The ADP/ATP carrier and its relationship to oxidative phosphorylation in ancestral protist trypanosoma brucei
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25616281
PubMed Central
PMC4346568
DOI
10.1128/ec.00238-14
PII: EC.00238-14
Knihovny.cz E-zdroje
- MeSH
- mitochondriální ADP/ATP-translokasy chemie genetika metabolismus MeSH
- molekulární evoluce * MeSH
- oxidativní fosforylace * MeSH
- protozoální proteiny chemie genetika metabolismus MeSH
- Trypanosoma brucei brucei genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mitochondriální ADP/ATP-translokasy MeSH
- protozoální proteiny MeSH
The highly conserved ADP/ATP carrier (AAC) is a key energetic link between the mitochondrial (mt) and cytosolic compartments of all aerobic eukaryotic cells, as it exchanges the ATP generated inside the organelle for the cytosolic ADP. Trypanosoma brucei, a parasitic protist of medical and veterinary importance, possesses a single functional AAC protein (TbAAC) that is related to the human and yeast ADP/ATP carriers. However, unlike previous studies performed with these model organisms, this study showed that TbAAC is most likely not a stable component of either the respiratory supercomplex III+IV or the ATP synthasome but rather functions as a physically separate entity in this highly diverged eukaryote. Therefore, TbAAC RNA interference (RNAi) ablation in the insect stage of T. brucei does not impair the activity or arrangement of the respiratory chain complexes. Nevertheless, RNAi silencing of TbAAC caused a severe growth defect that coincides with a significant reduction of mt ATP synthesis by both substrate and oxidative phosphorylation. Furthermore, TbAAC downregulation resulted in a decreased level of cytosolic ATP, a higher mt membrane potential, an elevated amount of reactive oxygen species, and a reduced consumption of oxygen in the mitochondria. Interestingly, while TbAAC has previously been demonstrated to serve as the sole ADP/ATP carrier for ADP influx into the mitochondria, our data suggest that a second carrier for ATP influx may be present and active in the T. brucei mitochondrion. Overall, this study provides more insight into the delicate balance of the functional relationship between TbAAC and the oxidative phosphorylation (OXPHOS) pathway in an early diverged eukaryote.
Biology Center Institute of Parasitology Czech Academy of Sciences České Budějovice Czech Republic
Department of Biochemistry Faculty of Natural Sciences Comenius University Bratislava Slovakia
Zobrazit více v PubMed
Arco AD, Satrustegui J. 2005. New mitochondrial carriers: an overview. Cell Mol Life Sci 62:2204–2227. doi:10.1007/s00018-005-5197-x. PubMed DOI PMC
Klingenberg M. 2008. The ADP and ATP transport in mitochondria and its carrier. Biochim Biophys Acta 1778:1978–2021. doi:10.1016/j.bbamem.2008.04.011. PubMed DOI
Dudkina NV, Kouril R, Peters K, Braun HP, Boekema EJ. 2010. Structure and function of mitochondrial supercomplexes. Biochim Biophys Acta 1797:664–670. doi:10.1016/j.bbabio.2009.12.013. PubMed DOI
Dudkina NV, Heinemeyer J, Sunderhaus S, Boekema EJ, Braun HP. 2006. Respiratory chain supercomplexes in the plant mitochondrial membrane. Trends Plant Sci 11:232–240. doi:10.1016/j.tplants.2006.03.007. PubMed DOI
Minauro-Sanmiguel F, Wilkens S, Garcia JJ. 2005. Structure of dimeric mitochondrial ATP synthase: novel F0 bridging features and the structural basis of mitochondrial cristae biogenesis. Proc Natl Acad Sci U S A 102:12356–12358. doi:10.1073/pnas.0503893102. PubMed DOI PMC
