Copper(II) Complexes Containing Natural Flavonoid Pomiferin Show Considerable In Vitro Cytotoxicity and Anti-inflammatory Effects
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
21-19060S
Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000754
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
34299247
PubMed Central
PMC8305652
DOI
10.3390/ijms22147626
PII: ijms22147626
Knihovny.cz E-resources
- Keywords
- ROS, cell cycle, copper(II) complexes, in vitro cytotoxicity, inflammation, nuclease activity, pomiferin,
- MeSH
- Anti-Inflammatory Agents pharmacology MeSH
- Apoptosis drug effects MeSH
- Benzopyrans chemistry pharmacology MeSH
- Flavonoids metabolism pharmacology MeSH
- Isoflavones chemistry pharmacology MeSH
- Coordination Complexes chemistry pharmacology MeSH
- Humans MeSH
- Copper chemistry metabolism pharmacology MeSH
- Cell Line, Tumor MeSH
- Cell Proliferation drug effects MeSH
- Antineoplastic Agents pharmacology MeSH
- Reactive Oxygen Species metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Anti-Inflammatory Agents MeSH
- Benzopyrans MeSH
- Flavonoids MeSH
- Isoflavones MeSH
- Coordination Complexes MeSH
- Copper MeSH
- pomiferin MeSH Browser
- Antineoplastic Agents MeSH
- Reactive Oxygen Species MeSH
A series of new heteroleptic copper(II) complexes of the composition [Cu(L)(bpy)]NO3·2MeOH (1), [Cu(L)(dimebpy)]NO3·2H2O (2), [Cu(L)(phen)]NO3·2MeOH (3), [Cu(L)(bphen)]NO3·MeOH (4), [Cu(L)(dppz)]NO3·MeOH (5) was prepared, where HL = 3-(3,4-dihydroxyphenyl)-5-hydroxy-8,8-dimethyl-6-(3-methylbut-2-ene-1-yl)-4H,8H-benzo[1,2-b:3,4-b']dipyran-4-one, (pomiferin) and bpy = 2,2'-bipyridine, dimebpy = 4,4'-dimethyl-2,2'-bipyridine, phen = 1,10-phenanthroline, bphen = 4,7-diphenyl-1,10-phenanthroline, and dppz = dipyrido[3,2-a:2',3'-c]phenazine. The complexes were characterized using elemental analysis, infrared and UV/Vis spectroscopies, mass spectrometry, thermal analysis and conductivity measurements. The in vitro cytotoxicity, screened against eight human cancer cell lines (breast adenocarcinoma (MCF-7), osteosarcoma (HOS), lung adenocarcinoma (A549), prostate adenocarcinoma (PC-3), ovarian carcinoma (A2780), cisplatin-resistant ovarian carcinoma (A2780R), colorectal adenocarcinoma (Caco-2) and monocytic leukemia (THP-1), revealed the complexes as effective antiproliferative agents, with the IC50 values of 2.2-13.0 μM for the best performing complexes 3 and 5. All the complexes 1-5 showed the best activity against the A2780R cells (IC50 = 2.2-6.6 μM), and moreover, the complexes demonstrated relatively low toxicity on healthy human hepatocytes, with IC50 > 100 μM. The complexes were evaluated by the Annexin V/propidium iodide apoptosis assay, induction of cell cycle modifications in A2780 cells, production of reactive oxygen species (ROS), perturbation of mitochondrial membrane potential, inhibition of apoptosis and inflammation-related signaling pathways (NF-κB/AP-1 activity, NF-κB translocation, TNF-α secretion), and tested for nuclease mimicking activity. The obtained results revealed the corresponding complexes to be effective antiproliferative and anti-inflammatory agents.
