Cellular responses induced by Cu(II) quinolinonato complexes in human tumor and hepatic cells

. 2012 Dec 20 ; 6 (1) : 160. [epub] 20121220

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid23256754

BACKGROUND: Inspired by the unprecedented historical success of cisplatin, one of the most important research directions in bioinorganic and medicinal chemistry is dedicated to the development of new anticancer compounds with the potential to surpass it in antitumor activity, while having lower unwanted side-effects. Therefore, a series of copper(II) mixed-ligand complexes of the type [Cu(qui)(L)]Y · xH2O (1-6), where Hqui = 2-phenyl-3-hydroxy-4(1H)-quinolinone, Y = NO3 (1, 3, 5) or BF4 (2, 4, 6), and L = 1,10-phenanthroline (phen) (1, 2), 5-methyl-1,10-phenanthroline (mphen) (3, 4) and bathophenanthroline (bphen) (5, 6), was studied for their in vitro cytotoxicity against several human cancer cell lines (A549 lung carcinoma, HeLa cervix epitheloid carcinoma, G361 melanoma cells, A2780 ovarian carcinoma, A2780cis cisplatin-resistant ovarian carcinoma, LNCaP androgen-sensitive prostate adenocarcinoma and THP-1 monocytic leukemia). RESULTS: The tested complexes displayed a stronger cytotoxic effect against all the cancer cells as compared to cisplatin. The highest cytotoxicity was found for the complexes 4 (IC50 = 0.36 ± 0.05 μM and 0.56 ± 0.15 μM), 5 (IC50 = 0.66 ± 0.07 μM and 0.73 ± 0.08 μM) and 6 (IC50 = 0.57 ± 0.11 μM and 0.70 ± 0.20 μM) against A2780, and A2780cis respectively, as compared with the values of 12.0 ± 0.8 μM and 27.0 ± 4.6 μM determined for cisplatin. Moreover, the tested complexes were much less cytotoxic to primary human hepatocytes than to the cancer cells. The complexes 5 and 6 exhibited significantly high ability to modulate secretion of the pro-inflammatory cytokines TNF-α (2873 ± 238 pg/mL and 3284 ± 139 pg/mL for 5, and 6 respectively) and IL-1β (1177 ± 128 pg/mL and 1087 ± 101 pg/mL for 5, and 6 respectively) tested on the lipopolysaccharide (LPS)-stimulated THP-1 cells as compared with the values of 1173 ± 85 pg/mL and 118.5 ± 4.8 pg/mL found for the commercially used anti-inflammatory drug prednisone. The ability of the tested complexes to interact with sulfur-containing biomolecules (cysteine and reduced glutathione) at physiological levels was proved by electrospray-ionization mass spectrometry. CONCLUSIONS: Overall positive results of the biological activity studies revealed that the presented complexes may represent good candidates for non-platinum anticancer drugs, however, we are aware of the fact that further and deeper studies mainly in relation to the elucidation of their mechanisms of antiproliferative action will be necessary.

Zobrazit více v PubMed

Alessio E. Bioinorganic Medicinal Chemistry. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2011.

Wheate NJ, Walker S, Craig GE, Oun R. The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans. 2010;39:8113–8127. doi: 10.1039/c0dt00292e. PubMed DOI

Gielen M, Tiekink ERT. Metallotherapeutic Drugs and Metal-Based Diagnostic Agents: The Use of Metals in Medicine. London: Wiley; 2005.

Frezza M, Hindo S, Chen D, Davenport A, Schmitt S, Tomco D, Dou QP. Novel metals and metal complexes as platforms for cancer therapy. Curr Pharm Des. 2010;16:1813–1825. doi: 10.2174/138161210791209009. PubMed DOI PMC

Kaim W, Rall J. Copper−A “Modern” Bioelement. Angew Chem Int Ed (English) 1996;35:43–60. doi: 10.1002/anie.199600431. DOI

Stern BR, Solioz M, Krewski D, Aggett P, Aw T-C, Baker S, Crump K, Dourson M, Haber L, Hertzberg R, Keen C, Meek B, Rudenko L, Schoney R, Slob W, Starr T. Copper and human health: Biochemistry, genetics and strategies for modeling dose-response relationships. J Tox Environ Health. 2007;10:157–222. PubMed

