Cell-based and multi-omics profiling reveals dynamic metabolic repurposing of mitochondria to drive developmental progression of Trypanosoma brucei
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
104111/Z/14/Z
Wellcome Trust - United Kingdom
PubMed
32520929
PubMed Central
PMC7307792
DOI
10.1371/journal.pbio.3000741
PII: PBIOLOGY-D-19-03519
Knihovny.cz E-zdroje
- MeSH
- adenosintrifosfát biosyntéza MeSH
- buněčná diferenciace účinky léků MeSH
- buněčné dýchání účinky léků MeSH
- buněčné linie MeSH
- elektrony MeSH
- glukosa farmakologie MeSH
- membránový potenciál mitochondrií účinky léků MeSH
- metabolické sítě a dráhy účinky léků MeSH
- metabolomika * MeSH
- mitochondriální proteiny metabolismus MeSH
- mitochondrie účinky léků metabolismus MeSH
- oxidace-redukce MeSH
- oxidoreduktasy metabolismus MeSH
- prolin metabolismus MeSH
- proteom metabolismus MeSH
- protozoální proteiny metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- rostlinné proteiny metabolismus MeSH
- signální transdukce MeSH
- transkriptom genetika MeSH
- transport elektronů účinky léků MeSH
- Trypanosoma brucei brucei účinky léků genetika růst a vývoj metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenosintrifosfát MeSH
- alternative oxidase MeSH Prohlížeč
- glukosa MeSH
- mitochondriální proteiny MeSH
- oxidoreduktasy MeSH
- prolin MeSH
- proteom MeSH
- protozoální proteiny MeSH
- reaktivní formy kyslíku MeSH
- rostlinné proteiny MeSH
Mitochondrial metabolic remodeling is a hallmark of the Trypanosoma brucei digenetic life cycle because the insect stage utilizes a cost-effective oxidative phosphorylation (OxPhos) to generate ATP, while bloodstream cells switch to aerobic glycolysis. Due to difficulties in acquiring enough parasites from the tsetse fly vector, the dynamics of the parasite's metabolic rewiring in the vector have remained obscure. Here, we took advantage of in vitro-induced differentiation to follow changes at the RNA, protein, and metabolite levels. This multi-omics and cell-based profiling showed an immediate redirection of electron flow from the cytochrome-mediated pathway to an alternative oxidase (AOX), an increase in proline consumption, elevated activity of complex II, and certain tricarboxylic acid (TCA) cycle enzymes, which led to mitochondrial membrane hyperpolarization and increased reactive oxygen species (ROS) levels. Interestingly, these ROS molecules appear to act as signaling molecules driving developmental progression because ectopic expression of catalase, a ROS scavenger, halted the in vitro-induced differentiation. Our results provide insights into the mechanisms of the parasite's mitochondrial rewiring and reinforce the emerging concept that mitochondria act as signaling organelles through release of ROS to drive cellular differentiation.
Department of Cell and Developmental Biology Biocenter University Wuerzburg Wuerzburg Germany
Faculty of Science University of South Bohemia Ceske Budejovice Czech Republic
Institute of Molecular Biology Mainz Germany
Institute of Parasitology Biology Centre Czech Academy of Sciences Ceske Budejovice Czech Republic
Zobrazit více v PubMed
Zheng J. Energy metabolism of cancer: Glycolysis versus oxidative phosphorylation (Review). Oncology letters. 2012;4(6):1151–7. Epub 2012/12/12. 10.3892/ol.2012.928 PubMed DOI PMC
Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33. Epub 2009/05/23. 10.1126/science.1160809 PubMed DOI PMC
Mills EL, Kelly B, Logan A, Costa ASH, Varma M, Bryant CE, et al. Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages. Cell. 2016;167(2):457–70 e13. Epub 2016/09/27. 10.1016/j.cell.2016.08.064 PubMed DOI PMC
Murphy MP, O'Neill LAJ. Krebs Cycle Reimagined: The Emerging Roles of Succinate and Itaconate as Signal Transducers. Cell. 2018;174(4):780–4. Epub 2018/08/11. 10.1016/j.cell.2018.07.030 . PubMed DOI
Tretter L, Patocs A, Chinopoulos C. Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis. Biochim Biophys Acta. 2016;1857(8):1086–101. Epub 2016/03/15. 10.1016/j.bbabio.2016.03.012 . PubMed DOI
Hamanaka RB, Chandel NS. Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem Sci. 2010;35(9):505–13. Epub 2010/05/01. 10.1016/j.tibs.2010.04.002 PubMed DOI PMC
Smith TK, Bringaud F, Nolan DP, Figueiredo LM. Metabolic reprogramming during the Trypanosoma brucei life cycle. F1000Research. 2017;6 Epub 2017/06/20. 10.12688/f1000research.10342.2 PubMed DOI PMC
Roditi I, Schumann G, Naguleswaran A. Environmental sensing by African trypanosomes. Curr Opin Microbiol. 2016;32:26–30. Epub 2016/05/01. 10.1016/j.mib.2016.04.011 . PubMed DOI
Bochud-Allemann N, Schneider A. Mitochondrial substrate level phosphorylation is essential for growth of procyclic Trypanosoma brucei. J Biol Chem. 2002;277(36):32849–54. Epub 2002/07/04. 10.1074/jbc.M205776200 [pii]. . PubMed DOI
van Hellemond JJ, Opperdoes FR, Tielens AG. The extraordinary mitochondrion and unusual citric acid cycle in Trypanosoma brucei. Biochem Soc Trans. 2005;33(Pt 5):967–71. Epub 2005/10/26. 10.1042/BST20050967 . PubMed DOI
Acestor N, Zikova A, Dalley RA, Anupama A, Panigrahi AK, Stuart KD. Trypanosoma brucei mitochondrial respiratome: composition and organization in procyclic form. Mol Cell Proteomics. 2011;10(9):M110 006908 Epub 2011/05/26. M110.006908 [pii] 10.1074/mcp.M110.006908 PubMed DOI PMC
Zikova A, Schnaufer A, Dalley RA, Panigrahi AK, Stuart KD. The F(0)F(1)-ATP synthase complex contains novel subunits and is essential for procyclic Trypanosoma brucei. PLoS Pathog. 2009;5(5):e1000436 Epub 2009/05/14. 10.1371/journal.ppat.1000436 PubMed DOI PMC
Guerra DG, Decottignies A, Bakker BM, Michels PA. The mitochondrial FAD-dependent glycerol-3-phosphate dehydrogenase of Trypanosomatidae and the glycosomal redox balance of insect stages of Trypanosoma brucei and Leishmania spp. Mol Biochem Parasitol. 2006;149(2):155–69. Epub 2006/06/30. 10.1016/j.molbiopara.2006.05.006 . PubMed DOI
Zikova A, Verner Z, Nenarokova A, Michels PAM, Lukes J. A paradigm shift: The mitoproteomes of procyclic and bloodstream Trypanosoma brucei are comparably complex. PLoS Pathog. 2017;13(12):e1006679 Epub 2017/12/22. 10.1371/journal.ppat.1006679 PubMed DOI PMC
Schnaufer A, Clark-Walker GD, Steinberg AG, Stuart K. The F1-ATP synthase complex in bloodstream stage trypanosomes has an unusual and essential function. EMBO J. 2005;24(23):4029–40. Epub 2005/11/05. 7600862 [pii] 10.1038/sj.emboj.7600862 PubMed DOI PMC
Subrtova K, Panicucci B, Zikova A. ATPaseTb2, a Unique Membrane-bound FoF1-ATPase Component, Is Essential in Bloodstream and Dyskinetoplastic Trypanosomes. PLoS Pathog. 2015;11(2):e1004660 Epub 2015/02/26. 10.1371/journal.ppat.1004660 . PubMed DOI PMC
Matthews KR. 25 years of African trypanosome research: From description to molecular dissection and new drug discovery. Mol Biochem Parasitol. 2015;200(1–2):30–40. Epub 2015/03/05. 10.1016/j.molbiopara.2015.01.006 PubMed DOI PMC
Naguleswaran A, Doiron N, Roditi I. RNA-Seq analysis validates the use of culture-derived Trypanosoma brucei and provides new markers for mammalian and insect life-cycle stages. BMC Genomics. 2018;19(1):227 Epub 2018/04/03. 10.1186/s12864-018-4600-6 PubMed DOI PMC
Sharma R, Gluenz E, Peacock L, Gibson W, Gull K, Carrington M. The heart of darkness: growth and form of Trypanosoma brucei in the tsetse fly. Trends Parasitol. 2009;25(11):517–24. Epub 2009/09/15. 10.1016/j.pt.2009.08.001 PubMed DOI PMC
Dean S, Marchetti R, Kirk K, Matthews KR. A surface transporter family conveys the trypanosome differentiation signal. Nature. 2009;459(7244):213–7. Epub 2009/05/16. 10.1038/nature07997 PubMed DOI PMC
Rose C, Casas-Sanchez A, Dyer NA, Solorzano C, Beckett AJ, Middlehurst B, et al. Trypanosoma brucei colonizes the tsetse gut via an immature peritrophic matrix in the proventriculus. Nature microbiology. 2020. Epub 2020/04/22. 10.1038/s41564-020-0707-z . PubMed DOI
Rotureau B, Van Den Abbeele J. Through the dark continent: African trypanosome development in the tsetse fly. Frontiers in cellular and infection microbiology. 2013;3:53 Epub 2013/09/26. 10.3389/fcimb.2013.00053 PubMed DOI PMC
Dyer NA, Rose C, Ejeh NO, Acosta-Serrano A. Flying tryps: survival and maturation of trypanosomes in tsetse flies. Trends Parasitol. 2013;29(4):188–96. Epub 2013/03/20. 10.1016/j.pt.2013.02.003 . PubMed DOI
Rotureau B, Subota I, Buisson J, Bastin P. A new asymmetric division contributes to the continuous production of infective trypanosomes in the tsetse fly. Development. 2012;139(10):1842–50. Epub 2012/04/12. 10.1242/dev.072611 . PubMed DOI
Kolev NG, Ramey-Butler K, Cross GAM, Ullu E, Tschudi C. Developmental Progression to Infectivity in Trypanosoma brucei Triggered by an RNA-Binding Protein. Science. 2012;338(6112):1352–3. 10.1126/science.1229641 ISI:000311991200069. PubMed DOI PMC
Christiano R, Kolev NG, Shi H, Ullu E, Walther TC, Tschudi C. The proteome and transcriptome of the infectious metacyclic form of Trypanosoma brucei define quiescent cells primed for mammalian invasion. Mol Microbiol. 2017;106(1):74–92. Epub 2017/07/26. 10.1111/mmi.13754 PubMed DOI PMC
Vassella E, Den Abbeele JV, Butikofer P, Renggli CK, Furger A, Brun R, et al. A major surface glycoprotein of trypanosoma brucei is expressed transiently during development and can be regulated post-transcriptionally by glycerol or hypoxia. Genes Dev. 2000;14(5):615–26. Epub 2000/03/16. PubMed PMC
Urwyler S, Studer E, Renggli CK, Roditi I. A family of stage-specific alanine-rich proteins on the surface of epimastigote forms of Trypanosoma brucei. Mol Microbiol. 2007;63(1):218–28. Epub 2007/01/19. 10.1111/j.1365-2958.2006.05492.x . PubMed DOI
Knusel S, Roditi I. Insights into the regulation of GPEET procyclin during differentiation from early to late procyclic forms of Trypanosoma brucei. Mol Biochem Parasitol. 2013;191(2):66–74. Epub 2013/10/01. 10.1016/j.molbiopara.2013.09.004 . PubMed DOI