See more in PubMed
Heffeter P., Jungwirth U., Jakupec M., Hartinger C., Galanski M., Elbling L., Micksche M., Keppler B., Berger W. Resistance against novel anticancer metal compounds: Differences and similarities. Drug Resist. Updat. 2008;11:1–16. doi: 10.1016/j.drup.2008.02.002. PubMed DOI
Wang X., Guo Z. New Trends and Future Developments of Platinum-Based Antitumor Drugs. In: Alessio E., editor. Bioinorganic Medicinal Chemistry. WILEY-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany: 2011. pp. 97–149.
Wehbe M., Leung A.W.Y., Abrams M.J., Orvig C., Bally M.B. A Perspective-can copper complexes be developed as a novel class of therapeutics? Dalton Trans. 2017;46:10758–10773. doi: 10.1039/C7DT01955F. PubMed DOI
Milunović M.N.M., Palamarciuc O., Sirbu A., Shova S., Dumitrescu D., Dvoranová D., Rapta P., Petrasheuskaya T.V., Enyedy E.A., Spengler G., et al. Insight into the Anticancer Activity of Copper(II) 5-Methylenetrimethylammonium-Thiosemicarbazonates and Their Interaction with Organic Cation Transporters. Biomolecules. 2020;10:1213. doi: 10.3390/biom10091213. PubMed DOI PMC
Padnya P., Shibaeva K., Arsenyev M., Baryshnikova S., Terenteva O., Shiabiev I., Khannanov A., Boldyrev A., Gerasimov A., Grishaev D., et al. Catechol-Containing Schiff Bases on Thiacalixarene: Synthesis, Copper (II) Recognition, and Formation of Organic-Inorganic Copper-Based Materials. Molecules. 2021;26:2334. doi: 10.3390/molecules26082334. PubMed DOI PMC
Kordestani N., Rudbari H.A., Fernandes A.R., Raposo L.R., Luz A., Baptista P.V., Bruno G., Scopelliti R., Fateminia Z., Micale N., et al. Copper(ii) complexes with tridentate halogen-substituted Schiff base ligands: Synthesis, crystal structures and investigating the effect of halogenation, leaving groups and ligand flexibility on antiproliferative activities. Dalton Trans. 2021;50:3990–4007. doi: 10.1039/D0DT03962D. PubMed DOI
Song W., Xu P., Zhi S., Zhu S., Guo Y., Yang G. Integrated transcriptome and in vitro analysis revealed antiproliferative effects on human gastric cancer cells by a benzimidazole-quinoline copper(II) complex. Process Biochem. 2021;102:286–295. doi: 10.1016/j.procbio.2021.01.009. DOI
Karges J., Xiong K., Blacque O., Chao H., Gasser G. Highly cytotoxic copper(II) terpyridine complexes as anticancer drug candidates. Inorg. Chim. Acta. 2021;516:120137. doi: 10.1016/j.ica.2020.120137. DOI
Rodrigues J.A.O., de Oliveira Neto J.G., da Silva de Barros A.O., Ayala A.P., Santos-Oliveira R., de Menezes A.S., de Sousa F.F. Copper(II):phenanthroline complexes with l-asparagine and l-methionine: Synthesis, crystal structure and in-vitro cytotoxic effects on prostate, breast and melanoma cancer cells. Polyhedron. 2020;191:114807. doi: 10.1016/j.poly.2020.114807. DOI
