthase, MICOS, Trypanosoma, evolution, mitochondria,
- Publikační typ
- časopisecké články MeSH
Mitochondrial cristae are polymorphic invaginations of the inner membrane that are the fabric of cellular respiration. Both the mitochondrial contact site and cristae organization system (MICOS) and the F1FO-ATP synthase are vital for sculpting cristae by opposing membrane-bending forces. While MICOS promotes negative curvature at crista junctions, dimeric F1FO-ATP synthase is crucial for positive curvature at crista rims. Crosstalk between these two complexes has been observed in baker's yeast, the model organism of the Opisthokonta supergroup. Here, we report that this property is conserved in Trypanosoma brucei, a member of the Discoba clade that separated from the Opisthokonta ∼2 billion years ago. Specifically, one of the paralogs of the core MICOS subunit Mic10 interacts with dimeric F1FO-ATP synthase, whereas the other core Mic60 subunit has a counteractive effect on F1FO-ATP synthase oligomerization. This is evocative of the nature of MICOS-F1FO-ATP synthase crosstalk in yeast, which is remarkable given the diversification that these two complexes have undergone during almost 2 eons of independent evolution. Furthermore, we identified a highly diverged, putative homolog of subunit e, which is essential for the stability of F1FO-ATP synthase dimers in yeast. Just like subunit e, it is preferentially associated with dimers and interacts with Mic10, and its silencing results in severe defects to cristae and the disintegration of F1FO-ATP synthase dimers. Our findings indicate that crosstalk between MICOS and dimeric F1FO-ATP synthase is a fundamental property impacting crista shape throughout eukaryotes. IMPORTANCE Mitochondria have undergone profound diversification in separate lineages that have radiated since the last common ancestor of eukaryotes some eons ago. Most eukaryotes are unicellular protists, including etiological agents of infectious diseases, like Trypanosoma brucei. Thus, the study of a broad range of protists can reveal fundamental features shared by all eukaryotes and lineage-specific innovations. Here, we report that two different protein complexes, MICOS and F1FO-ATP synthase, known to affect mitochondrial architecture, undergo crosstalk in T. brucei, just as in baker's yeast. This is remarkable considering that these complexes have otherwise undergone many changes during their almost 2 billion years of independent evolution. Thus, this crosstalk is a fundamental property needed to maintain proper mitochondrial structure even if the constituent players considerably diverged.
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Institute of Parasitology Biology Center Czech Academy of Sciences České Budějovice Czech Republic
Zobrazit více v PubMed
Roger AJ, Muñoz-Gómez SA, Kamikawa R. 2017. The origin and diversification of mitochondria. Curr Biol 27:R1177–R1192. doi:10.1016/j.cub.2017.09.015. PubMed DOI
Mannella CA. 2020. Consequences of folding the mitochondrial inner membrane. Front Physiol 11:536. doi:10.3389/fphys.2020.00536. PubMed DOI PMC
Colina-Tenorio L, Horten P, Pfanner N, Rampelt H. 2020. Shaping the mitochondrial inner membrane in health and disease. J Intern Med 287:645–664. doi:10.1111/joim.13031. PubMed DOI
Vogel F, Bornhövd C, Neupert W, Reichert AS. 2006. Dynamic subcompartmentalization of the mitochondrial inner membrane. J Cell Biol 175:237–247. doi:10.1083/jcb.200605138. PubMed DOI PMC
