Strong in vitro anticancer activity of copper(ii) and zinc(ii) complexes containing naturally occurring lapachol: cellular effects in ovarian A2780 cells
Status Publisher Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39371430
PubMed Central
PMC11451940
DOI
10.1039/d4md00543k
PII: d4md00543k
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Copper(ii) and zinc(ii) complexes with lapachol (HLap) of the composition [M(Lap)2(N-N)] and [Cu(Lap)(H2O)(terpy)]NO3 (4), where M = Cu (1-3) or Zn (for 5-7), and N-N stands for bathophenanthroline (1 and 5), 5-methyl-1,10-phenanthroline (2 and 6), 2,2'-bipyridine (3), 2,2';6',2''-terpyridine (terpy, 4) and 1,10-phenanthroline (7), were synthesised and characterised. Complexes 1-5 revealed strong in vitro antiproliferative effects against A2780, A2780R, MCF-7, PC-3, A549 and HOS human cancer lines and MRC-5 normal cells, with IC50 values above 0.5 μM, and reasonable selectivity index (SI), with SI > 3.8 for IC50(MRC-5)/IC50(A2780). Considerable time-dependent cytotoxicity in A2780 cells was observed for complexes 6 and 7, with IC50 > 50 μM (24 h) to ca. 4 μM (48 h). Cellular effects of complexes 1, 5 and 7 in A2780 cells were investigated by flow cytometry revealing that the most cytotoxic complexes (1 and 5) significantly perturbed the mitochondrial membrane potential and the interaction with mitochondrial metabolism followed by the triggering of the intracellular pathway of apoptosis.
Dipartimento di Chimica e Chimica Industriale University of Pisa Via G Moruzzi 13 1 56124 Pisa Italy
Zobrazit více v PubMed
Hussain H. Krohn K. Uddin Ahmad V. Miana G. A. Green I. R. ARKIVOC. 2007;ii:145–171. doi: 10.3998/ark.5550190.0008.204. DOI
Fiorito S. Epifano F. Bruyere C. Mathieu V. Kiss R. Genovese S. Bioorg. Med. Chem. Lett. 2014;24:454–457. doi: 10.1016/j.bmcl.2013.12.049. https://dx.doi.org/10.1016/j.bmcl.2013.12.049 PubMed DOI
Atolani O. Olatunji G. A. Adeyemi O. S. Arab. J. Sci. Eng. 2021;46:5307–5312. doi: 10.1007/s13369-020-05113-1. https://dx.doi.org/10.1007/s13369-020-05113-1 DOI
Marques L. B. Ottoni F. M. Pinto M. C. X. Ribeiro J. M. de Sousa F. S. Weinlich R. Cruz de Victo N. Kisitu J. Holzer A.-K. Leist M. Alves R. J. Souza-Fagundes E. M. Toxicol. In Vitro. 2020;65:104772. doi: 10.1016/j.tiv.2020.104772. https://dx.doi.org/10.1016/j.tiv.2020.104772 PubMed DOI
de Almeida E. R. Open Nat. Prod. J. 2009;2:42–47. doi: 10.2174/1874848100902010042. DOI
Epifano F. Genovese S. Fiorito S. Mathieu V. Kiss R. Phytochem. Rev. 2014;13:37–49. doi: 10.1007/s11101-013-9289-1. https://dx.doi.org/10.1007/s11101-013-9289-1 DOI
Todorov L. Kostova I. Molecules. 2023;28:1959. doi: 10.3390/molecules28041959. https://dx.doi.org/10.3390/molecules28041959 PubMed DOI PMC
Kandioller W. Balsano E. Meier S. M. Jungwirth U. Göschl S. Roller A. Jakupec M. A. Berger W. Keppler B. K. Hartinger C. G. Chem. Commun. 2013;49:3348–3350. doi: 10.1039/C3CC40432C. https://dx.doi.org/10.1039/c3cc40432c PubMed DOI
Bergamo A. Sava G. Dalton Trans. 2011;40:9055–9068. doi: 10.1039/C0DT01816C. https://dx.doi.org/10.1039/c0dt01816c PubMed DOI
Barbosa M. I. F. Correa R. S. de Olveira K. M. Rodriguez C. Ellena J. Nascimento O. R. Rocha V. P. C. Nonato F. R. Macedo T. S. Barbosa-Filho J. M. Soares M. B. P. Batista A. A. J. Inorg. Biochem. 2014;136:33–39. doi: 10.1016/j.jinorgbio.2014.03.009. https://dx.doi.org/10.1016/j.jinorgbio.2014.03.009 PubMed DOI
Tabrizi L. Chiniforoshan H. J. Organomet. Chem. 2016;822:211–220. doi: 10.1016/j.jorganchem.2016.09.003. https://dx.doi.org/10.1016/j.jorganchem.2016.09.003 DOI
Rinaldi-Neto F. Ribeiro A. B. Ferreira N. H. Squarisi I. S. Oloveira K. M. Orenha R. P. Parreira R. L. T. Batista A. A. Tavares D. C. J. Inorg. Biochem. 2021;222:111497. doi: 10.1016/j.jinorgbio.2021.111497. https://dx.doi.org/10.1016/j.jinorgbio.2021.111497 PubMed DOI
Zaidi S. Hassan Md. I. Islam A. Ahmad F. Cell. Mol. Life Sci. 2014;71:229–255. doi: 10.1007/s00018-013-1341-1. https://dx.doi.org/10.1007/s00018-013-1341-1 PubMed DOI PMC
Hanke G. Mulo P. Plant, Cell Environ. 2013;36:1071–1084. doi: 10.1111/pce.12046. https://dx.doi.org/10.1111/pce.12046 PubMed DOI
Schilter D. Camara J. M. Huynh M. T. Hammes-Schiffer S. Rauchfuss T. B. Chem. Rev. 2016;116:8693–8749. doi: 10.1021/acs.chemrev.6b00180. https://dx.doi.org/10.1021/acs.chemrev.6b00180 PubMed DOI PMC
Kaim W., Schwederski B. and Klein A., Bioinorganic chemistry: inorganic elements in the chemistry of life: an introduction and guide, Wiley, 2013
Oliveira T. D. Cabeza N. A. da Silva G. T. S. T. Ruiz A. L. T. G. Caires A. R. L. da Silveira R. G. Rodrigues D. C. M. Fiorucci A. R. dos Anjos A. Transition Met. Chem. 2021;46:111–120. doi: 10.1007/s11243-020-00427-3. https://dx.doi.org/10.1007/s11243-020-00427-3 DOI
Molina R. H. Kalinina I. Esparza P. Sokolov M. Platas J. G. Braun A. E. Sacau E. P. Polyhedron. 2007;26:4860–4864. doi: 10.1016/j.poly.2007.06.022. https://dx.doi.org/10.1016/j.poly.2007.06.022 DOI
Martínez M. A. de Jimenez M. C. L. Castellano E. E. Piro O. E. Aymonino P. J. J. Coord. Chem. 2003;56:803–816. doi: 10.1080/0095897031000113959. https://dx.doi.org/10.1080/0095897031000113959 DOI
Tabrizi L. Talaie F. Chiniforoshan H. J. Biomol. Struct. Dyn. 2017;35:3330–3341. doi: 10.1080/07391102.2016.1254118. https://dx.doi.org/10.1080/07391102.2016.1254118 PubMed DOI
Pouchert C. J., The Aldrich Library of Infrared Spectra, Aldrich Chemical Company Press, Milwaukee, USA, 3rd edn, 1981, pp. 1–1850