Teles R.H.G., Graminha A.E., Rivera-Cruz C.M., Nakahata D.H., Formiga A.L.B., Corbi P.P., Figueiredo M.L., Cominetti M.R. Copper transporter 1 affinity as a delivery strategy to improve the cytotoxic profile of rationally designed copper(II) complexes for cancer treatment. Toxicol. In Vitro. 2020;67:104922. doi: 10.1016/j.tiv.2020.104922. PubMed DOI
Bravo-Gomez M.E., Garcia-Ramos J.C., Gracia-Mora I., Ruiz-Azuara L. Antiproliferative activity and QSAR study of copper(II) mixed chelate [Cu(N-N)(acetylacetonato)]NO3 and [Cu(N-N)(glycinato)]NO3 complexes, (Casiopeinas) J. Inorg. Biochem. 2009;103:299–309. doi: 10.1016/j.jinorgbio.2008.10.006. PubMed DOI
Azuara L.R. Process to Obtain New Mixed Copper Aminoactidate Complexes from Phenylate Phenathrolines to be Used as Anticancerigenic Agents. US5107005A. 1992 Apr 21;
Galindo-Murillo R., Garcia-Ramos J.C., Ruiz-Azuara L., Cheatham T.E., Cortes-Guzman F. Intercalation processes of copper complexes in DNA. Nucleic. Acids. Res. 2015;43:5364–5376. doi: 10.1093/nar/gkv467. PubMed DOI PMC
Trávníček Z., Vančo J., Hošek J., Buchtík R., Dvořák Z. Cellular responses induced by Cu(II) quinolinonato complexes in human tumor and hepatic cells. Chem. Cent. J. 2012;6:160. doi: 10.1186/1752-153X-6-160. PubMed DOI PMC
Buchtík R., Trávníček Z., Vančo J., Herchel R., Dvořák Z. Synthesis, characterization, DNA interaction and cleavage, and in vitro cytotoxicity of copper(ii) mixed-ligand complexes with 2-phenyl-3-hydroxy-4(1H)- quinolinone. Dalton Trans. 2011;40:9404–9412. doi: 10.1039/c1dt10674k. PubMed DOI
Buchtík R., Trávníček Z., Vančo J. In vitro cytotoxicity, DNA cleavage and SOD-mimic activity of copper(II) mixed-ligand quinolinonato complexes. J. Inorg. Biochem. 2012;116:163–171. doi: 10.1016/j.jinorgbio.2012.07.009. PubMed DOI
Křikavová R., Vančo J., Trávníček Z., Buchtík R., Dvořák Z. Copper(II) quinolinonato-7-carboxamido complexes as potent antitumor agents with broad spectra and selective effects. RSC Adv. 2016;6:3899–3909. doi: 10.1039/C5RA22141B. DOI
Křikavová R., Vančo J., Trávníček Z., Hutyra J., Dvořák Z. Design and characterization of highly in vitro antitumor active ternary copper(II) complexes containing 2′-hydroxychalcone ligands. J. Inorg. Biochem. 2016;163:8–17. doi: 10.1016/j.jinorgbio.2016.07.005. PubMed DOI
Brezani V., Smejkal K., Hosek J., Tomasova V. Anti-inflammatory Natural Prenylated Phenolic Compounds—Potential Lead Substances. Curr. Med. Chem. 2018;25:1094–1159. doi: 10.2174/0929867324666170810161157. PubMed DOI
Orazbekov Y., Ibrahim M.A., Mombekov S., Srivedavyasasri R., Datkhayev U., Makhatov B., Chaurasiya N.D., Tekwani B.L., Ross S.A. Isolation and Biological Evaluation of Prenylated Flavonoids from Maclura pomifera. Evid-Based Compl Alt. 2018;2018:1370368. doi: 10.1155/2018/1370368. PubMed DOI PMC
Hošek J., Šmejkal K. Flavonoids as Anti-inflammatory Agents. In: Parnham M.J., editor. Compendium of Inflammatory Diseases. Springer; Basel, Switzerland: 2016. pp. 482–497.