Wilkens V, Kohl W, Busch K. 2013. Restricted diffusion of OXPHOS complexes in dynamic mitochondria delays their exchange between cristae and engenders a transitory mosaic distribution. J Cell Sci 126:103–116. doi:10.1242/jcs.108852. PubMed DOI
Friedman JR, Mourier A, Yamada J, McCaffery JM, Nunnari J. 2015. MICOS coordinates with respiratory complexes and lipids to establish mitochondrial inner membrane architecture. Elife 4:e07739. doi:10.7554/eLife.07739. PubMed DOI PMC
Martijn J, Vosseberg J, Guy L, Offre P, Ettema TJG. 2018. Deep mitochondrial origin outside the sampled alphaproteobacteria. Nature 557:101–105. doi:10.1038/s41586-018-0059-5. PubMed DOI
Lane N, Martin W. 2010. The energetics of genome complexity. Nature 467:929–934. doi:10.1038/nature09486. PubMed DOI
Pánek T, Eliáš M, Vancová M, Lukeš J, Hashimi H. 2020. Returning to the fold for lessons in mitochondrial crista diversity and evolution. Curr Biol 30:R575–R588. doi:10.1016/j.cub.2020.02.053. PubMed DOI
Wollweber F, von der Malsburg K, van der Laan M. 2017. Mitochondrial contact site and cristae organizing system: a central player in membrane shaping and crosstalk. Biochim Biophys Acta 1864:1481–1489. doi:10.1016/j.bbamcr.2017.05.004. PubMed DOI
Rampelt H, Zerbes RM, van der Laan M, Pfanner N. 2017. Role of the mitochondrial contact site and cristae organizing system in membrane architecture and dynamics. Biochim Biophys Acta 1864:737–746. doi:10.1016/j.bbamcr.2016.05.020. PubMed DOI
Wolf DM, Segawa M, Kondadi AK, Anand R, Bailey ST, Reichert AS, van der Bliek AM, Shackelford DB, Liesa M, Shirihai OS. 2019. Individual cristae within the same mitochondrion display different membrane potentials and are functionally independent. EMBO J 38:e101056. doi:10.15252/embj.2018101056. PubMed DOI PMC
Muñoz-Gómez SA, Slamovits CH, Dacks JB, Baier KA, Spencer KD, Wideman JG. 2015. Ancient homology of the mitochondrial contact site and cristae organizing system points to an endosymbiotic origin of mitochondrial cristae. Curr Biol 25:1489–1495. doi:10.1016/j.cub.2015.04.006. PubMed DOI
Huynen MA, Mühlmeister M, Gotthardt K, Guerrero-Castillo S, Brandt U. 2016. Evolution and structural organization of the mitochondrial contact site (MICOS) complex and the mitochondrial intermembrane space bridging (MIB) complex. Biochim Biophys Acta 1863:91–101. doi:10.1016/j.bbamcr.2015.10.009. PubMed DOI
Barbot M, Jans DC, Schulz C, Denkert N, Kroppen B, Hoppert M, Jakobs S, Meinecke M. 2015. Mic10 oligomerizes to bend mitochondrial inner membranes at cristae junctions. Cell Metab 21:756–763. doi:10.1016/j.cmet.2015.04.006. PubMed DOI
Bohnert M, Zerbes RM, Davies KM, Mühleip AW, Rampelt H, Horvath SE, Boenke T, Kram A, Perschil I, Veenhuis M, Kühlbrandt W, van der Klei IJ, Pfanner N, van der Laan M. 2015. Central role of Mic10 in the mitochondrial contact site and cristae organizing system. Cell Metab 21:747–755. doi:10.1016/j.cmet.2015.04.007. PubMed DOI
Tarasenko D, Barbot M, Jans DC, Kroppen B, Sadowski B, Heim G, Möbius W, Jakobs S, Meinecke M. 2017. The MICOS component Mic60 displays a conserved membrane-bending activity that is necessary for normal cristae morphology. J Cell Biol 216:889–899. doi:10.1083/jcb.201609046. PubMed DOI PMC
Hessenberger M, Zerbes RM, Rampelt H, Kunz S, Xavier AH, Purfürst B, Lilie H, Pfanner N, van der Laan M, Daumke O. 2017. Regulated membrane remodeling by Mic60 controls formation of mitochondrial crista junctions. Nat Commun 8:15258. doi:10.1038/ncomms15258. PubMed DOI PMC
