β-CASP proteins removing RNA polymerase from DNA: when a torpedo is needed to shoot a sitting duck
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
34551438
PubMed Central
PMC8501993
DOI
10.1093/nar/gkab803
PII: 6374178
Knihovny.cz E-zdroje
- MeSH
- Archaea genetika MeSH
- Bacteria genetika MeSH
- DNA řízené RNA-polymerasy metabolismus MeSH
- DNA metabolismus MeSH
- Eukaryota genetika MeSH
- exoribonukleasy metabolismus MeSH
- genetická transkripce MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- 5'-exoribonuclease MeSH Prohlížeč
- DNA řízené RNA-polymerasy MeSH
- DNA MeSH
- exoribonukleasy MeSH
During the first step of gene expression, RNA polymerase (RNAP) engages DNA to transcribe RNA, forming highly stable complexes. These complexes need to be dissociated at the end of transcription units or when RNAP stalls during elongation and becomes an obstacle ('sitting duck') to further transcription or replication. In this review, we first outline the mechanisms involved in these processes. Then, we explore in detail the torpedo mechanism whereby a 5'-3' RNA exonuclease (torpedo) latches itself onto the 5' end of RNA protruding from RNAP, degrades it and upon contact with RNAP, induces dissociation of the complex. This mechanism, originally described in Eukaryotes and executed by Xrn-type 5'-3' exonucleases, was recently found in Bacteria and Archaea, mediated by β-CASP family exonucleases. We discuss the mechanistic aspects of this process across the three kingdoms of life and conclude that 5'-3' exoribonucleases (β-CASP and Xrn families) involved in the ancient torpedo mechanism have emerged at least twice during evolution.
Zobrazit více v PubMed
Barvík I., Rejman D., Panova N., Šanderová H., Krásný L.. Non-canonical transcription initiation: the expanding universe of transcription initiating substrates. FEMS Microbiol. Rev. 2017; 41:131–138. PubMed
Edenberg E.R., Downey M., Toczyski D. Polymerase stalling during replication, transcription and translation. Curr. Biol. 2014; 24:445–452. PubMed
Shearwin K.E., Callen B.P., Egan J.B.. Transcriptional interference - a crash course. Trends Genet. 2005; 21:339–345. PubMed PMC
García-Muse T., Aguilera A.. Transcription-replication conflicts: how they occur and how they are resolved. Nat. Rev. Mol. Cell Biol. 2016; 17:553–563. PubMed
Merrikh H., Zhang Y., Grossman A.D., Wang J.D.. Replication-transcription conflicts in bacteria. Nat. Rev. Microbiol. 2012; 10:449–458. PubMed PMC
Gómez-González B., Aguilera A.. Transcription-mediated replication hindrance: a major driver of genome instability. Genes Dev. 2019; 33:1008–1026. PubMed PMC
Kang W., Ha K.S., Uhm H., Park K., Lee J.Y., Hohng S., Kang C.. Transcription reinitiation by recycling RNA polymerase that diffuses on DNA after releasing terminated RNA. Nat. Commun. 2020; 11:450. PubMed PMC
Nudler E., Avetissova E., Markovtsov V., Goldfarb A.. Transcription processivity: protein-DNA interactions holding together the elongation complex. Science. 1996; 273:211–217. PubMed
Wilson K.S., Von Hippel P.H. Stability of Escherichia coli transcription complexes near an intrinsic terminator. J. Mol. Biol. 1994; 244:36–51. PubMed
Chen H., Shiroguchi K., Ge H., Xie X.S.. Genome-wide study of mRNA degradation and transcript elongation in Escherichia coli. Mol. Syst. Biol. 2015; 11:781. PubMed PMC
Larson M.H., Mooney R.A., Peters J.M., Windgassen T., Nayak D., Gross C.A., Block S.M., Greenleaf W.J., Landick R., Weissman J.S.. A pause sequence enriched at translation start sites drives transcription dynamics in vivo. Science. 2014; 344:1042–1047. PubMed PMC
Saba J., Chua X.Y., Mishanina T. V., Nayak D., Windgassen T.A., Mooney R.A., Landick R.. The elemental mechanism of transcriptional pausing. Elife. 2019; 8:e40981. PubMed PMC
Perdue S.A., Roberts J.W.. A backtrack-inducing sequence is an essential component of Escherichia coli σ70-dependent promoter-proximal pausing. Mol. Microbiol. 2010; 78:636–650. PubMed PMC
Imashimizu M., Takahashi H., Oshima T., McIntosh C., Bubunenko M., Court D.L., Kashlev M.. Visualizing translocation dynamics and nascent transcript errors in paused RNA polymerases in vivo. Genome Biol. 2015; 16:98. PubMed PMC
Lass-Napiorkowska A., Heyduk T.. Real-time observation of backtracking by bacterial RNA polymerase. Biochemistry. 2016; 55:647–658. PubMed PMC
Dutta D., Shatalin K., Epshtein V., Gottesman M.E., Nudler E.. Linking RNA polymerase backtracking to genome instability in E. coli. Cell. 2011; 146:533–543. PubMed PMC