Selvaraj S., Krishnaswamy S., Devashya V., Sethuraman S., Krishnan U.M. Flavonoid-Metal Ion Complexes: A Novel Class of Therapeutic Agents. Med. Res. Rev. 2014;34:677–702. doi: 10.1002/med.21301. PubMed DOI
Tsao R., Yang R., Young J.C. Antioxidant isoflavones in Osage orange, Maclura pomifera (Raf. ) Schneid. J. Agric. Food Chem. 2003;51:6445–6451. doi: 10.1021/jf0342369. PubMed DOI
Vesela D., Kubinova R., Muselik J., Zemlicka M., Suchy V. Antioxidative and EROD activities of osajin and pomiferin. Fitoterapia. 2004;75:209–211. doi: 10.1016/j.fitote.2003.12.005. PubMed DOI
Janostikova E., Bartosikova L., Necas J., Jurica J., Florian T., Bartosik T., Klusakova J., Suchy V., Liskova M., Frydrych M. Effects of pomiferin premedication on the antioxidant status of rats with ischemia-reperfused kidney. Acta. Vet. Brno. 2005;74:557–564. doi: 10.2754/avb200574040557. DOI
Necas J., Bartosikova L., Florian T., Klusakova J., Suchy V., Janostikova E., Bartosik T., El Naggar E.B. Protective effects of flavonoid pomiferin on heart ischemia-reperfusion. Acta. Vet. Brno. 2007;76:363–370. doi: 10.2754/avb200776030363. DOI
Hosek J., Toniolo A., Neuwirth O., Bolego C. Prenylated and Geranylated Flavonoids Increase Production of Reactive Oxygen Species in Mouse Macrophages but Inhibit the Inflammatory Response. J. Nat. Prod. 2013;76:1586–1591. doi: 10.1021/np400242e. PubMed DOI
Son I.H., Chung I.M., Lee S.I., Yang H.D., Moon H.I. Pomiferin, histone deacetylase inhibitor isolated from the fruits of Maclura pomifera. Bioorg. Med. Chem. Lett. 2007;17:4753–4755. doi: 10.1016/j.bmcl.2007.06.060. PubMed DOI
Orhan I., Senol F.S., Kartal M., Dvorska M., Zemlicka M., Smejkal K., Mokry P. Cholinesterase inhibitory effects of the extracts and compounds of Maclura pomifera (Rafin.) Schneider. Food Chem. Toxicol. 2009;47:1747–1751. doi: 10.1016/j.fct.2009.04.023. PubMed DOI
Bozkurt I., Dilek E., Erol H.S., Cakir A., Hamzaoglu E., Koc M., Keles O.N., Halici M.B. Investigation on the effects of pomiferin from Maclura pomifera on indomethacin-induced gastric ulcer: An experimental study in rats. Med. Chem. Res. 2017;26:2048–2056. doi: 10.1007/s00044-017-1913-y. DOI
Yang R., Hanwell H., Zhang J., Tsao R., Meckling K.A. Antiproliferative Activity of Pomiferin in Normal (MCF-10A) and Transformed (MCF-7) Breast Epithelial Cells. J. Agric. Food Chem. 2011;59:13328–13336. doi: 10.1021/jf202898g. PubMed DOI
Abourashed E.A., Abraha A., Khan S.I., McCants T., Awan S. Potential of Horse Apple Isoflavones in Targeting Inflammation and Tau Protein Fibrillization. Nat. Prod. Commun. 2015;10:1577–1580. doi: 10.1177/1934578X1501000923. PubMed DOI
Chokchaichamnankit D., Kongjinda V., Khunnawutmanotham N., Chimnoi N., Pisutcharoenpong S., Techasakul S. Prenylated Flavonoids from the Leaves of Derris malaccensis and their Cytotoxicity. Nat. Prod. Commun. 2011;6:1103–1106. doi: 10.1177/1934578X1100600813. PubMed DOI
Ribaudo G., Coghi P., Zanforlin E., Law B.Y.K., Wil Y.Y.J., Han Y., Qiu A.C., Qu Y.Q., Zagotto G., Wong V.K.W. Semi-synthetic isoflavones as BACE-1 inhibitors against Alzheimer’s disease. Bioorg. Chem. 2019;87:474–483. doi: 10.1016/j.bioorg.2019.03.034. PubMed DOI
Spoerlein C., Mahal K., Schmidt H., Schobert R. Effects of chrysin, apigenin, genistein and their homoleptic copper(II) complexes on the growth and metastatic potential of cancer cells. J. Inorg. Biochem. 2013;127:107–115. doi: 10.1016/j.jinorgbio.2013.07.038. PubMed DOI
Draut H., Rehm T., Begemann G., Schobert R. Antiangiogenic and Toxic Effects of Genistein, Usnic Acid, and Their Copper Complexes in Zebrafish Embryos at Different Developmental Stages. Chem. Biodivers. 2017;14:e1600302. doi: 10.1002/cbdv.201600302. PubMed DOI
Pouchert C. Aldrich® Library of Infrared Spectra. 3rd ed. Aldrich Chemical Co.; Milwaukee, WI, USA: 1981. p. 1850.
Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry. 5th ed. Wiley-Interscience; Hoboken, NJ, USA: 1997. p. 400.
Trávníček Z., Vančo J., Dvořák Z. Heteroleptic complexes of copper with osajin or pomiferin and their use for the preparation of drugs for the treatment of cancer. CZ30. 8426B6:2020.
Trávníček Z., Vančo J., Dvořák Z. Heteroleptic complexes of copper with osajin or pomiferin and their utilization for the preparation of drugs for the treatment of tumour diseases. WO2021018324A1. 2020 Feb 4;
Nunes P., Correia I., Marques F., Matos A.P., dos Santos M.M.C., Azevedo C.G., Capelo J.L., Santos H.M., Gama S., Pinheiro T., et al. Copper Complexes with 1,10-Phenanthroline Derivatives: Underlying Factors Affecting Their Cytotoxicity. Inorg. Chem. 2020;59:9116–9134. doi: 10.1021/acs.inorgchem.0c00925. PubMed DOI
Perkins N.D., Gilmore T.D. Good cop, bad cop: The different faces of NF-kappa B. Cell Death Differ. 2006;13:759–772. doi: 10.1038/sj.cdd.4401838. PubMed DOI
Pahl H.L. Activators and target genes of Rel/NF-kappa B transcription factors. Oncogene. 1999;18:6853–6866. doi: 10.1038/sj.onc.1203239. PubMed DOI
Karin M., Liu Z., Zandi E. AP-1 function and regulation. Curr. Opin. Cell Biol. 1997;9:240–246. doi: 10.1016/S0955-0674(97)80068-3. PubMed DOI
Zelova H., Hosek J. TNF-alpha signalling and inflammation: Interactions between old acquaintances. Inflamm. Res. 2013;62:641–651. doi: 10.1007/s00011-013-0633-0. PubMed DOI
Lelakova V., Smejkal K., Jakubczyk K., Vesely O., Landa P., Vaclavik J., Bobal P., Pizova H., Temml V., Steinacher T., et al. Parallel in vitro and in silico investigations into anti-inflammatory effects of non-prenylated stilbenoids. Food Chem. 2019;285:431–440. doi: 10.1016/j.foodchem.2019.01.128. PubMed DOI
Shaulian E., Karin M. AP-1 as a regulator of cell life and death. Nat. Cell Biol. 2002;4:E131–E136. doi: 10.1038/ncb0502-e131. PubMed DOI
Tummalapalli K., Vasavi C.S., Munusami C.P., Pathak M., Balamurali M.M. Evaluation of DNA/Protein interactions and cytotoxic studies of copper(II) complexes incorporated with N, N donor ligands and terpyridine ligand. Int. J. Biol. Macromol. 2017;95:1254–1266. doi: 10.1016/j.ijbiomac.2016.11.022. PubMed DOI
Šmejkal K., Neuwirth O., Treml J., Hošek J. Pro-oxidant Activity of Flavonoids and Their Possible Effects. In: Pathak M., Govil J.N., editors. Recent Advances in Medicinal Plants. Volume 40 Studium Press LLC; Houston, TX, USA: 2016.
Panhwar Q.K., