Strong in vitro anticancer activity of copper(ii) and zinc(ii) complexes containing naturally occurring lapachol: cellular effects in ovarian A2780 cells

. 2024 Sep 09 ; 15 (12) : 4180-92. [epub] 20240909

Status Publisher Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39371430

Copper(ii) and zinc(ii) complexes with lapachol (HLap) of the composition [M(Lap)2(N-N)] and [Cu(Lap)(H2O)(terpy)]NO3 (4), where M = Cu (1-3) or Zn (for 5-7), and N-N stands for bathophenanthroline (1 and 5), 5-methyl-1,10-phenanthroline (2 and 6), 2,2'-bipyridine (3), 2,2';6',2''-terpyridine (terpy, 4) and 1,10-phenanthroline (7), were synthesised and characterised. Complexes 1-5 revealed strong in vitro antiproliferative effects against A2780, A2780R, MCF-7, PC-3, A549 and HOS human cancer lines and MRC-5 normal cells, with IC50 values above 0.5 μM, and reasonable selectivity index (SI), with SI > 3.8 for IC50(MRC-5)/IC50(A2780). Considerable time-dependent cytotoxicity in A2780 cells was observed for complexes 6 and 7, with IC50 > 50 μM (24 h) to ca. 4 μM (48 h). Cellular effects of complexes 1, 5 and 7 in A2780 cells were investigated by flow cytometry revealing that the most cytotoxic complexes (1 and 5) significantly perturbed the mitochondrial membrane potential and the interaction with mitochondrial metabolism followed by the triggering of the intracellular pathway of apoptosis.

Zobrazit více v PubMed

Hussain H. Krohn K. Uddin Ahmad V. Miana G. A. Green I. R. ARKIVOC. 2007;ii:145–171. doi: 10.3998/ark.5550190.0008.204. DOI

Fiorito S. Epifano F. Bruyere C. Mathieu V. Kiss R. Genovese S. Bioorg. Med. Chem. Lett. 2014;24:454–457. doi: 10.1016/j.bmcl.2013.12.049. https://dx.doi.org/10.1016/j.bmcl.2013.12.049 PubMed DOI

Atolani O. Olatunji G. A. Adeyemi O. S. Arab. J. Sci. Eng. 2021;46:5307–5312. doi: 10.1007/s13369-020-05113-1. https://dx.doi.org/10.1007/s13369-020-05113-1 DOI

Marques L. B. Ottoni F. M. Pinto M. C. X. Ribeiro J. M. de Sousa F. S. Weinlich R. Cruz de Victo N. Kisitu J. Holzer A.-K. Leist M. Alves R. J. Souza-Fagundes E. M. Toxicol. In Vitro. 2020;65:104772. doi: 10.1016/j.tiv.2020.104772. https://dx.doi.org/10.1016/j.tiv.2020.104772 PubMed DOI

de Almeida E. R. Open Nat. Prod. J. 2009;2:42–47. doi: 10.2174/1874848100902010042. DOI

Epifano F. Genovese S. Fiorito S. Mathieu V. Kiss R. Phytochem. Rev. 2014;13:37–49. doi: 10.1007/s11101-013-9289-1. https://dx.doi.org/10.1007/s11101-013-9289-1 DOI

Todorov L. Kostova I. Molecules. 2023;28:1959. doi: 10.3390/molecules28041959. https://dx.doi.org/10.3390/molecules28041959 PubMed DOI PMC

Kandioller W. Balsano E. Meier S. M. Jungwirth U. Göschl S. Roller A. Jakupec M. A. Berger W. Keppler B. K. Hartinger C. G. Chem. Commun. 2013;49:3348–3350. doi: 10.1039/C3CC40432C. https://dx.doi.org/10.1039/c3cc40432c PubMed DOI

Bergamo A. Sava G. Dalton Trans. 2011;40:9055–9068. doi: 10.1039/C0DT01816C. https://dx.doi.org/10.1039/c0dt01816c PubMed DOI

Barbosa M. I. F. Correa R. S. de Olveira K. M. Rodriguez C. Ellena J. Nascimento O. R. Rocha V. P. C. Nonato F. R. Macedo T. S. Barbosa-Filho J. M. Soares M. B. P. Batista A. A. J. Inorg. Biochem. 2014;136:33–39. doi: 10.1016/j.jinorgbio.2014.03.009. https://dx.doi.org/10.1016/j.jinorgbio.2014.03.009 PubMed DOI

Tabrizi L. Chiniforoshan H. J. Organomet. Chem. 2016;822:211–220. doi: 10.1016/j.jorganchem.2016.09.003. https://dx.doi.org/10.1016/j.jorganchem.2016.09.003 DOI

Rinaldi-Neto F. Ribeiro A. B. Ferreira N. H. Squarisi I. S. Oloveira K. M. Orenha R. P. Parreira R. L. T. Batista A. A. Tavares D. C. J. Inorg. Biochem. 2021;222:111497. doi: 10.1016/j.jinorgbio.2021.111497. https://dx.doi.org/10.1016/j.jinorgbio.2021.111497 PubMed DOI

Zaidi S. Hassan Md. I. Islam A. Ahmad F. Cell. Mol. Life Sci. 2014;71:229–255. doi: 10.1007/s00018-013-1341-1. https://dx.doi.org/10.1007/s00018-013-1341-1 PubMed DOI PMC

Hanke G. Mulo P. Plant, Cell Environ. 2013;36:1071–1084. doi: 10.1111/pce.12046. https://dx.doi.org/10.1111/pce.12046 PubMed DOI

Schilter D. Camara J. M. Huynh M. T. Hammes-Schiffer S. Rauchfuss T. B. Chem. Rev. 2016;116:8693–8749. doi: 10.1021/acs.chemrev.6b00180. https://dx.doi.org/10.1021/acs.chemrev.6b00180 PubMed DOI PMC

Kaim W., Schwederski B. and Klein A., Bioinorganic chemistry: inorganic elements in the chemistry of life: an introduction and guide, Wiley, 2013

Oliveira T. D. Cabeza N. A. da Silva G. T. S. T. Ruiz A. L. T. G. Caires A. R. L. da Silveira R. G. Rodrigues D. C. M. Fiorucci A. R. dos Anjos A. Transition Met. Chem. 2021;46:111–120. doi: 10.1007/s11243-020-00427-3. https://dx.doi.org/10.1007/s11243-020-00427-3 DOI

Molina R. H. Kalinina I. Esparza P. Sokolov M. Platas J. G. Braun A. E. Sacau E. P. Polyhedron. 2007;26:4860–4864. doi: 10.1016/j.poly.2007.06.022. https://dx.doi.org/10.1016/j.poly.2007.06.022 DOI

Martínez M. A. de Jimenez M. C. L. Castellano E. E. Piro O. E. Aymonino P. J. J. Coord. Chem. 2003;56:803–816. doi: 10.1080/0095897031000113959. https://dx.doi.org/10.1080/0095897031000113959 DOI

Tabrizi L. Talaie F. Chiniforoshan H. J. Biomol. Struct. Dyn. 2017;35:3330–3341. doi: 10.1080/07391102.2016.1254118. https://dx.doi.org/10.1080/07391102.2016.1254118 PubMed DOI

Pouchert C. J., The Aldrich Library of Infrared Spectra, Aldrich Chemical Company Press, Milwaukee, USA, 3rd edn, 1981, pp. 1–1850

The Cambridge Crystallographic Data Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ, United Kingdom

Trávníček Z. Vančo J. Hošek J. Buchtík R. Dvořák Z. Chem. Cent. J. 2012;6:160. doi: 10.1186/1752-153X-6-160. https://dx.doi.org/10.1186/1752-153X-6-160 PubMed DOI PMC

Vančo J. Trávníček Z. Hošek J. Malina T. Dvořák Z. Int. J. Mol. Sci. 2021;22:7626. doi: 10.3390/ijms22147626. https://dx.doi.org/10.3390/ijms22147626 PubMed DOI PMC

Vančo J. Trávníček Z. Hošek J. Malina T. Dvořák Z. J. Inorg. Biochem. 2022;226:111639. doi: 10.1016/j.jinorgbio.2021.111639. https://dx.doi.org/10.1016/j.jinorgbio.2021.111639 PubMed DOI

Foo J. B. Ng L. S. Lim J. H. Tan P. X. Lor Y. Z. Ee Loo J. S. Low M. L. Chan L. C. Beh C. Y. Leong S. W. Yazan L. S. Tor Y. S. How C. W. RSC Adv. 2019;9:18359. doi: 10.1039/C9RA03130H. https://dx.doi.org/10.1039/c9ra03130h PubMed DOI PMC

Hurtado M. Sankpal U. T. Kaba A. Mahammad S. Chhabra J. Brown D. T. Gurung R. K. Holder A. A. Vishwanatha J. K. Basha R. Cell. Physiol. Biochem. 2018;51:1894–1907. doi: 10.1159/000495715. https://dx.doi.org/10.1159/000495715 PubMed DOI PMC

Choroba K. Machura B. Erfurt K. Casimiro A. R. Cordeiro S. Baptista P. V. Fernandes A. R. J. Med. Chem. 2024;67:5813–5836. doi: 10.1021/acs.jmedchem.4c00119. https://dx.doi.org/10.1021/acs.jmedchem.4c00119 PubMed DOI PMC

Molinaro C. Martoriati A. Pelinski L. Cailliau K. Cancers. 2020;12:2863. doi: 10.3390/cancers12102863. https://dx.doi.org/10.3390/cancers12102863 PubMed DOI PMC

Guo W. Zou Y.-B. Jiang Y.-G. Wang R.-W. Zhao Y.-P. Ma Z. Tumor Biol. 2011;32:801–808. doi: 10.1007/s13277-011-0182-5. https://dx.doi.org/10.1007/s13277-011-0182-5 PubMed DOI

Wang J. Zhao H. Xu Z. Cheng X. Cancer Biol. Med. 2020;17:612–625. doi: 10.20892/j.issn.2095-3941.2020.0106. PubMed DOI PMC

Kocdor H. Ates H. Aydin S. Cehreli R. Soyarat F. Kemanli P. Harmanci D. Cengiz H. Kocdor M. A. Drug Des., Dev. Ther. 2015;9:3899–3909. doi: 10.2147/DDDT.S87662. https://dx.doi.org/10.2147/DDDT.S87662 PubMed DOI PMC

Hubner Ch. Haase H. Redox Biol. 2021;41:101916. doi: 10.1016/j.redox.2021.101916. https://dx.doi.org/10.1016/j.redox.2021.101916 PubMed DOI PMC

APEX3 Software Suite, © 2016 Bruker AXS Inc., 5465 East Cheryl Parkway, Madison, WI 53711

Sheldrick G. M. Acta Crystallogr., Sect. A: Found. Adv. 2015;71:3–8. doi: 10.1107/S2053273314026370. https://dx.doi.org/10.1107/S2053273314026370 PubMed DOI PMC

Macrae C. F. Bruno I. J. Chisholm J. A. Edgington P. R. McCabe P. Pidcock E. Rodriguez-Monge L. Taylor R. van de Streek J. Wood P. A. J. Appl. Crystallogr. 2008;41:466–470. doi: 10.1107/S0021889807067908. https://dx.doi.org/10.1107/S0021889807067908 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...