The Cambridge Crystallographic Data Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ, United Kingdom
Trávníček Z. Vančo J. Hošek J. Buchtík R. Dvořák Z. Chem. Cent. J. 2012;6:160. doi: 10.1186/1752-153X-6-160. https://dx.doi.org/10.1186/1752-153X-6-160 PubMed DOI PMC
Vančo J. Trávníček Z. Hošek J. Malina T. Dvořák Z. Int. J. Mol. Sci. 2021;22:7626. doi: 10.3390/ijms22147626. https://dx.doi.org/10.3390/ijms22147626 PubMed DOI PMC
Vančo J. Trávníček Z. Hošek J. Malina T. Dvořák Z. J. Inorg. Biochem. 2022;226:111639. doi: 10.1016/j.jinorgbio.2021.111639. https://dx.doi.org/10.1016/j.jinorgbio.2021.111639 PubMed DOI
Foo J. B. Ng L. S. Lim J. H. Tan P. X. Lor Y. Z. Ee Loo J. S. Low M. L. Chan L. C. Beh C. Y. Leong S. W. Yazan L. S. Tor Y. S. How C. W. RSC Adv. 2019;9:18359. doi: 10.1039/C9RA03130H. https://dx.doi.org/10.1039/c9ra03130h PubMed DOI PMC
Hurtado M. Sankpal U. T. Kaba A. Mahammad S. Chhabra J. Brown D. T. Gurung R. K. Holder A. A. Vishwanatha J. K. Basha R. Cell. Physiol. Biochem. 2018;51:1894–1907. doi: 10.1159/000495715. https://dx.doi.org/10.1159/000495715 PubMed DOI PMC
Choroba K. Machura B. Erfurt K. Casimiro A. R. Cordeiro S. Baptista P. V. Fernandes A. R. J. Med. Chem. 2024;67:5813–5836. doi: 10.1021/acs.jmedchem.4c00119. https://dx.doi.org/10.1021/acs.jmedchem.4c00119 PubMed DOI PMC
Molinaro C. Martoriati A. Pelinski L. Cailliau K. Cancers. 2020;12:2863. doi: 10.3390/cancers12102863. https://dx.doi.org/10.3390/cancers12102863 PubMed DOI PMC
Guo W. Zou Y.-B. Jiang Y.-G. Wang R.-W. Zhao Y.-P. Ma Z. Tumor Biol. 2011;32:801–808. doi: 10.1007/s13277-011-0182-5. https://dx.doi.org/10.1007/s13277-011-0182-5 PubMed DOI
Wang J. Zhao H. Xu Z. Cheng X. Cancer Biol. Med. 2020;17:612–625. doi: 10.20892/j.issn.2095-3941.2020.0106. PubMed DOI PMC
Kocdor H. Ates H. Aydin S. Cehreli R. Soyarat F. Kemanli P. Harmanci D. Cengiz H. Kocdor M. A. Drug Des., Dev. Ther. 2015;9:3899–3909. doi: 10.2147/DDDT.S87662. https://dx.doi.org/10.2147/DDDT.S87662 PubMed DOI PMC
Hubner Ch. Haase H. Redox Biol. 2021;41:101916. doi: 10.1016/j.redox.2021.101916. https://dx.doi.org/10.1016/j.redox.2021.101916 PubMed DOI PMC
APEX3 Software Suite, © 2016 Bruker AXS Inc., 5465 East Cheryl Parkway, Madison, WI 53711
Sheldrick G. M. Acta Crystallogr., Sect. A: Found. Adv. 2015;71:3–8. doi: 10.1107/S2053273314026370. https://dx.doi.org/10.1107/S2053273314026370 PubMed DOI PMC
Macrae C. F. Bruno I. J. Chisholm J. A. Edgington P. R. McCabe P. Pidcock E. Rodriguez-Monge L. Taylor R. van de Streek J. Wood P. A. J. Appl. Crystallogr. 2008;41:466–470. doi: 10.1107/S0021889807067908. https://dx.doi.org/10.1107/S0021889807067908 DOI