Churchman L.S., Weissman J.S.. Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature. 2011; 469:368–373. PubMed PMC
Walter W., Kireeva M.L., Studitsky V.M., Kashlev M.. Bacterial polymerase and yeast polymerase II use similar mechanisms for transcription through nucleosomes. J. Biol. Chem. 2003; 278:36148–36156. PubMed
Nudler E. RNA polymerase backtracking in gene regulation and genome instability. Cell. 2012; 149:1438–1445. PubMed PMC
Lisica A., Engel C., Jahnel M., Roldán É., Galburt E.A., Cramer P., Grill S.W.. Mechanisms of backtrack recovery by RNA polymerases i and II. Proc. Natl. Acad. Sci. U.S.A. 2016; 113:2946–2951. PubMed PMC
Depken M., Galburt E.A., Grill S.W.. The origin of short transcriptional pauses. Biophys. J. 2009; 96:2189–2193. PubMed PMC
Galburt E.A., Grill S.W., Wiedmann A., Lubkowska L., Choy J., Nogales E., Kashlev M., Bustamante C.. Backtracking determines the force sensitivity of RNAP II in a factor-dependent manner. Nature. 2007; 446:820–823. PubMed
Lange U., Hausner W.. Transcriptional fidelity and proofreading in Archaea and implications for the mechanism of TFS-induced RNA cleavage. Mol. Microbiol. 2004; 52:1133–1143. PubMed
Archambault J., Lacroute F., Ruet A., Friesen J.D.. Genetic interaction between transcription elongation factor TFIIS and RNA polymerase II. Mol. Cell. Biol. 1992; 12:4142–4152. PubMed PMC
Jeon C.J., Agarwal K.. Fidelity of RNA polymerase II transcription controlled by elongation factor TFIIS. Proc. Natl. Acad. Sci. USA. 1996; 93:13677–13682. PubMed PMC
Kuhn C.D., Geiger S.R., Baumli S., Gartmann M., Gerber J., Jennebach S., Mielke T., Tschochner H., Beckmann R., Cramer P.. Functional Architecture of RNA Polymerase I. Cell. 2007; 131:1260–1272. PubMed
Ruan W., Lehmann E., Thomm M., Kostrewa D., Cramer P.. Evolution of two modes of intrinsic RNA polymerase transcript cleavage. J. Biol. Chem. 2011; 286:18701. PubMed PMC
Borukhov S., Polyakov A., Nikiforov V., Goldfarb A.. GreA protein: a transcription elongation factor from Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 1992; 89:8899–8902. PubMed PMC
Fernández-Coll L., Potrykus K., Cashel M., Balsalobre C.. Mutational analysis of Escherichia coli GreA protein reveals new functional activity independent of antipause and lethal when overexpressed. Sci. Rep. 2020; 10:16074. PubMed PMC
Abdelkareem M., Saint-André C., Takacs M., Papai G., Crucifix C., Guo X., Ortiz J., Weixlbaumer A.. Structural basis of transcription: RNA polymerase backtracking and its reactivation. Mol. Cell. 2019; 75:298–309. PubMed PMC
Riaz-Bradley A., James K., Yuzenkova Y.. High intrinsic hydrolytic activity of cyanobacterial RNA polymerase compensates for the absence of transcription proofreading factors. Nucleic Acids Res. 2019; 48:1341–1352. PubMed PMC
Stevenson-Jones F., Woodgate J., Castro-Roa D., Zenkin N.. Ribosome reactivates transcription by physically pushing RNA polymerase out of transcription arrest. Proc. Natl. Acad. Sci. U.S.A. 2020; 117:8462–8467. PubMed PMC
Epshtein V., Nudler E.. Cooperation between RNA polymerase molecules in transcription elongation. Science. 2003; 300:801–805. PubMed
Epshtein V., Toulmé F., Rachid Rahmouni A., Borukhov S., Nudler E.. Transcription through the roadblocks: The role of RNA polymerase cooperation. EMBO J. 2003; 22:4719–4727. PubMed PMC
Šiková M., Wiedermannová J., Převorovský M., Barvík I., Sudzinová P., Kofroňová O., Benada O., Šanderová H., Condon C., Krásný L.. The torpedo effect in Bacillus subtilis: RN ase J1 resolves stalled transcription complexes. EMBO J. 2020; 39:e102500. PubMed PMC
Le T.T., Yang Y., Tan C., Suhanovsky M.M., Fulbright R.M., Inman J.T., Li M., Lee J., Perelman S., Roberts J.W.et al. .. Mfd dynamically regulates transcription via a release and catch-up mechanism. Cell. 2018; 172:344–357. PubMed PMC
Roberts J.W. Mechanisms of bacterial transcription termination. J. Mol. Biol. 2019; 431:4030–4039. PubMed
Kang J.Y., Llewellyn E., Chen J., Olinares P.D.B., Brewer J., Chait B.T., Campbell E.A., Darst S.A.. Structural basis for transcription complex 1 disruption by the mfd translocase. Elife. 2021; 10:e62117. PubMed PMC
Hawkins M., Dimude J.U., Howard J.A.L., Smith A.J., Dillingham M.S., Savery N.J., Rudolph C.J., Mcglynn P.. Direct removal of RNA polymerase barriers to replication by accessory replicative helicases. Nucleic Acids Res. 2019; 47:5100–5113. PubMed PMC
Wiedermannová J., Sudzinová P., Kovaľ T., Rabatinová A., Šanderová H., Ramaniuk O., Rittich Š., Dohnálek J., Fu Z., Halada P.et al. .. Characterization of HelD, an interacting partner of RNA polymerase from Bacillus subtilis. Nucleic Acids Res. 2014; 42:5151–5163. PubMed PMC
Sukhodolets M. V., Cabrera J.E., Zhi H., Jin Ding Jun. RapA, a bacterial homolog of SWI2/SNF2, stimulates RNA polymerase recycling in transcription. Genes Dev. 2001; 15:3330–3341. PubMed PMC
Porrua O., Boudvillain M., Libri D. Transcription termination: variations on common themes. Trends Genet. 2016; 32:508–522. PubMed
Ho H.N., van Oijen A.M., Ghodke H.. Single-molecule imaging reveals molecular coupling between transcription and DNA repair machinery in live cells. Nat. Commun. 2020; 11:1478. PubMed PMC
Windbichler N., Von Pelchrzim F., Mayer O., Csaszar E., Schroeder R.. Isolation of small RNA-binding proteins from E. coli: Evidence for frequent interaction of RNAs with RNA polymerase. RNA Biol. 2008; 5:30–40. PubMed
Walker J.E., Luyties O., Santangelo T.J.. Factor-dependent archaeal transcription termination. Proc. Natl. Acad. Sci. U.S.A. 2017; 114:E6767–E6773. PubMed PMC
Moreno-del Álamo M., Carrasco B., Torres R., Alonso J.C.. Bacillus subtilis PcrA helicase removes trafficking barriers. Cells. 2021; 10:935. PubMed PMC
Gwynn E.J., Smith A.J., Guy C.P., Savery N.J., McGlynn P., Dillingham M.S.. The conserved C-terminus of the PcrA/UvrD helicase interacts directly with RNA polymerase. PLoS One. 2013; 8:e78141. PubMed PMC
Epshtein V., Kamarthapu V., McGary K., Svetlov V., Ueberheide B., Proshkin S., Mironov A., Nudler E.. UvrD facilitates DNA repair by pulling RNA polymerase backwards. Nature. 2014; 505:372–377. PubMed PMC
Kouba T., Koval’ T., Sudzinová P., Pospíšil J., Brezovská B., Hnilicová J., Šanderová H., Janoušková M., Šiková M., Halada P.et al. .. Mycobacterial HelD is a nucleic acids-clearing factor for RNA polymerase. Nat. Commun. 2020; 11:6419. PubMed PMC
Newing T.P., Oakley A.J., Miller M., Dawson C.J., Brown S.H.J., Bouwer J.C., Tolun G., Lewis P.J.. Molecular basis for RNA polymerase-dependent transcription complex recycling by the helicase-like motor protein HelD. Nat. Commun. 2020; 11:6420. PubMed PMC
Pei H.H., Hilal T., Chen Z.A., Huang Y.H., Gao Y., Said N., Loll B., Rappsilber J., Belogurov G.A., Artsimovitch I.et al. .. The δ subunit and NTPase HelD institute a two-pronged mechanism for RNA polymerase recycling. Nat. Commun. 2020; 11:6418. PubMed PMC
Sukhodolets M. V., Jin D.J.. RapA, a novel RNA polymerase-associated protein, is a bacterial homolog of SWI2*SNF2. J. Biol. Chem. 1998; 273:7018–7023. PubMed
Liu B., Zuo Y., Steitz T.A., Yang W.. Structural basis for transcription reactivation by RapA. Proc. Natl. Acad. Sci. U.S.A. 2015; 112:2006–2010. PubMed PMC
Tufegdzic Vidakovic A., Harreman M., Dirac-Svejstrup A.B., Boeing S., Roy A., Encheva V., Neumann M., Wilson M., Snijders A.P., Svejstrup J.Q. Analysis of RNA polymerase II ubiquitylation and proteasomal degradation. Methods. 2019; 159–160:146–156. PubMed PMC
Wilson M.D., Harreman M., Svejstrup J.Q.. Ubiquitylation and degradation of elongating RNA polymerase II: The last resort. Biochim. Biophys. Acta - Gene Regul. Mech. 2013; 1829:151–157. PubMed
Lommel L., Bucheli M.E., Sweder K.S.. Transcription-coupled repair in yeast is independent from ubiquitylation of RNA pol II: implications for Cockayne's syndrome. Proc. Natl. Acad. Sci. 2000; 97:9088–9092. PubMed PMC
Somesh B.P., Reid J., Liu W.F., Søgaard T.M.M., Erdjument-Bromage H., Tempst P., Svejstrup J.Q.. Multiple mechanisms confining RNA polymerase II ubiquitylation to polymerases undergoing transcriptional arrest. Cell. 2005; 121:913–923. PubMed
Somesh B.P., Sigurdsson S., Saeki H., Erdjument-Bromage H., Tempst P., Svejstrup J.Q.. Communication between distant sites in RNA polymerase II through ubiquitylation factors and the polymerase CTD. Cell. 2007; 129:57–68. PubMed
Nouspikel T. Multiple roles of ubiquitination in the control of nucleotide excision repair. Mech. Ageing Dev. 2011; 132:355–365. PubMed
Nakazawa Y., Hara Y., Oka Y., Yamanaka K., Luijsterburg M.S., Correspondence T.O.. Ubiquitination of DNA damage-stalled RNAPII promotes transcription-coupled repair. Cell. 2020; 180:1228–1244. PubMed
Colin J., Candelli T., Porrua O., Boulay J., Zhu C., Lacroute F., Steinmetz L.M., Libri D. Roadblock termination by reb1p restricts cryptic and readthrough transcription. Mol. Cell. 2014; 56:667–680. PubMed