Gupta-Elera G, Garrett AR, Robison RA, O’Neill KL. The role of oxidative stress in prostate cancer. Eur J Cancer Prev. 2012;21:155–162. doi: 10.1097/CEJ.0b013e32834a8002. PubMed DOI

Spisni E, Valerii MC, Manerba M, Strillacci A, Polazzi E, Mattia T, Griffoni C, Tomasi V. Effect of copper on extracellular levels of key pro-inflammatory molecules in hypothalamic GN11 and primary neurons. NeuroToxicology. 2009;30:605–612. doi: 10.1016/j.neuro.2009.03.005. PubMed DOI

Persichini T, Percario Z, Mazzon E, Colasanti M, Cuzzocrea S, Musci G. Copper activates the NF-kappaB pathway in vivo. Antioxid Redox Signal. 2006;8:1897–1904. doi: 10.1089/ars.2006.8.1897. PubMed DOI

Rupesh KR, Priya AM, Sundarakrishnan B, Venkatesan R, Lakshmi BS, Jayachandran S. 2,2′-bipyridyl based copper complexes down regulate expression of pro-inflammatory cytokines and suppress MAPKs in mitogen induced peripheral blood mononuclear cells. Eur J Med Chem. 2010;45:2141–2146. doi: 10.1016/j.ejmech.2010.01.041. PubMed DOI

Kanemaru Y, Momiki Y, Matsuura S, Horikawa T, Gohda J, Inoue J, Okamoto Y, Fujita M, Otsuka M. An artificial copper complex incorporating a cell-penetrating peptide inhibits nuclear factor-κB (NF-κB) activation. Chem Pharm Bull(Tokyo) 2011;59:1555–1558. doi: 10.1248/cpb.59.1555. PubMed DOI

Jaividhya P, Dhivya R, Akbarsha MA, Palaniandavar M. Efficient DNA Cleavage Mediated by Mononuclear Mixed Ligand Copper(II) Phenolate Complexes: The Role of Co-ligand Planarity on DNA Binding and Cleavage and Anticancer Activity. J Inorg Biochem. 2012;114:94–105. PubMed

Ranford JD, Sadler PJ, Tocher DA. Cytotoxicity and antiviral activity of transition-metal salicylato complexes and crystal structure of Bis(diisopropylsalicylato)(1,10-phenanthroline)copper(II) J Chem Soc Dalton Trans. 1993. pp. 3393–3399.

Ng CH, Kong KC, Von ST, Balraj P, Jensen P, Thirthagiri E, Hamada H, Chikira M. Synthesis, characterization, DNA-binding study and anticancer properties of ternary metal(II) complexes of edda and an intercalating ligand. Dalton Trans. 2008;8:447–454. PubMed

Hussain A, Lahiri D, Ameerunisha Begum MS, Saha S, Majumdar R, Dighe RR, Chakravarty AR. Photocytotoxic Lanthanum(III) and gadolinium(III) complexes of phenanthroline bases showing light-induced DNA cleavage activity. Inorg Chem. 2010;49:4036–4045. doi: 10.1021/ic901791f. PubMed DOI

Fernandes C, Parrilha GL, Lessa JA, Santiago LJM, Kanashiro MM, Boniolo FS, Bortoluzzi AJ, Vugman NV, Herbst MH, Horn A Jr. Synthesis, crystal structure, nuclease and in vitro antitumor activities of a new mononuclear copper(II) complex containing a tripodal N3O ligand. Inorg Chim Acta. 2006;356:3167–3176.

Bales BC, Kodama T, Weledji YN, Pitié M, Meunier B, Greenberg MM. Mechanistic studies on DNA damage by minor groove binding copper-phenanthroline conjugates. Nucleic Acids Res. 2005;33:5371–5379. doi: 10.1093/nar/gki856. PubMed DOI PMC

Serment-Guerrero J, Cano-Sanchez P, Reyes-Perez E, Velazquez-Garcia F, Bravo-Gomez ME, Ruiz-Azuara L. Genotoxicity of the copper antineoplastic coordination complexes casiopeinas®. Toxicol in Vitro. 2011;25:1376–1384. doi: 10.1016/j.tiv.2011.05.008. PubMed DOI