Vigneron A, O'Neill MB, Weiss BL, Savage AF, Campbell OC, Kamhawi S, et al. Single-cell RNA sequencing of Trypanosoma brucei from tsetse salivary glands unveils metacyclogenesis and identifies potential transmission blocking antigens. Proc Natl Acad Sci U S A. 2020;117(5):2613–21. Epub 2020/01/23. 10.1073/pnas.1914423117 PubMed DOI PMC
Shi H, Butler K, Tschudi C. A single-point mutation in the RNA-binding protein 6 generates Trypanosoma brucei metacyclics that are able to progress to bloodstream forms in vitro. Mol Biochem Parasitol. 2018;224:50–6. Epub 2018/07/29. 10.1016/j.molbiopara.2018.07.011 PubMed DOI PMC
Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics. 2014;13(9):2513–26. Epub 2014/06/20. 10.1074/mcp.M113.031591 PubMed DOI PMC
Huang G, Vercesi AE, Docampo R. Essential regulation of cell bioenergetics in Trypanosoma brucei by the mitochondrial calcium uniporter. Nature communications. 2013;4:2865 Epub 2013/12/07. 10.1038/ncomms3865 PubMed DOI PMC
Huang G, Docampo R. The Mitochondrial Ca(2+) Uniporter Complex (MCUC) of Trypanosoma brucei Is a Hetero-oligomer That Contains Novel Subunits Essential for Ca(2+) Uptake. mBio. 2018;9(5). Epub 2018/09/20. 10.1128/mBio.01700-18 PubMed DOI PMC
Gnipova A, Panicucci B, Paris Z, Verner Z, Horvath A, Lukes J, et al. Disparate phenotypic effects from the knockdown of various Trypanosoma brucei cytochrome c oxidase subunits. Mol Biochem Parasitol. 2012;184(2):90–8. Epub 2012/05/10. 10.1016/j.molbiopara.2012.04.013 . PubMed DOI
Horvath A, Horakova E, Dunajcikova P, Verner Z, Pravdova E, Slapetova I, et al. Downregulation of the nuclear-encoded subunits of the complexes III and IV disrupts their respective complexes but not complex I in procyclic Trypanosoma brucei. Mol Microbiol. 2005;58(1):116–30. Epub 2005/09/17. MMI4813 [pii] 10.1111/j.1365-2958.2005.04813.x . PubMed DOI
Chinopoulos C, Adam-Vizi V. Mitochondria as ATP consumers in cellular pathology. Biochim Biophys Acta. 2010;1802(1):221–7. Epub 2009/09/01. 10.1016/j.bbadis.2009.08.008 . PubMed DOI
Campanella M, Casswell E, Chong S, Farah Z, Wieckowski MR, Abramov AY, et al. Regulation of mitochondrial structure and function by the F1Fo-ATPase inhibitor protein, IF1. Cell Metab. 2008;8(1):13–25. Epub 2008/07/02. S1550-4131(08)00172-1 [pii] 10.1016/j.cmet.2008.06.001 . PubMed DOI
Panicucci B, Gahura O, Zikova A. Trypanosoma brucei TbIF1 inhibits the essential F1-ATPase in the infectious form of the parasite. PLoS Negl Trop Dis. 2017;11(4):e0005552 Epub 2017/04/18. 10.1371/journal.pntd.0005552 PubMed DOI PMC
Verner Z, Cermakova P, Skodova I, Kriegova E, Horvath A, Lukes J. Complex I (NADH:ubiquinone oxidoreductase) is active in but non-essential for procyclic Trypanosoma brucei. Mol Biochem Parasitol. 2011;175(2):196–200. Epub 2010/11/16. S0166-6851(10)00280-X [pii] 10.1016/j.molbiopara.2010.11.003 . PubMed DOI
Opperdoes FR, Michels PA. Complex I of Trypanosomatidae: does it exist? Trends Parasitol. 2008;24(7):310–7. Epub 2008/06/07. S1471-4922(08)00135-9 [pii] 10.1016/j.pt.2008.03.013 . PubMed DOI
Allemann N, Schneider A. ATP production in isolated mitochondria of procyclic Trypanosoma brucei. Mol Biochem Parasitol. 2000;111(1):87–94. Epub 2000/11/23. S0166-6851(00)00303-0 [pii]. 10.1016/s0166-6851(00)00303-0 . PubMed DOI