Candelli T., Challal D., Briand J., Boulay J., Porrua O., Colin J., Libri D. High-resolution transcription maps reveal the widespread impact of roadblock termination in yeast. EMBO J. 2018; 37:e97490. PubMed PMC
Peters J.M., Vangeloff A.D., Landick R.. Bacterial transcription terminators: The RNA 3′-end chronicles. J. Mol. Biol. 2011; 412:793–813. PubMed PMC
Zhu A.Q., Von Hippel P.H. Rho-dependent termination within the trp t’ terminator. I. Effects of Rho loading and template sequence. Biochemistry. 1998; 37:11202–11214. PubMed
Peters J.M., Mooney R.A., Kuan P.F., Rowland J.L., Keleş S., Landick R.. Rho directs widespread termination of intragenic and stable RNA transcription. Proc. Natl. Acad. Sci. U.S.A. 2009; 106:15406–15411. PubMed PMC
Mitra P., Ghosh G., Hafeezunnisa M., Sen R.. Rho protein: roles and mechanisms. Annu. Rev. Microbiol. 2017; 71:687–709. PubMed
Hao Z., Epshtein V., Kim K.H., Proshkin S., Svetlov V., Kamarthapu V., Bharati B., Mironov A., Walz T., Nudler E.. Pre-termination transcription complex: structure and function. Mol. Cell. 2021; 81:281–292. PubMed PMC
Peters J.M., Mooney R.A., Grass J.A., Jessen E.D., Tran F., Landick R.. Rho and NusG suppress pervasive antisense transcription in Escherichia coli. Genes Dev. 2012; 26:2621–2633. PubMed PMC
Kotlajich M. V., Hron D.R., Boudreau B.A., Sun Z., Lyubchenko Y.L., Landick R.. Bridged filaments of histone-like nucleoid structuring protein pause RNA polymerase and aid termination in bacteria. Elife. 2015; 2015:e04970. PubMed PMC
Said N., Hilal T., Sunday N.D., Khatri A., Bürger J., Mielke T., Belogurov G.A., Loll B., Sen R., Artsimovitch I.et al. .. Steps toward translocation-independent RNA polymerase inactivation by terminator ATPase p. Science. 2021; 371:6524. PubMed PMC
Nicolas P., Mäder U., Dervyn E., Rochat T., Leduc A., Pigeonneau N., Bidnenko E., Marchadier E., Hoebeke M., Aymerich S.et al. .. Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science. 2012; 335:1103–1106. PubMed
Ray-Soni A., Bellecourt M.J., Landick R.. Mechanisms of bacterial transcription termination: all good things must end. Annu. Rev. Biochem. 2016; 85:319–347. PubMed
Nielsen S., Yuzenkova Y., Zenkin N.. Mechanism of eukaryotic RNA polymerase III transcription termination. Science. 2013; 340:1577–1580. PubMed PMC
Zenkin N. Ancient RNA stems that terminate transcription. RNA Biol. 2014; 11:295–297. PubMed PMC
Rivosecchi J., Larochelle M., Teste C., Grenier F., Malapert A., Ricci E.P., Bernard P., Bachand F., Vanoosthuyse V.. Senataxin homologue Sen1 is required for efficient termination of RNA polymerase III transcription. EMBO J. 2019; 38:e101955. PubMed PMC
Eaton J.D., Davidson L., Bauer D.L.V., Natsume T., Kanemaki M.T., West S.. Xrn2 accelerates termination by RNA polymerase II, which is underpinned by CPSF73 activity. Genes Dev. 2018; 32:127–139. PubMed PMC
Kim M., Krogan N.J., Vasiljeva L., Rando O.J., Nedea E., Greenblatt J.F., Buratowski S.. The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II. Nature. 2004; 432:517–522. PubMed
Teixeira A., Tahiri-Alaoui A., West S., Thomas B., Ramadass A., Martianov I., Dye M., James W., Proudfoot N.J., Akoulitchev A.. Autocatalytic RNA cleavage in the human β-globin pre-mRNA promotes transcription termination. Nature. 2004; 432:526–530. PubMed
West S., Gromak N., Proudfoot N.J.. Human 5′ → 3′ exonuclease Xrn2 promotes transcription termination at co-transcriptional cleavage sites. Nature. 2004; 432:522–525. PubMed
Cortazar M.A., Sheridan R.M., Erickson B., Fong N., Glover-Cutter K., Brannan K., Bentley D.L.. Control of RNA Pol II speed by PNUTS-PP1 and Spt5 dephosphorylation facilitates termination by a “Sitting Duck Torpedo” mechanism. Mol. Cell. 2019; 76:896–908. PubMed PMC
Kecman T., Kuś K., Heo D.H., Duckett K., Birot A., Liberatori S., Mohammed S., Geis-Asteggiante L., Robinson C. V., Vasiljeva L.. Elongation/termination factor exchange mediated by PP1 phosphatase orchestrates transcription termination. Cell Rep. 2018; 25:259–269. PubMed PMC
Eaton J.D., Francis L., Davidson L., West S.. A unified allosteric/torpedo mechanism for transcriptional termination on human protein-coding genes. Genes Dev. 2020; 34:132–145. PubMed PMC
Rondon A.G., Mischo H.E., Proudfoot N.J.. Terminating transcription in yeast: whether to be a ‘nerd’ or a ‘rat. Nat. Struct. Mol. Biol. 2008; 15:775–776. PubMed