Buchtík R, Trávníček Z, Vančo J, Herchel R, Dvořák Z. Synthesis, characterization, DNA interaction and cleavage, and in vitro cytotoxicity of copper(II) mixed-ligand complexes with 2-phenyl-3-hydroxy-4(1H)-quinolinone. Dalton Trans. 2011;40:9404–9412. doi: 10.1039/c1dt10674k. PubMed DOI

Buchtík R, Trávníček Z, Vančo J. In vitro cytotoxicity, DNA cleavage and SOD-mimic activity of copper(II) mixed-ligand quinolinonato complexes. J Inorg Biochem. 2012;116:163–171. PubMed

Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860–867. doi: 10.1038/nature01322. PubMed DOI PMC

Novotná A, Pávek P, Dvořák Z. Novel stably transfected gene reporter human hepatoma cell line for assessment of aryl hydrocarbon receptor transcriptional activity: construction and characterization. Environ Sci Technol. 2011;45:10133–10139. doi: 10.1021/es2029334. PubMed DOI

Teixeira LJ, Seabra M, Reis E, Da Cruz MTG, De Lima MCP, Pereira E, Miranda MA, Marques MPM. Cytotoxic activity of metal complexes of biogenic polyamines: Polynuclear platinum(II) chelates. J Med Chem. 2004;47:2917–2925. doi: 10.1021/jm0311238. PubMed DOI

Bubici C, Papa S, Dean K, Franzoso G. Mutual cross-talk between reactive oxygen species and nuclear factor-kappa B: molecular basis and biological significance. Oncogene. 2006;25:6731–6748. doi: 10.1038/sj.onc.1209936. PubMed DOI

Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 2011;21:103–115. doi: 10.1038/cr.2010.178. PubMed DOI PMC

Salemi G, Gueli MC, D’Amelio M, Saia V, Mangiapane P, Aridon P, Ragonese P, Lupo I. Blood levels of homocysteine, cysteine, glutathione, folic acid, and vitamin B12 in the acute phase of atherothrombotic stroke. Neurol Sci. 2009;30:361–364. doi: 10.1007/s10072-009-0090-2. PubMed DOI

Pivetta T, Isaia F, Verani G, Cannas C, Serra L, Castellano C, Demartin F, Pilla F, Manca M, Pani A. Mixed-1,10-phenanthroline-Cu(II) complexes: Synthesis, cytotoxic activity versus hematological and solid tumor cells and complex formation equilibria with glutathione. J Inorg Biochem. 2012;114:28–37. PubMed

Martinon F. Signaling by ROS drives inflammasome activation. Eur J Immunol. 2010;40:616–619. doi: 10.1002/eji.200940168. PubMed DOI

Sauter KA, Wood LJ, Wong J, Iordanov M, Magun BE. Doxorubicin and daunorubicin induce processing and release of interleukin-1β through activation of the NLRP3 inflammasome. Cancer Biol Ther. 2011;11:1008–1016. doi: 10.4161/cbt.11.12.15540. PubMed DOI PMC

Li Y, Wang L, Pappan L, Galliher-Beckley A, Shi J. IL-1beta promotes stemness and invasiveness of colon cancer cells through Zeb1 activation. Mol Cancer. 2012;11:87. doi: 10.1186/1476-4598-11-87. PubMed DOI PMC

Narayan C, Kumar A. Constitutive over expression of IL-1β, IL-6, NF-κB, and Stat3 is a potential cause of lung tumorgenesis in urethane (ethyl carbamate) induced Balb/c mice. J. 2012;11:9. doi: 10.4103/1477-3163.98965. PubMed DOI PMC

Pope LM, Reich KA, Graham DR, Sigman DS. Products of DNA Cleavage by the 1,10-Phenanthroline-Copper Complex - Inhibitors of Escherichia-Coli DNA-Polymerase-I. J Biol Chem. 1982;257:2121–2128. PubMed

Goyne TE, Sigman DS. Nuclease Activity of 1,10-Phenanthroline Copper-Ion - Chemistry of Deoxyribose Oxidation. J Am Chem Soc. 1987;109:2846–2848. doi: 10.1021/ja00243a060. DOI