Chen Q, Kirk K, Shurubor YI, Zhao D, Arreguin AJ, Shahi I, et al. Rewiring of Glutamine Metabolism Is a Bioenergetic Adaptation of Human Cells with Mitochondrial DNA Mutations. Cell Metab. 2018;27(5):1007–25 e5. Epub 2018/04/17. 10.1016/j.cmet.2018.03.002 PubMed DOI PMC
Li FJ, Xu ZS, Soo AD, Lun ZR, He CY. ATP-driven and AMPK-independent autophagy in an early branching eukaryotic parasite. Autophagy. 2017;13(4):715–29. Epub 2017/01/26. 10.1080/15548627.2017.1280218 PubMed DOI PMC
Romero I, Tellez J, Romanha AJ, Steindel M, Grisard EC. Upregulation of Cysteine Synthase and Cystathionine beta-Synthase Contributes to Leishmania braziliensis Survival under Oxidative Stress. Antimicrob Agents Chemother. 2015;59(8):4770–81. Epub 2015/06/03. 10.1128/AAC.04880-14 PubMed DOI PMC
Kraeva N, Horakova E, Kostygov AY, Koreny L, Butenko A, Yurchenko V, et al. Catalase in Leishmaniinae: With me or against me? Infect Genet Evol. 2017;50:121–7. Epub 2016/07/07. 10.1016/j.meegid.2016.06.054 . PubMed DOI
Vassella E, Probst M, Schneider A, Studer E, Renggli CK, Roditi I. Expression of a major surface protein of Trypanosoma brucei insect forms is controlled by the activity of mitochondrial enzymes. Mol Biol Cell. 2004;15(9):3986–93. Epub 2004/06/18. 10.1091/mbc.e04-04-0341 PubMed DOI PMC
Savage AF, Kolev NG, Franklin JB, Vigneron A, Aksoy S, Tschudi C. Transcriptome Profiling of Trypanosoma brucei Development in the Tsetse Fly Vector Glossina morsitans. PLoS ONE. 2016;11(12):e0168877 Epub 2016/12/22. 10.1371/journal.pone.0168877 PubMed DOI PMC
Lamour N, Riviere L, Coustou V, Coombs GH, Barrett MP, Bringaud F. Proline metabolism in procyclic Trypanosoma brucei is down-regulated in the presence of glucose. J Biol Chem. 2005;280(12):11902–10. Epub 2005/01/25. 10.1074/jbc.M414274200 . PubMed DOI
Mantilla BS, Marchese L, Casas-Sanchez A, Dyer NA, Ejeh N, Biran M, et al. Proline Metabolism is Essential for Trypanosoma brucei brucei Survival in the Tsetse Vector. PLoS Pathog. 2017;13(1):e1006158 Epub 2017/01/24. 10.1371/journal.ppat.1006158 PubMed DOI PMC
Durieux PO, Schutz P, Brun R, Kohler P. Alterations in Krebs cycle enzyme activities and carbohydrate catabolism in two strains of Trypanosoma brucei during in vitro differentiation of their bloodstream to procyclic stages. Mol Biochem Parasitol. 1991;45(1):19–27. Epub 1991/03/01. 10.1016/0166-6851(91)90023-y . PubMed DOI
van Weelden SW, van Hellemond JJ, Opperdoes FR, Tielens AG. New functions for parts of the Krebs cycle in procyclic Trypanosoma brucei, a cycle not operating as a cycle. J Biol Chem. 2005;280(13):12451–60. Epub 2005/01/14. 10.1074/jbc.M412447200 . PubMed DOI
Wargnies M, Bertiaux E, Cahoreau E, Ziebart N, Crouzols A, Morand P, et al. Gluconeogenesis is essential for trypanosome development in the tsetse fly vector. PLoS Pathog. 2018;14(12):e1007502 Epub 2018/12/18. 10.1371/journal.ppat.1007502 PubMed DOI PMC
Bringaud F, Riviere L, Coustou V. Energy metabolism of trypanosomatids: adaptation to available carbon sources. Mol Biochem Parasitol. 2006;149(1):1–9. Epub 2006/05/10. S0166-6851(06)00115-0 [pii] 10.1016/j.molbiopara.2006.03.017 . PubMed DOI
Tielens AG, van Hellemond JJ. Surprising variety in energy metabolism within Trypanosomatidae. Trends Parasitol. 2009;25(10):482–90. Epub 2009/09/15. 10.1016/j.pt.2009.07.007 . PubMed DOI
Fendt SM, Bell EL, Keibler MA, Olenchock BA, Mayers JR, Wasylenko TM, et al. Reductive glutamine metabolism is a function of the alpha-ketoglutarate to citrate ratio in cells. Nature communications. 2013;4:2236 Epub 2013/08/01. 10.1038/ncomms3236 PubMed DOI PMC
Riviere L, Moreau P, Allmann S, Hahn M, Biran M, Plazolles N, et al. Acetate produced in the mitochondrion is the essential precursor for lipid biosynthesis in procyclic trypanosomes. Proc Natl Acad Sci U S A. 2009;106(31):12694–9. Epub 2009/07/25. 10.1073/pnas.0903355106 PubMed DOI PMC
Saas J, Ziegelbauer K, von Haeseler A, Fast B, Boshart M. A developmentally regulated aconitase related to iron-regulatory protein-1 is localized in the cytoplasm and in the mitochondrion of Trypanosoma brucei. J Biol Chem. 2000;275(4):2745–55. Epub 2000/01/25. 10.1074/jbc.275.4.2745 . PubMed DOI
Wang X, Inaoka DK, Shiba T, Balogun EO, Allmann S, Watanabe YI, et al. Expression, purification, and crystallization of type 1 isocitrate dehydrogenase from Trypanosoma brucei brucei. Protein Expr Purif. 2017;138:56–62. Epub 2017/06/24. 10.1016/j.pep.2017.06.011 . PubMed DOI
Bahat A, Gross A. Mitochondrial plasticity in cell fate regulation. J Biol Chem. 2019;294(38):13852–63. Epub 2019/08/07. 10.1074/jbc.REV118.000828 PubMed DOI PMC
Han S, Chandel NS. There Is No Smoke without Mitochondria. Am J Respir Cell Mol Biol. 2019;60(5):489–91. Epub 2018/11/02. 10.1165/rcmb.2018-0348ED PubMed DOI PMC
Dogan SA, Cerutti R, Beninca C, Brea-Calvo G, Jacobs HT, Zeviani M, et al. Perturbed Redox Signaling Exacerbates a Mitochondrial Myopathy. Cell Metab. 2018. Epub 2018/08/21. 10.1016/j.cmet.2018.07.012 . PubMed DOI PMC
Martinez-Reyes I, Diebold LP, Kong H, Schieber M, Huang H, Hensley CT, et al. TCA Cycle and Mitochondrial Membrane Potential Are Necessary for Diverse Biological Functions. Mol Cell. 2016;61(2):199–209. Epub 2016/01/05. 10.1016/j.molcel.2015.12.002 PubMed DOI PMC
Pryde KR, Hirst J. Superoxide is produced by the reduced flavin in mitochondrial complex I: a single, unified mechanism that applies during both forward and reverse electron transfer. J Biol Chem. 2011;286(20):18056–65. Epub 2011/03/12. M110.186841 [pii] 10.1074/jbc.M110.186841 PubMed DOI PMC
Robb EL, Hall AR, Prime TA, Eaton S, Szibor M, Viscomi C, et al. Control of mitochondrial superoxide production by reverse electron transport at complex I. J Biol Chem. 2018;293(25):9869–79. Epub 2018/05/11. 10.1074/jbc.RA118.003647 PubMed DOI PMC
Mittra B, Cortez M, Haydock A, Ramasamy G, Myler PJ, Andrews NW. Iron uptake controls the generation of Leishmania infective forms through regulation of ROS levels. The Journal of experimental medicine. 2013;210(2):401–16. Epub 2013/02/06. 10.1084/jem.20121368 PubMed DOI PMC
Horakova E, Faktorova D, Kraeva N, Kaur B, Van Den Abbeele J, Yurchenko V, et al. Catalase compromises the development of the insect and mammalian stages of Trypanosoma brucei. FEBS J. 2020;287(5):964–77. Epub 2019/10/09. 10.1111/febs.15083 . PubMed DOI
van der Reest J, Lilla S, Zheng L, Zanivan S, Gottlieb E. Proteome-wide analysis of cysteine oxidation reveals metabolic sensitivity to redox stress. Nature communications. 2018;9(1):1581 Epub 2018/04/22. 10.1038/s41467-018-04003-3 PubMed DOI PMC
Topf U, Suppanz I, Samluk L, Wrobel L, Boser A, Sakowska P, et al. Quantitative proteomics identifies redox switches for global translation modulation by mitochondrially produced reactive oxygen species. Nature communications. 2018;9(1):324 Epub 2018/01/24. 10.1038/s41467-017-02694-8 PubMed DOI PMC
Saldivia M, Ceballos-Perez G, Bart JM, Navarro M. The AMPKalpha1 Pathway Positively Regulates the Developmental Transition from Proliferation to Quiescence in Trypanosoma brucei. Cell reports. 2016;17(3):660–70. Epub 2016/10/13. 10.1016/j.celrep.2016.09.041 PubMed DOI PMC
Szoor B, Ruberto I, Burchmore R, Matthews KR. A novel phosphatase cascade regulates differentiation in Trypanosoma brucei via a glycosomal signaling pathway. Genes Dev. 2010;24(12):1306–16. Epub 2010/06/17. 10.1101/gad.570310 PubMed DOI PMC
Wingett SW, Andrews S. FastQ Screen: A tool for multi-genome mapping and quality control. F1000Research. 2018;7:1338 Epub 2018/09/29. 10.12688/f1000research.15931.2 PubMed DOI PMC
Rappsilber J, Mann M. Analysis of the topology of protein complexes using cross-linking and mass spectrometry. CSH protocols. 2007;2007:pdb prot4594 Epub 2007/01/01. 10.1101/pdb.prot4594 . PubMed DOI
Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26(12):1367–72. Epub 2008/11/26. 10.1038/nbt.1511 . PubMed DOI
Ostlund G, Schmitt T, Forslund K, Kostler T, Messina DN, Roopra S, et al. InParanoid 7: new algorithms and tools for eukaryotic orthology analysis. Nucleic Acids Res. 2010;38(Database issue):D196–203. Epub 2009/11/07. 10.1093/nar/gkp931 PubMed DOI PMC
Wirtz E, Leal S, Ochatt C, Cross GA. A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei. Mol Biochem Parasitol. 1999;99(1):89–101. Epub 1999/04/24. S016668519900002X [pii]. 10.1016/s0166-6851(99)00002-x . PubMed DOI
Panigrahi AK, Zikova A, Dalley RA, Acestor N, Ogata Y, Anupama A, et al. Mitochondrial complexes in Trypanosoma brucei: a novel complex and a unique oxidoreductase complex. Mol Cell Proteomics. 2008;7(3):534–45. Epub 2007/12/13. M700430-MCP200 [pii] 10.1074/mcp.M700430-MCP200 . PubMed DOI
Gahura O, Subrtova K, Vachova H, Panicucci B, Fearnley IM, Harbour ME, et al. The F1 -ATPase from Trypanosoma brucei is elaborated by three copies of an additional p18-subunit. FEBS J. 2018;285(3):614–28. Epub 2017/12/17. 10.1111/febs.14364 . PubMed DOI
Gnipova A, Subrtova K, Panicucci B, Horvath A, Lukes J, Zikova A. The ADP/ATP carrier and its relationship to OXPHOS in an ancestral protist, Trypanosoma brucei. Eukaryot Cell. 2015. Epub 2015/01/27. 10.1128/EC.00238-14 . PubMed DOI PMC
Koreny L, Sobotka R, Kovarova J, Gnipova A, Flegontov P, Horvath A, et al. Aerobic kinetoplastid flagellate Phytomonas does not require heme for viability. Proc Natl Acad Sci U S A. 2012. Epub 2012/02/23. 10.1073/pnas.1201089109 . PubMed DOI PMC
Kovarova J, Nagar R, Faria J, Ferguson MAJ, Barrett MP, Horn D. Gluconeogenesis using glycerol as a substrate in bloodstream-form Trypanosoma brucei. PLoS Pathog. 2018;14(12):e1007475 Epub 2018/12/28. 10.1371/journal.ppat.1007475 PubMed DOI PMC
Creek DJ, Mazet M, Achcar F, Anderson J, Kim DH, Kamour R, et al. Probing the metabolic network in bloodstream-form Trypanosoma brucei using untargeted metabolomics with stable isotope labelled glucose. PLoS Pathog. 2015;11(3):e1004689 Epub 2015/03/17. 10.1371/journal.ppat.1004689 PubMed DOI PMC
Redesigned and reversed: architectural and functional oddities of the trypanosomal ATP synthase