Yang X.-C., Sullivan K.D., Marzluff W.F., Dominski Z.. Studies of the 5′ exonuclease and endonuclease activities of CPSF-73 in histone Pre-mRNA processing. Mol. Cell. Biol. 2009; 29:31–42. PubMed PMC
Yang X., Sun Y., Aik W.S., Marzluff W.F., Tong L., Dominski Z.. Studies with recombinant U7 snRNP demonstrate that CPSF73 is both an endonuclease and a 5′–3′ exonuclease. RNA. 2020; 26:1345–1359. PubMed PMC
Baillat D., Hakimi M.A., Näär A.M., Shilatifard A., Cooch N., Shiekhattar R.. Integrator, a multiprotein mediator of small nuclear RNA processing, associates with the C-terminal repeat of RNA polymerase II. Cell. 2005; 123:265–276. PubMed
Fong N., Brannan K., Erickson B., Kim H., Cortazar M.A., Sheridan R.M., Nguyen T., Karp S., Bentley D.L.. Effects of transcription elongation rate and Xrn2 exonuclease activity on RNA polymerase II termination suggest widespread kinetic competition. Mol. Cell. 2015; 60:256–267. PubMed PMC
Dominski Z., Yang X.C., Marzluff W.F.. The polyadenylation factor CPSF-73 is involved in histone-pre-mRNA processing. Cell. 2005; 123:37–48. PubMed
Chodchoy N., Pandey N.B., Marzluff W.F.. An intact histone 3’-processing site is required for transcription termination in a mouse histone H2a gene. Mol. Cell. Biol. 1991; 11:497–509. PubMed PMC
Tatomer D.C., Elrod N.D., Liang D., Xiao M.S., Jiang J.Z., Jonathan M., Huang K.L., Wagner E.J., Cherry S., Wilusz J.E.. The Integrator complex cleaves nascent mRNAs to attenuate transcription. Genes Dev. 2019; 33:1525–1538. PubMed PMC
Skaar J.R., Ferris A.L., Wu X., Saraf A., Khanna K.K., Florens L., Washburn M.P., Hughes S.H., Pagano M.. The Integrator complex controls the termination of transcription at diverse classes of gene targets. Cell Res. 2015; 25:288–305. PubMed PMC
Gómez-Orte E., Sáenz-Narciso B., Zheleva A., Ezcurra B., de Toro M., López R., Gastaca I., Nilsen H., Sacristán M.P., Schnabel R.et al. .. Disruption of the Caenorhabditis elegans Integrator complex triggers a non-conventional transcriptional mechanism beyond snRNA genes. PLoS Genet. 2019; 15:e1007981. PubMed PMC
Maier L.K., Marchfelder A.. It's all about the T: transcription termination in Archaea. Biochem. Soc. Trans. 2019; 47:461–468. PubMed
Sanders T.J., Wenck B.R., Selan J.N., Barker M.P., Trimmer S.A., Walker J.E., Santangelo T.J.. FttA is a CPSF73 homologue that terminates transcription in Archaea. Nat. Microbiol. 2020; 5:545–553. PubMed PMC
Yue L., Li J., Zhang B., Qi L., Li Z., Zhao F., Li L., Zheng X., Dong X.. The conserved ribonuclease aCPSF1 triggers genome-wide transcription termination of Archaea via a 3’-end cleavage mode. Nucleic Acids Res. 2020; 48:9589–9605. PubMed PMC
Wagschal A., Rousset E., Basavarajaiah P., Contreras X., Harwig A., Laurent-Chabalier S., Nakamura M., Chen X., Zhang K., Meziane O.et al. .. Microprocessor, Setx, Xrn2, and Rrp6 co-operate to induce premature termination of transcription by RNAPII. Cell. 2012; 150:1147–1157. PubMed PMC
Brannan K., Kim H., Erickson B., Glover-Cutter K., Kim S., Fong N., Kiemele L., Hansen K., Davis R., Lykke-Andersen J.et al. .. MRNA decapping factors and the exonuclease Xrn2 function in widespread premature termination of RNA polymerase II transcription. Mol. Cell. 2012; 46:311–324. PubMed PMC
Hara R., Selby C.P., Liu M., Price D.H., Sancar A.. Human transcription release factor 2 dissociates RNA polymerases I and II stalled at a cyclobutane thymine dimer. J. Biol. Chem. 1999; 274:24779–24786. PubMed
Liu M., Xie Z., Price D.H.. A human RNA polymerase II transcription termination factor is a SWI2/SNF2 family member. J. Biol. Chem. 1998; 273:25541–25544. PubMed
Lai F., Damle S.S., Ling K.K., Rigo F.. Directed RNase H cleavage of nascent transcripts causes transcription termination. Mol. Cell. 2020; 77:1032–1043. PubMed
Lee J.S., Mendell J.T.. Antisense-mediated transcript knockdown triggers premature transcription termination. Mol. Cell. 2020; 77:1044–1054. PubMed PMC
Haimovich G., Medina D.A., Causse S.Z., Garber M., Millán-Zambrano G., Barkai O., Chávez S., Pérez-Ortín J.E., Darzacq X., Choder M.. Gene expression is circular: Factors for mRNA degradation also foster mRNA synthesis. Cell. 2013; 153:1000. PubMed
Luo W., Johnson A.W., Bentley D.L.. The role of Rat1 in coupling mRNA 3′-end processing to transcription termination: Implications for a unified allosteric-torpedo model. Genes Dev. 2006; 20:954–965. PubMed PMC
Luciano D.J., Vasilyev N., Richards J., Serganov A., Belasco J.G.. A novel RNA phosphorylation state enables 5′ end-dependent degradation in Escherichia coli. Mol. Cell. 2017; 67:44–54. PubMed PMC
Richards J., Liu Q., Pellegrini O., Celesnik H., Yao S., Bechhofer D.H., Condon C., Belasco J.G.. An RNA pyrophosphohydrolase triggers 5′-exonucleolytic degradation of mRNA in Bacillus subtilis. Mol. Cell. 2011; 43:940–949. PubMed PMC
Frindert J., Zhang Y., Nübel G., Kahloon M., Kolmar L., Hotz-Wagenblatt A., Burhenne J., Haefeli W.E., Jäschke A.. Identification, biosynthesis, and decapping of NAD-capped RNAs in B. subtilis. Cell Rep. 2018; 24:1890–1901. PubMed
Jones C.I., Zabolotskaya M.V., Newbury S.F.. The 5′ → 3′ exoribonuclease XRN1/Pacman and its functions in cellular processes and development. Wiley Interdiscip. Rev. RNA. 2012; 3:455–468. PubMed
Hudeček O., Benoni R., Reyes-Gutierrez P.E., Culka M., Šanderová H., Hubálek M., Rulíšek L., Cvačka J., Krásný L., Cahová H.. Dinucleoside polyphosphates act as 5′-RNA caps in bacteria. Nat. Commun. 2020; 11:1052. PubMed PMC
Wang J., Alvin Chew B.L., Lai Y., Dong H., Xu L., Balamkundu S., Cai W.M., Cui L., Liu C.F., Fu X.-Y.et al. .. Quantifying the RNA cap epitranscriptome reveals novel caps in cellular and viral RNA. Nucleic Acids Res. 2019; 47:e130. PubMed PMC
Bird J.G., Zhang Y., Tian Y., Panova N., Barvík I., Greene L., Liu M., Buckley B., Krásný L., Lee J.K.et al. .. The mechanism of RNA 5′ capping with NAD+, NADH and desphospho-CoA. Nature. 2016; 535:444–447. PubMed PMC
Julius C., Yuzenkova Y.. Bacterial RNA polymerase caps RNA with various cofactors and cell wall precursors. Nucleic Acids Res. 2017; 45:8282–8290. PubMed PMC
Sharma S., Grudzien-Nogalska E., Hamilton K., Jiao X., Yang J., Tong L., Kiledjian M.. Mammalian Nudix proteins cleave nucleotide metabolite caps on RNAs. Nucleic Acids Res. 2020; 48:6788–6798. PubMed PMC
Song M.G., Bail S., Kiledjian M.. Multiple Nudix family proteins possess mRNA decapping activity. RNA. 2013; 19:390–399. PubMed PMC
Mathy N., Bénard L., Pellegrini O., Daou R., Wen T., Condon C.. 5′-to-3′ Exoribonuclease activity in bacteria: role of RNase J1 in rRNA maturation and 5′ stability of mRNA. Cell. 2007; 129:681–692. PubMed
Nagarajan V.K., Jones C.I., Newbury S.F., Green P.J.. XRN 5′→3′ exoribonucleases: structure, mechanisms and functions. Biochim. Biophys. Acta - Gene Regul. Mech. 2013; 1829:590–603. PubMed PMC
Mathy N., Hébert A., Mervelet P., Bénard L., Dorléans A., Li De La, Sierra-Gallay I., Noirot P., Putzer H., Condon C.. Bacillus subtilis ribonucleases J1 and J2 form a complex with altered enzyme behaviour. Mol. Microbiol. 2010; 75:489–498. PubMed
Dominski Z., Carpousis A.J., Clouet-d’Orval B.. Emergence of the β-CASP ribonucleases: highly conserved and ubiquitous metallo-enzymes involved in messenger RNA maturation and degradation. Biochim. Biophys. Acta - Gene Regul. Mech. 2013; 1829:532–551. PubMed
Wu Y., Albrecht T.R., Baillat D., Wagner E.J., Tong L.. Molecular basis for the interaction between Integrator subunits IntS9 and IntS11 and its functional importance. Proc. Natl. Acad. Sci. U.S.A. 2017; 114:4394–4399. PubMed PMC
Callebaut I., Moshous D., Mornon J.P., De Villartay J.P.. Metallo-β-lactamase fold within nucleic acids processing enzymes: The β-CASP family. Nucleic Acids Res. 2002; 30:3592–3601. PubMed PMC
Skrajna A., Yang X.C., Bucholc K., Zhang J., Hall T.M.T., Dadlez M., Marzluff W.F., Dominski Z.. U7 snRNP is recruited to histone pre-mRNA in a FLASH-dependent manner by two separate regions of the stem-loop binding protein. RNA. 2017; 23:938–951. PubMed PMC
Marz M., Mosig A., Stadler B.M.R., Stadler P.F.. U7 snRNAs: A Computational Survey. Genomic, Proteomics Bioinforma. 2007; 5:187–195. PubMed PMC
Pedersen K., Zavialov A. V., Pavlov M.Y., Elf J., Gerdes K., Ehrenberg M.. The bacterial toxin RelE displays codon-specific cleavage of mRNAs in the ribosomal A site. Cell. 2003; 112:131–140. PubMed
Vesper O., Amitai S., Belitsky M., Byrgazov K., Kaberdina A.C., Engelberg-Kulka H., Moll I.. Selective translation of leaderless mRNAs by specialized ribosomes generated by MazF in Escherichia coli. Cell. 2011; 147:147–157. PubMed PMC
Mets T., Kasvandik S., Saarma M., Maiväli Ü., Tenson T., Kaldalu N.. Fragmentation of Escherichia coli mRNA by MazF and MqsR. Biochimie. 2019; 156:79–91. PubMed
Demo G., Rasouly A., Vasilyev N., Svetlov V., Loveland A.B., Diaz-Avalos R., Grigorieff N., Nudler E., Korostelev A.A.. Structure of RNA polymerase bound to ribosomal 30S subunit. Elife. 2017; 6:e28560. PubMed PMC