Davies KM, Anselmi C, Wittig I, Faraldo-Gomez JD, Kuhlbrandt W. 2012. Structure of the yeast F1Fo-ATP synthase dimer and its role in shaping the mitochondrial cristae. Proc Natl Acad Sci U S A 109:13602–13607. doi:10.1073/pnas.1204593109. PubMed DOI PMC
Bamber L, Harding M, Monne M, Slotboom DJ, Kunji ER. 2007. The yeast mitochondrial ADP/ATP carrier functions as a monomer in mitochondrial membranes. Proc Natl Acad Sci U S A 104:10830–10834. doi:10.1073/pnas.0703969104. PubMed DOI PMC
Nury H, Dahout-Gonzalez C, Trezeguet V, Lauquin G, Brandolin G, Pebay-Peyroula E. 2005. Structural basis for lipid-mediated interactions between mitochondrial ADP/ATP carrier monomers. FEBS Lett 579:6031–6036. doi:10.1016/j.febslet.2005.09.061. PubMed DOI
Dienhart MK, Stuart RA. 2008. The yeast Aac2 protein exists in physical association with the cytochrome bc1-COX supercomplex and the TIM23 machinery. Mol Biol Cell 19:3934–3943. doi:10.1091/mbc.E08-04-0402. PubMed DOI PMC
Mehnert CS, Rampelt H, Gebert M, Oeljeklaus S, Schrempp SG, Kochbeck L, Guiard B, Warscheid B, van der Laan M. 2014. The mitochondrial ADP/ATP carrier associates with the inner membrane presequence translocase in a stoichiometric manner. J Biol Chem 289:27352–27362. doi:10.1074/jbc.M114.556498. PubMed DOI PMC
Chen C, Ko Y, Delannoy M, Ludtke SJ, Chiu W, Pedersen PL. 2004. Mitochondrial ATP synthasome: three-dimensional structure by electron microscopy of the ATP synthase in complex formation with carriers for Pi and ADP/ATP. J Biol Chem 279:31761–31768. doi:10.1074/jbc.M401353200. PubMed DOI
Ko YH, Delannoy M, Hullihen J, Chiu W, Pedersen PL. 2003. Mitochondrial ATP synthasome. Cristae-enriched membranes and a multiwell detergent screening assay yield dispersed single complexes containing the ATP synthase and carriers for Pi and ADP/ATP. J Biol Chem 278:12305–12309. doi:10.1074/jbc.C200703200. PubMed DOI
Acestor N, Zíková A, Dalley RA, Anupama A, Panigrahi AK, Stuart KD. 2011. Trypanosoma brucei mitochondrial respiratome: composition and organization in procyclic form. Mol Cell Proteomics 10:M110.006908. doi:10.1074/mcp.M110.006908. PubMed DOI PMC
Simarro PP, Jannin J, Cattand P. 2008. Eliminating human African trypanosomiasis: where do we stand and what comes next? PLoS Med 5:e55. doi:10.1371/journal.pmed.0050055. PubMed DOI PMC
Fevre EM, Wissmann BV, Welburn SC, Lutumba P. 2008. The burden of human African trypanosomiasis. PLoS Negl Trop Dis 2:e333. doi:10.1371/journal.pntd.0000333. PubMed DOI PMC
Tielens AG, van Hellemond JJ. 2009. Surprising variety in energy metabolism within Trypanosomatidae. Trends Parasitol 25:482–490. doi:10.1016/j.pt.2009.07.007. PubMed DOI
Besteiro S, Barrett MP, Riviere L, Bringaud F. 2005. Energy generation in insect stages of Trypanosoma brucei: metabolism in flux. Trends Parasitol 21:185–191. doi:10.1016/j.pt.2005.02.008. PubMed DOI
Zíková A, Schnaufer A, Dalley RA, Panigrahi AK, Stuart KD. 2009. The F(0)F(1)-ATP synthase complex contains novel subunits and is essential for procyclic Trypanosoma brucei. PLoS Pathog 5:e1000436. doi:10.1371/journal.ppat.1000436. PubMed DOI PMC
Bochud-Allemann N, Schneider A. 2002. Mitochondrial substrate level phosphorylation is essential for growth of procyclic Trypanosoma brucei. J Biol Chem 277:32849–32854. doi:10.1074/jbc.M205776200. PubMed DOI
Hannaert V, Bringaud F, Opperdoes FR, Michels PA. 2003. Evolution of energy metabolism and its compartmentation in Kinetoplastida. Kinetoplastid Biol Dis 2:11. doi:10.1186/1475-9292-2-11. PubMed DOI PMC
Fang J, Beattie DS. 2003. Identification of a gene encoding a 54 kDa alternative NADH dehydrogenase in Trypanosoma brucei. Mol Biochem Parasitol 127:73–77. doi:10.1016/S0166-6851(02)00305-5. PubMed DOI
Chaudhuri M, Ott RD, Hill GC. 2006. Trypanosome alternative oxidase: from molecule to function. Trends Parasitol 22:484–491. doi:10.1016/j.pt.2006.08.007. PubMed DOI
Nolan DP, Voorheis HP. 1992. The mitochondrion in bloodstream forms of Trypanosoma brucei is energized by the electrogenic pumping of protons catalysed by the F1F0-ATPase. Eur J Biochem 209:207–216. doi:10.1111/j.1432-1033.1992.tb17278.x. PubMed DOI
Schnaufer A, Clark-Walker GD, Steinberg AG, Stuart K. 2005. The F1-ATP synthase complex in bloodstream stage trypanosomes has an unusual and essential function. EMBO J 24:4029–4040. doi:10.1038/sj.emboj.7600862. PubMed DOI PMC
Colasante C, Pena Diaz P, Clayton C, Voncken F. 2009. Mitochondrial carrier family inventory of Trypanosoma brucei brucei: identification, expression and subcellular localisation. Mol Biochem Parasitol 167:104–117. doi:10.1016/j.molbiopara.2009.05.004. PubMed DOI
Pena-Diaz P, Pelosi L, Ebikeme C, Colasante C, Gao F, Bringaud F, Voncken F. 2012. Functional characterization of TbMCP5, a conserved and essential ADP/ATP carrier present in the mitochondrion of the human pathogen Trypanosoma brucei. J Biol Chem 287:41861–41874. doi:10.1074/jbc.M112.404699. PubMed DOI PMC
Verner Z, Basu S, Benz C, Dixit S, Dobáková E, Faktorová D, Hashimi H, Horáková E, Huang Z, Paris Z, Peña-Diaz P, Ridlon L, Týč J, Wildridge D, Zíková A, Lukeš J. The malleable mitochondrion of Trypanosoma brucei. Int Rev Cell Mol Biol, in press. PubMed
Wickstead B, Ersfeld K, Gull K. 2002. Targeting of a tetracycline-inducible expression system to the transcriptionally silent minichromosomes of Trypanosoma brucei. Mol Biochem Parasitol 125:211–216. doi:10.1016/S0166-6851(02)00238-4. PubMed DOI
Flaspohler JA, Jensen BC, Saveria T, Kifer CT, Parsons M. 2010. A novel protein kinase localized to lipid droplets is required for droplet biogenesis in trypanosomes. Eukaryot Cell 9:1702–1710. doi:10.1128/EC.00106-10. PubMed DOI PMC
Wirtz E, Leal S, Ochatt C, Cross GA. 1999. A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei. Mol Biochem Parasitol 99:89–101. doi:10.1016/S0166-6851(99)00002-X. PubMed DOI
Surve S, Heestand M, Panicucci B, Schnaufer A, Parsons M. 2012. Enigmatic presence of mitochondrial complex I in Trypanosoma brucei bloodstream forms. Eukaryot Cell 11:183–193. doi:10.1128/EC.05282-11. PubMed DOI PMC
Panigrahi AK, Ogata Y, Zíková A, Anupama A, Dalley RA, Acestor N, Myler PJ, Stuart KD. 2009. A comprehensive analysis of Trypanosoma brucei mitochondrial proteome. Proteomics 9:434–450. doi:10.1002/pmic.200800477. PubMed DOI PMC
Horváth A, Horáková E, Dunajčíková P, Verner Z, Pravdová E, Šlapetová I, Čuninková L, Lukeš J. 2005. Downregulation of the nuclear-encoded subunits of the complexes III and IV disrupts their respective complexes but not complex I in procyclic Trypanosoma brucei. Mol Microbiol 58:116–130. doi:10.1111/j.1365-2958.2005.04813.x. PubMed DOI
Wittig I, Karas M, Schagger H. 2007. High resolution clear native electrophoresis for in-gel functional assays and fluorescence studies of membrane protein complexes. Mol Cell Proteomics 6:1215–1225. doi:10.1074/mcp.M700076-MCP200. PubMed DOI
Maslov DA, Zíková A, Kyselová I, Lukeš J. 2002. A putative novel nuclear-encoded subunit of the cytochrome c oxidase complex in trypanosomatids. Mol Biochem Parasitol 125:113–125. doi:10.1016/S0166-6851(02)00235-9. PubMed DOI
Hannaert V, Albert MA, Rigden DJ, da Silva Giotto MT, Thiemann O, Garratt RC, Van Roy J, Opperdoes FR, Michels PA. 2003. Kinetic characterization, structure modelling studies and crystallization of Trypanosoma brucei enolase. Eur J Biochem 270:3205–3213. doi:10.1046/j.1432-1033.2003.03692.x. PubMed DOI
Panigrahi AK, Zíková A, Dalley RA, Acestor N, Ogata Y, Anupama A, Myler PJ, Stuart KD. 2008. Mitochondrial complexes in Trypanosoma brucei: a novel complex and a unique oxidoreductase complex. Mol Cell Proteomics 7:534–545. doi:10.1074/mcp.M700430-MCP200. PubMed DOI
Priest JW, Hajduk SL. 2003. Trypanosoma brucei cytochrome c1 is imported into mitochondria along an unusual pathway. J Biol Chem 278:15084–15094. doi:10.1074/jbc.M212956200. PubMed DOI
Šubrtová K, Panicucci B, Zíková A. ATPaseTb2, a unique membrane-bound FoF1-ATPase component, is essential in bloodstream and dyskinetoplastic trypanosomes. PLoS Pathog, in press. PubMed PMC
Zíková A, Panigrahi AK, Uboldi AD, Dalley RA, Handman E, Stuart K. 2008. Structural and functional association of Trypanosoma brucei MIX protein with cytochrome c oxidase complex. Eukaryot Cell 7:1994–2003. doi:10.1128/EC.00204-08. PubMed DOI PMC
Gnipová A, Panicucci B, Paris Z, Verner Z, Horváth A, Lukeš J, Zíková A. 2012. Disparate phenotypic effects from the knockdown of various Trypanosoma brucei cytochrome c oxidase subunits. Mol Biochem Parasitol 184:90–98. doi:10.1016/j.molbiopara.2012.04.013. PubMed DOI
Allemann N, Schneider A. 2000. ATP production in isolated mitochondria of procyclic Trypanosoma brucei. Mol Biochem Parasitol 111:87–94. doi:10.1016/S0166-6851(00)00303-0. PubMed DOI
Tan TH, Bochud-Allemann N, Horn EK, Schneider A. 2002. Eukaryotic-type elongator tRNAMet of Trypanosoma brucei becomes formylated after import into mitochondria. Proc Natl Acad Sci U S A 99:1152–1157. doi:10.1073/pnas.022522299. PubMed DOI PMC
Law RH, Manon S, Devenish RJ, Nagley P. 1995. ATP synthase from Saccharomyces cerevisiae. Methods Enzymol 260:133–163. doi:10.1016/0076-6879(95)60135-X. PubMed DOI
de Wet JR, Wood KV, DeLuca M, Helinski DR, Subramani S. 1987. Firefly luciferase gene: structure and expression in mammalian cells. Mol Cell Biol 7:725–737. PubMed PMC
Maechler P, Wang H, Wollheim CB. 1998. Continuous monitoring of ATP levels in living insulin secreting cells expressing cytosolic firefly luciferase. FEBS Lett 422:328–332. doi:10.1016/S0014-5793(97)01618-9. PubMed DOI
Saddar S, Dienhart MK, Stuart RA. 2008. The F1F0-ATP synthase complex influences the assembly state of the cytochrome bc1-cytochrome oxidase supercomplex and its association with the TIM23 machinery. J Biol Chem 283:6677–6686. doi:10.1074/jbc.M708440200. PubMed DOI
Claypool SM, Oktay Y, Boontheung P, Loo JA, Koehler CM. 2008. Cardiolipin defines the interactome of the major ADP/ATP carrier protein of the mitochondrial inner membrane. J Cell Biol 182:937–950. doi:10.1083/jcb.200801152. PubMed DOI PMC
Wittig I, Schagger H. 2008. Structural organization of mitochondrial ATP synthase. Biochim Biophys Acta 1777:592–598. doi:10.1016/j.bbabio.2008.04.027. PubMed DOI
Kawamata H, Starkov AA, Manfredi G, Chinopoulos C. 2010. A kinetic assay of mitochondrial ADP-ATP exchange rate in permeabilized cells. Anal Biochem 407:52–57. doi:10.1016/j.ab.2010.07.031. PubMed DOI PMC
Helling S, Vogt S, Rhiel A, Ramzan R, Wen L, Marcus K, Kadenbach B. 2008. Phosphorylation and kinetics of mammalian cytochrome c oxidase. Mol Cell Proteomics 7:1714–1724. doi:10.1074/mcp.M800137-MCP200. PubMed DOI PMC
Ramzan R, Staniek K, Kadenbach B, Vogt S. 2010. Mitochondrial respiration and membrane potential are regulated by the allosteric ATP-inhibition of cytochrome c oxidase. Biochim Biophys Acta 1797:1672–1680. doi:10.1016/j.bbabio.2010.06.005. PubMed DOI
Kucejova B, Li L, Wang X, Giannattasio S, Chen XJ. 2008. Pleiotropic effects of the yeast Sal1 and Aac2 carriers on mitochondrial function via an activity distinct from adenine nucleotide transport. Mol Genet Genomics 280:25–39. doi:10.1007/s00438-008-0342-5. PubMed DOI PMC
Wang X, Salinas K, Zuo X, Kucejova B, Chen XJ. 2008. Dominant membrane uncoupling by mutant adenine nucleotide translocase in mitochondrial diseases. Hum Mol Genet 17:4036–4044. doi:10.1093/hmg/ddn306. PubMed DOI PMC
Kaukonen J, Juselius JK, Tiranti V, Kyttala A, Zeviani M, Comi GP, Keranen S, Peltonen L, Suomalainen A. 2000. Role of adenine nucleotide translocator 1 in mtDNA maintenance. Science 289:782–785. doi:10.1126/science.289.5480.782. PubMed DOI
Schagger H, Pfeiffer K. 2000. Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J 19:1777–1783. doi:10.1093/emboj/19.8.1777. PubMed DOI PMC
Nubel E, Wittig I, Kerscher S, Brandt U, Schagger H. 2009. Two-dimensional native electrophoretic analysis of respiratory supercomplexes from Yarrowia lipolytica. Proteomics 9:2408–2418. doi:10.1002/pmic.200800632. PubMed DOI
Bultema JB, Braun HP, Boekema EJ, Kouril R. 2009. Megacomplex organization of the oxidative phosphorylation system by structural analysis of respiratory supercomplexes from potato. Biochim Biophys Acta 1787:60–67. doi:10.1016/j.bbabio.2008.10.010. PubMed DOI
Krause F, Reifschneider NH, Vocke D, Seelert H, Rexroth S, Dencher NA. 2004. “Respirasome”-like supercomplexes in green leaf mitochondria of spinach. J Biol Chem 279:48369–48375. doi:10.1074/jbc.M406085200. PubMed DOI
Blaza JN, Serreli R, Jones AJ, Mohammed K, Hirst J. 2014. Kinetic evidence against partitioning of the ubiquinone pool and the catalytic relevance of respiratory-chain supercomplexes. Proc Natl Acad Sci U S A 111:15735–15740. doi:10.1073/pnas.1413855111. PubMed DOI PMC
Chaban Y, Boekema EJ, Dudkina NV. 2014. Structures of mitochondrial oxidative phosphorylation supercomplexes and mechanisms for their stabilisation. Biochim Biophys Acta 1837:418–426. doi:10.1016/j.bbabio.2013.10.004. PubMed DOI
Balabaskaran Nina P, Dudkina NV, Kane LA, van Eyk JE, Boekema EJ, Mather MW, Vaidya AB. 2010. Highly divergent mitochondrial ATP synthase complexes in Tetrahymena thermophila. PLoS Biol 8:e1000418. doi:10.1371/journal.pbio.1000418. PubMed DOI PMC
Balabaskaran Nina P, Morrisey JM, Ganesan SM, Ke H, Pershing AM, Mather MW, Vaidya AB. 2011. ATP synthase complex of Plasmodium falciparum: dimeric assembly in mitochondrial membranes and resistance to genetic disruption. J Biol Chem 286:41312–41322. doi:10.1074/jbc.M111.290973. PubMed DOI PMC
Perez E, Lapaille M, Degand H, Cilibrasi L, Villavicencio-Queijeiro A, Morsomme P, Gonzalez-Halphen D, Field MC, Remacle C, Baurain D, Cardol P. 2014. The mitochondrial respiratory chain of the secondary green alga Euglena gracilis shares many additional subunits with parasitic Trypanosomatidae. Mitochondrion 19:338–349. doi:10.1016/j.mito.2014.02.001. PubMed DOI
Paumard P, Vaillier J, Coulary B, Schaeffer J, Soubannier V, Mueller DM, Brethes D, di Rago JP, Velours J. 2002. The ATP synthase is involved in generating mitochondrial cristae morphology. EMBO J 21:221–230. doi:10.1093/emboj/21.3.221. PubMed DOI PMC
Detke S, Elsabrouty R. 2008. Identification of a mitochondrial ATP synthase-adenine nucleotide translocator complex in Leishmania. Acta Trop 105:16–20. doi:10.1016/j.actatropica.2007.08.008. PubMed DOI
Opperdoes FR, Coombs GH. 2007. Metabolism of Leishmania: proven and predicted. Trends Parasitol 23:149–158. doi:10.1016/j.pt.2007.02.004. PubMed DOI
Traba J, Froschauer EM, Wiesenberger G, Satrustegui J, Del Arco A. 2008. Yeast mitochondria import ATP through the calcium-dependent ATP-Mg/Pi carrier Sal1p, and are ATP consumers during aerobic growth in glucose. Mol Microbiol 69:570–585. doi:10.1111/j.1365-2958.2008.06300.x. PubMed DOI
Colasante C, Alibu VP, Kirchberger S, Tjaden J, Clayton C, Voncken F. 2006. Characterization and developmentally regulated localization of the mitochondrial carrier protein homologue MCP6 from Trypanosoma brucei. Eukaryot Cell 5:1194–1205. doi:10.1128/EC.00096-06. PubMed DOI PMC
Lawson JE, Douglas MG. 1988. Separate genes encode functionally equivalent ADP/ATP carrier proteins in Saccharomyces cerevisiae. Isolation and analysis of AAC2. J Biol Chem 263:14812–14818. PubMed
Kolarov J, Kolarova N, Nelson N. 1990. A third ADP/ATP translocator gene in yeast. J Biol Chem 265:12711–12716. PubMed
Drgon T, Sabova L, Gavurnikova G, Kolarov J. 1992. Yeast ADP/ATP carrier (AAC) proteins exhibit similar enzymatic properties but their deletion produces different phenotypes. FEBS Lett 304:277–280. doi:10.1016/0014-5793(92)80637-V. PubMed DOI
Stepien G, Torroni A, Chung AB, Hodge JA, Wallace DC. 1992. Differential expression of adenine nucleotide translocator isoforms in mammalian tissues and during muscle cell differentiation. J Biol Chem 267:14592–14597. PubMed
Echaniz-Laguna A, Chassagne M, Ceresuela J, Rouvet I, Padet S, Acquaviva C, Nataf S, Vinzio S, Bozon D, Mousson de Camaret B. 2012. Complete loss of expression of the ANT1 gene causing cardiomyopathy and myopathy. J Med Genet 49:146–150. doi:10.1136/jmedgenet-2011-100504. PubMed DOI
Palmieri L, Alberio S, Pisano I, Lodi T, Meznaric-Petrusa M, Zidar J, Santoro A, Scarcia P, Fontanesi F, Lamantea E, Ferrero I, Zeviani M. 2005. Complete loss-of-function of the heart/muscle-specific adenine nucleotide translocator is associated with mitochondrial myopathy and cardiomyopathy. Hum Mol Genet 14:3079–3088. doi:10.1093/hmg/ddi341. PubMed DOI
Esposito LA, Melov S, Panov A, Cottrell BA, Wallace DC. 1999. Mitochondrial disease in mouse results in increased oxidative stress. Proc Natl Acad Sci U S A 96:4820–4825. doi:10.1073/pnas.96.9.4820. PubMed DOI PMC
Fontanesi F, Palmieri L, Scarcia P, Lodi T, Donnini C, Limongelli A, Tiranti V, Zeviani M, Ferrero I, Viola AM. 2004. Mutations in AAC2, equivalent to human adPEO-associated ANT1 mutations, lead to defective oxidative phosphorylation in Saccharomyces cerevisiae and affect mitochondrial DNA stability. Hum Mol Genet 13:923–934. doi:10.1093/hmg/ddh108. PubMed DOI
Trypanosoma brucei TbIF1 inhibits the essential F1-ATPase in the infectious form of the parasite