Kühlbrandt W. 2019. Structure and mechanisms of F-type ATP synthases. Annu Rev Biochem 88:515–549. doi:10.1146/annurev-biochem-013118-110903. PubMed DOI
Davies KM, Anselmi C, Wittig I, Faraldo-Gomez JD, Kühlbrandt W. 2012. Structure of the yeast F1Fo-ATP synthase dimer and its role in shaping the mitochondrial cristae. Proc Natl Acad Sci U S A 109:13602–13607. doi:10.1073/pnas.1204593109. PubMed DOI PMC
Mühleip A, Kock Flygaard R, Ovciarikova J, Lacombe A, Fernandes P, Sheiner L, Amunts A. 2021. ATP synthase hexamer assemblies shape cristae of Toxoplasma mitochondria. Nat Commun 12:120. doi:10.1038/s41467-020-20381-z. PubMed DOI PMC
Mühleip AW, Dewar CE, Schnaufer A, Kühlbrandt W, Davies KM. 2017. In situ structure of trypanosomal ATP synthase dimer reveals a unique arrangement of catalytic subunits. Proc Natl Acad Sci U S A 114:992–997. doi:10.1073/pnas.1612386114. PubMed DOI PMC
Keeling PJ, Burki F. 2019. Progress towards the Tree of Eukaryotes. Curr Biol 29:R808–R817. doi:10.1016/j.cub.2019.07.031. PubMed DOI
Wagner K, Rehling P, Sanjuán Szklarz LK, Taylor RD, Pfanner N, van der Laan M. 2009. Mitochondrial F1Fo-ATP synthase: the small subunits e and g associate with monomeric complexes to trigger dimerization. J Mol Biol 392:855–861. doi:10.1016/j.jmb.2009.07.059. PubMed DOI
Arselin G, Vaillier J, Salin B, Schaeffer J, Giraud M-F, Dautant A, Brèthes D, Velours J. 2004. The modulation in subunits e and g amounts of yeast ATP synthase modifies mitochondrial cristae morphology. J Biol Chem 279:40392–40399. doi:10.1074/jbc.M404316200. PubMed DOI
Paumard P, Vaillier J, Coulary B, Schaeffer J, Soubannier V, Mueller DM, Brèthes D, di Rago J-P, Velours J. 2002. The ATP synthase is involved in generating mitochondrial cristae morphology. EMBO J 21:221–230. doi:10.1093/emboj/21.3.221. PubMed DOI PMC
Harner ME, Unger A-K, Geerts WJ, Mari M, Izawa T, Stenger M, Geimer S, Reggiori F, Westermann B, Neupert W. 2016. An evidence based hypothesis on the existence of two pathways of mitochondrial crista formation. Elife 5:e18853. doi:10.7554/eLife.18853. PubMed DOI PMC
Rampelt H, Bohnert M, Zerbes RM, Horvath SE, Warscheid B, Pfanner N, van der Laan M. 2017. Mic10, a core subunit of the mitochondrial contact site and cristae organizing system, interacts with the dimeric F1Fo-ATP synthase. J Mol Biol 429:1162–1170. doi:10.1016/j.jmb.2017.03.006. PubMed DOI
Eydt K, Davies KM, Behrendt C, Wittig I, Reichert AS. 2017. Cristae architecture is determined by an interplay of the MICOS complex and the F1Fo ATP synthase via Mic27 and Mic10. Microb Cell 4:259–272. doi:10.15698/mic2017.08.585. PubMed DOI PMC
Rabl R, Soubannier V, Scholz R, Vogel F, Mendl N, Vasiljev-Neumeyer A, Körner C, Jagasia R, Keil T, Baumeister W, Cyrklaff M, Neupert W, Reichert AS. 2009. Formation of cristae and crista junctions in mitochondria depends on antagonism between Fcj1 and Su e/g. J Cell Biol 185:1047–1063. doi:10.1083/jcb.200811099. PubMed DOI PMC
Hashimi H. 2019. A parasite’s take on the evolutionary cell biology of MICOS. PLoS Pathog 15:e1008166. doi:10.1371/journal.ppat.1008166. PubMed DOI PMC
Kaurov I, Vancová M, Schimanski B, Cadena LR, Heller J, Bílý T, Potěšil D, Eichenberger C, Bruce H, Oeljeklaus S, Warscheid B, Zdráhal Z, Schneider A, Lukeš J, Hashimi H. 2018. The diverged trypanosome MICOS complex as a hub for mitochondrial cristae shaping and protein import. Curr Biol 28:3393–3407.e5. doi:10.1016/j.cub.2018.09.008. PubMed DOI
Eichenberger C, Oeljeklaus S, Bruggisser J, Mani J, Haenni B, Kaurov I, Niemann M, Zuber B, Lukeš J, Hashimi H, Warscheid B, Schimanski B, Schneider A. 2019. The highly diverged trypanosomal MICOS complex is organized in a nonessential integral membrane and an essential peripheral module. Mol Microbiol 112:1731–1743. doi:10.1111/mmi.14389. PubMed DOI
Zíková A, Schnaufer A, Dalley RA, Panigrahi AK, Stuart KD. 2009. The FoF1-ATP synthase complex contains novel subunits and is essential for procyclic Trypanosoma brucei. PLoS Pathog 5:e1000436. doi:10.1371/journal.ppat.1000436. PubMed DOI PMC
Schnaufer A, Clark-Walker GD, Steinberg AG, Stuart K. 2005. The F1-ATP synthase complex in bloodstream stage trypanosomes has an unusual and essential function. EMBO J 24:4029–4040. doi:10.1038/sj.emboj.7600862. PubMed DOI PMC
Montgomery MG, Gahura O, Leslie AGW, Zíková A, Walker JE. 2018. ATP synthase from Trypanosoma brucei has an elaborated canonical F1-domain and conventional catalytic sites. Proc Natl Acad Sci U S A 115:2102–2107. doi:10.1073/pnas.1720940115. PubMed DOI PMC
Gahura O, Hierro-Yap C, Zíková A. 8 February 2021. Redesigned and reversed: architectural and functional oddities of the trypanosomal ATP synthase. Parasitology 10.1017/S0031182021000202. PubMed DOI PMC
Gahura O, Šubrtová K, Váchová H, Panicucci B, Fearnley IM, Harbour ME, Walker JE, Zíková A. 2018. The F1 ATPase from Trypanosoma brucei is elaborated by three copies of an additional p18‐subunit. FEBS J 285:614–628. doi:10.1111/febs.14364. PubMed DOI
Hierro-Yap C, Šubrtová K, Gahura O, Panicucci B, Dewar C, Chinopoulos C, Schnaufer A, Zíková A. 2021. Bioenergetic consequences of FoF1-ATP synthase/ATPase deficiency in two life cycle stages of Trypanosoma brucei. J Biol Chem 296:100357. doi:10.1016/j.jbc.2021.100357. PubMed DOI PMC
Pyrih J, Rašková V, Škodová-Sveráková I, Pánek T, Lukeš J. 2020. ZapE/Afg1 interacts with Oxa1 and its depletion causes a multifaceted phenotype. PLoS One 15:e0234918. doi:10.1371/journal.pone.0234918. PubMed DOI PMC
Peikert CD, Mani J, Morgenstern M, Käser S, Knapp B, Wenger C, Harsman A, Oeljeklaus S, Schneider A, Warscheid B. 2017. Charting organellar importomes by quantitative mass spectrometry. Nat Commun 8:15272. doi:10.1038/ncomms15272. PubMed DOI PMC
Panigrahi AK, Ogata Y, Zikova A, Anupama A, Dalley RA, Acestor N, Myler PJ, Stuart KD. 2009. A comprehensive analysis of Trypanosoma brucei mitochondrial proteome. Proteomics 9:434–450. doi:10.1002/pmic.200800477. PubMed DOI PMC
Gnipová A, Šubrtová K, Panicucci B, Horváth A, Lukeš J, Zíková A. 2015. The ADP/ATP carrier and its relationship to oxidative phosphorylation in ancestral protist Trypanosoma brucei. Eukaryot Cell 14:297–310. doi:10.1128/EC.00238-14. PubMed DOI PMC
Arnold I, Pfeiffer K, Neupert W, Stuart RA, Schägger H. 1998. Yeast mitochondrial F1Fo-ATP synthase exists as a dimer: identification of three dimer-specific subunits. EMBO J 17:7170–7178. doi:10.1093/emboj/17.24.7170. PubMed DOI PMC
Arselin G, Giraud M-F, Dautant A, Vaillier J, Brethes D, Coulary-Salin B, Schaeffer J, Velours J. 2003. The GxxxG motif of the transmembrane domain of subunit e is involved in the dimerization/oligomerization of the yeast ATP synthase complex in the mitochondrial membrane. Eur J Biochem 270:1875–1884. doi:10.1046/j.1432-1033.2003.03557.x. PubMed DOI
Guo H, Bueler SA, Rubinstein JL. 2017. Atomic model for the dimeric Fo region of mitochondrial ATP synthase. Science 358:936–940. doi:10.1126/science.aao4815. PubMed DOI PMC
Perez E, Lapaille M, Degand H, Cilibrasi L, Villavicencio-Queijeiro A, Morsomme P, González-Halphen D, Field MC, Remacle C, Baurain D, Cardol P. 2014. The mitochondrial respiratory chain of the secondary green alga Euglena gracilis shares many additional subunits with parasitic Trypanosomatidae. Mitochondrion 19(Part B): 338–349. doi:10.1016/j.mito.2014.02.001. PubMed DOI
Zimmermann L, Stephens A, Nam S-Z, Rau D, Kübler J, Lozajic M, Gabler F, Söding J, Lupas AN, Alva V. 2018. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol 430:2237–2243. doi:10.1016/j.jmb.2017.12.007. PubMed DOI
Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T. 2018. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46:W296–W303. doi:10.1093/nar/gky427. PubMed DOI PMC
Hahn A, Parey K, Bublitz M, Mills DJ, Zickermann V, Vonck J, Kühlbrandt W, Meier T. 2016. Structure of a complete ATP synthase dimer reveals the molecular basis of inner mitochondrial membrane morphology. Mol Cell 63:445–456. doi:10.1016/j.molcel.2016.05.037. PubMed DOI PMC
Spikes TE, Montgomery MG, Walker JE. 2021. Interface mobility between monomers in dimeric bovine ATP synthase participates in the ultrastructure of inner mitochondrial membranes. Proc Natl Acad Sci U S A 118:e2021012118. doi:10.1073/pnas.2021012118. PubMed DOI PMC
Spikes TE, Montgomery MG, Walker JE. 2020. Structure of the dimeric ATP synthase from bovine mitochondria. Proc Natl Acad Sci U S A 117:23519–23526. doi:10.1073/pnas.2013998117. PubMed DOI PMC
Schweppe DK, Chavez JD, Lee CF, Caudal A, Kruse SE, Stuppard R, Marcinek DJ, Shadel GS, Tian R, Bruce JE. 2017. Mitochondrial protein interactome elucidated by chemical cross-linking mass spectrometry. Proc Natl Acad Sci U S A 114:1732–1737. doi:10.1073/pnas.1617220114. PubMed DOI PMC
Blum TB, Hahn A, Meier T, Davies KM, Kühlbrandt W. 2019. Dimers of mitochondrial ATP synthase induce membrane curvature and self-assemble into rows. Proc Natl Acad Sci U S A 116:4250–4255. doi:10.1073/pnas.1816556116. PubMed DOI PMC
Poon SK, Peacock L, Gibson W, Gull K, Kelly S. 2012. A modular and optimized single marker system for generating Trypanosoma brucei cell lines expressing T7 RNA polymerase and the tetracycline repressor. Open Biol 2:110037. doi:10.1098/rsob.110037. PubMed DOI PMC
Dean S, Sunter J, Wheeler RJ, Hodkinson I, Gluenz E, Gull K. 2015. A toolkit enabling efficient, scalable and reproducible gene tagging in trypanosomatids. Open Biol 5:140197. doi:10.1098/rsob.140197. PubMed DOI PMC
Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3. PubMed DOI
Hebert AS, Richards AL, Bailey DJ, Ulbrich A, Coughlin EE, Westphall MS, Coon JJ. 2014. The one hour yeast proteome. Mol Cell Proteomics 13:339–347. doi:10.1074/mcp.M113.034769. PubMed DOI PMC
Rappsilber J, Mann M, Ishihama Y. 2007. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2:1896–1906. doi:10.1038/nprot.2007.261. PubMed DOI
Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. 2014. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics 13:2513–2526. doi:10.1074/mcp.M113.031591. PubMed DOI PMC
Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. 2009. Jalview version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191. doi:10.1093/bioinformatics/btp033. PubMed DOI PMC
Jones DT. 2007. Improving the accuracy of transmembrane protein topology prediction using evolutionary information. Bioinformatics 23:538–544. doi:10.1093/bioinformatics/btl677. PubMed DOI
Duvaud S, Gabella C, Lisacek F, Stockinger H, Ioannidis V, Durinx C. 2021. Expasy, the Swiss Bioinformatics Resource Portal, as designed by its users. Nucleic Acids Res gkab225. doi:10.1093/nar/gkab225. PubMed DOI PMC