Kuwabara M, Yoo C, Goyne T, Thedarahn T, Sigman DS. Nuclease Activity of 1,10-Phenanthroline Copper-Ion – Reaction with CGCGAATTCGCG and its Complexes with Netropsin and Ecorine. Biochemistry. 1986;25:7401–7408. doi: 10.1021/bi00371a023. PubMed DOI

Bencini A, Lippolis V. 1,10-Phenanthroline: a versatile building block for the construction of ligands for various purposes. Coord Chem Rev. 2010;254:2096–2180. doi: 10.1016/j.ccr.2010.04.008. DOI

Dvořák Z, Vrzal R, Maurel P, Ulrichová J. Differential effects of selected natural compounds with anti-inflammatory activity on the glucocorticoid receptor and NF-κB in HeLa cells. Chem Biol Interact. 2006;159:30–41. PubMed

TriloByte. QC-Expert 3.2™, User Manual. Pardubice, Czech Republic: TriloByte Statistical Software Ltd; 2009.

Trávníček Z, Štarha P, Vančo J, Šilha T, Hošek J, Suchý P Jr, Pražanová G. Anti-inflammatory Active Gold(I) Complexes Involving 6-Substituted-Purine Derivatives. J Med Chem. 2012;55:4568–4579. doi: 10.1021/jm201416p. PubMed DOI

Pichard-Garcia L, Gerbal-Chaloin S, Ferrini JB, Fabre JM, Maurel P. Use of long-term cultures of human hepatocytes to study cytochrome P450 gene expression. Meth Enzymol. 2002;357:311–321. PubMed

Pěnčíková K, Kollár P, Müller Závalová V, Táborská E, Urbanová J, Hošek J. Investigation of sanguinarine and chelerythrine effects on LPS-induced inflammatory gene expression in THP-1 cell line. Phytomedicine. 2012;19:890–895. doi: 10.1016/j.phymed.2012.04.001. PubMed DOI

Novikov AV, Bublyaev RA, Krasnov NV, Kozmin YP, Mirgorodskaya OA. ESI-MS studies of silver ion competitive interaction with cysteine-containing peptides and sulfur-containing amino aсids. Protein Pept Lett. 2010;17:1392–1397. doi: 10.2174/0929866511009011392. PubMed DOI

Canon F, Paté F, Meudec E, Marlin T, Cheynier V, Giuliani A, Sarni-Manchado P. Characterization, stoichiometry, and stability of salivary protein–tannin complexes by ESI-MS and ESI-MS/MS. Anal Bioanal Chem. 2009;395:2535–2545. doi: 10.1007/s00216-009-3180-3. PubMed DOI

Sandercock A, Robinson C. In: Protein Interactions. 1s. Schuck P, editor. New York: Springer; 2007. Electrospray Ionization Mass Spectrometry and the Study of Protein Complexes; pp. 447–468.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Strong in vitro anticancer activity of copper(ii) and zinc(ii) complexes containing naturally occurring lapachol: cellular effects in ovarian A2780 cells

. 2024 Sep 09 ; 15 (12) : 4180-92. [epub] 20240909

Highly Cytotoxic Copper(II) Mixed-Ligand Quinolinonato Complexes: Pharmacokinetic Properties and Interactions with Drug Metabolizing Cytochromes P450

. 2023 Apr 21 ; 15 (4) : . [epub] 20230421

Copper(II) Complexes Containing Natural Flavonoid Pomiferin Show Considerable In Vitro Cytotoxicity and Anti-inflammatory Effects

. 2021 Jul 16 ; 22 (14) : . [epub] 20210716

Gold(I)-triphenylphosphine complexes with hypoxanthine-derived ligands: in vitro evaluations of anticancer and anti-inflammatory activities

. 2014 ; 9 (9) : e107373. [epub] 20140916

Novel Schiff bases based on the quinolinone skeleton: syntheses, X-ray structures and fluorescent properties

. 2014 Sep 01 ; 19 (9) : 13509-25. [epub] 20140901

Prenylated Flavonoids from Morus alba L. Cause Inhibition of G1/S Transition in THP-1 Human Leukemia Cells and Prevent the Lipopolysaccharide-Induced Inflammatory Response

. 2013 ; 2013 () : 350519. [epub] 20130520

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...