Johnson G.E., Lalanne J.-B., Peters M.L., Li G.-W.. Functionally uncoupled transcription–translation in Bacillus subtilis. Nat. 2020; 585:124–128. PubMed PMC
Callen B.P., Shearwin K.E., Egan J.B.. Transcriptional interference between convergent promoters caused by elongation over the promoter. Mol. Cell. 2004; 14:647–656. PubMed
Artsimovitch I., Landick R.. Pausing by bacterial RNA polymerase is mediated by mechanistically distinct classes of signals. Proc. Natl. Acad. Sci. U.S.A. 2000; 97:7090–7095. PubMed PMC
Skourti-Stathaki K., Proudfoot N.J., Gromak N.. Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. Mol. Cell. 2011; 42:794–805. PubMed PMC
Crossley M.P., Bocek M., Cimprich K.A.. R-Loops as cellular regulators and genomic threats. Mol. Cell. 2019; 73:398–411. PubMed PMC
Schwalb B., Michel M., Zacher B., Hauf K.F., Demel C., Tresch A., Gagneur J., Cramer P.. TT-seq maps the human transient transcriptome. Science. 2016; 352:1225–1228. PubMed
Kerppola T.K., Kane C.M.. Analysis of the signals for transcription termination by purified RNA polymerase II. Biochemistry. 1990; 29:269–278. PubMed
Bochkareva A., Yuzenkova Y., Tadigotla V.R., Zenkin N.. Factor-independent transcription pausing caused by recognition of the RNA-DNA hybrid sequence. EMBO J. 2012; 31:630–639. PubMed PMC
Újvári A., Pal M., Luse D.S.. RNA polymerase II transcription complexes may become arrested if the nascent RNA is shortened to less than 50 nucleotides. J. Biol. Chem. 2002; 277:32527–32537. PubMed
Kusuya Y., Kurokawa K., Ishikawa S., Ogasawara N., Oshima T.. Transcription factor GreA contributes to resolving promoter-proximal pausing of RNA polymerase in Bacillus subtilis cells. J. Bacteriol. 2011; 193:3090–3099. PubMed PMC
Xiang S., Cooper-Morgan A., Jiao X., Kiledjian M., Manley J.L., Tong L.. Structure and function of the 5′→3′ exoribonuclease Rat1 and its activating partner Rai1. Nat. 2009; 458:784–788. PubMed PMC
Park J., Kang M., Kim M.. Unraveling the mechanistic features of RNA polymerase II termination by the 5′–3′ exoribonuclease Rat1. Nucleic Acids Res. 2015; 43:2625–2637. PubMed PMC
Dorléans A., Li De La, Sierra-Gallay I., Piton J., Zig L., Gilet L., Putzer H., Condon C.. Molecular basis for the recognition and cleavage of RNA by the bifunctional 5′–3′ exo/endoribonuclease RNase J. Structure. 2011; 19:1252–1261. PubMed
Tollervey D. Termination by torpedo. Nature. 2004; 432:456–457. PubMed
Miki T.S., Carl S.H., Großhans H.. Two distinct transcription termination modes dictated by promoters. Genes Dev. 2017; 31:1870–1879. PubMed PMC
Pearson E.L., Moore C.L.. Dismantling promoter-driven RNA polymerase ii transcription complexes in vitro by the termination factor Rat1. J. Biol. Chem. 2013; 288:19750–19759. PubMed PMC
Lang W.H., Platt T., Reeder R.H.. Escherichia coli rho factor induces release of yeast RNA polymerase II but not polymerase I or III. Proc. Natl. Acad. Sci. U.S.A. 1998; 95:4900–4905. PubMed PMC
Epshtein V., Cardinale C.J., Ruckenstein A.E., Borukhov S., Nudler E.. An allosteric path to transcription termination. Mol. Cell. 2007; 28:991–1001. PubMed
Epshtein V., Dutta D., Wade J., Nudler E.. An allosteric mechanism of Rho-dependent transcription termination. Nature. 2010; 463:245–249. PubMed PMC
Gimpel M., Brantl S.. Dual-function sRNA encoded peptide SR1P modulates moonlighting activity of B. subtilis GapA. RNA Biol. 2016; 13:916–926. PubMed PMC
Sharwood R.E., Halpert M., Luro S., Schuster G., Stern D.B.. Chloroplast RNase J compensates for inefficient transcription termination by removal of antisense RNA. RNA. 2011; 17:2165–2176. PubMed PMC
Legen J., Kemp S., Krause K., Profanter B., Herrmann R.G., Maier R.M.. Comparative analysis of plastid transcription profiles of entire plastid chromosomes from tobacco attributed to wild-type and PEP-deficient transcription machineries. Plant J. 2002; 31:171–188. PubMed
Ji D., Manavski N., Meurer J., Zhang L., Chi W.. Regulated chloroplast transcription termination. Biochim. Biophys. Acta - Bioenerg. 2019; 1860:69–77. PubMed
Halpert M., Liveanu V., Glaser F., Schuster G.. The Arabidopsis chloroplast RNase J displays both exo- and robust endonucleolytic activities. Plant Mol. Biol. 2019; 99:17–29. PubMed
Condon C., Gilet L.. Nicholson A. The metallo-β-lactamase family of ribonucleases. Ribonucleases. Nucleic Acids and Molecular Biology. 2011; Berlin, Heidelberg: Springer; 245–267.
Liponska A., Jamalli A., Kuras R., Suay L., Garbe E., Wollman F.A., Laalami S., Putzer H.. Tracking the elusive 5′ exonuclease activity of Chlamydomonas reinhardtii RNase J. Plant Mol. Biol. 2018; 96:641–653. PubMed
Nishida Y., Ishikawa H., Baba S., Nakagawa N., Kuramitsu S., Masui R.. Crystal structure of an archaeal cleavage and polyadenylation specificity factor subunit from Pyrococcus horikoshii. Proteins Struct. Funct. Bioinforma. 2010; 78:2395–2398. PubMed
Mir-Montazeri B., Ammelburg M., Forouzan D., Lupas A.N., Hartmann M.D.. Crystal structure of a dimeric archaeal cleavage and polyadenylation specificity factor. J. Struct. Biol. 2011; 173:191–195. PubMed
Zheng X., Feng N., Li D., Dong X., Li J. New molecular insights into an archaeal RNase J reveal a conserved processive exoribonucleolysis mechanism of the RNase J family. Mol. Microbiol. 2017; 106:351–366. PubMed
Jinek M., Coyle S.M., Doudna J.A.. Coupled 5′ nucleotide recognition and processivity in Xrn1-mediated mRNA decay. Mol. Cell. 2011; 41:600–608. PubMed PMC
Svetlov V., Nudler E.. Towards the unified principles of transcription termination. EMBO J. 2020; 39:e104112. PubMed PMC
Ghodge S. V., Raushel F.M.. Discovery of a previously unrecognized ribonuclease from Escherichia coli that hydrolyzes 5′-phosphorylated fragments of RNA. Biochemistry. 2015; 54:2911–2918. PubMed
Jain C. RNase AM, a 5′ to 3′ exonuclease, matures the 5′ end of all three ribosomal RNAs in E. coli. Nucleic Acids Res. 2020; 48:5616–5623. PubMed PMC
Britton R.A., Wen T., Schaefer L., Pellegrini O., Uicker W.C., Mathy N., Tobin C., Daou R., Szyk J., Condon C.. Maturation of the 5′ end of Bacillus subtilis 16S rRNA by the essential ribonuclease YkqC/RNase J1. Mol. Microbiol. 2007; 63:127–138. PubMed
DiChiara J.M., Liu B., Figaro S., Condon C., Bechhofer D.H.. Mapping of internal monophosphate 5′ ends of Bacillus subtilis messenger RNAs and ribosomal RNAs in wild-type and ribonuclease-mutant strains. Nucleic Acids Res. 2016; 44:3373–3389. PubMed PMC
Redko Y., Condon C.. Maturation of 23S rRNA in Bacillus subtilis in the absence of mini-III. J. Bacteriol. 2010; 192:356–359. PubMed PMC
Henras A.K., Plisson-Chastang C., O′Donohue M.-F., Chakraborty A., Gleizes P.-E.. An overview of pre-ribosomal RNA processing in eukaryotes. Wiley Interdiscip. Rev. RNA. 2015; 6:225. PubMed PMC
Dominski Z. Nucleases of the metallo-β-lactamase family and their role in DNA and RNA metabolism. Crit. Rev. Biochem. Mol. Biol. 2007; 42:67–93. PubMed
Marzluff W.F., Koreski K.P.. Birth and death of histone mRNAs. Trends Genet. 2017; 33:745–759. PubMed PMC
Sun Y., Zhang Y., Aik W.S., Yang X.C., Marzluff W.F., Walz T., Dominski Z., Tong L.. Structure of an active human histone pre-mRNA 3′-end processing machinery. Science. 2020; 367:700–703. PubMed PMC
Baejen C., Andreani J., Torkler P., Battaglia S., Schwalb B., Lidschreiber M., Maier K.C., Boltendahl A., Rus P., Esslinger S.et al. .. Genome-wide analysis of RNA polymerase II termination at protein-coding genes. Mol. Cell. 2017; 66:38–49. PubMed
Johnson A.W. Rat1p and Xrn1p are functionally interchangeable exoribonucleases that are restricted to and required in the nucleus and cytoplasm, respectively. Mol. Cell. Biol. 1997; 17:6122–6130. PubMed PMC
Roberts J.W. Termination factor for RNA synthesis. Nature. 1969; 224:1168–1174. PubMed
What the Hel: recent advances in understanding rifampicin resistance in bacteria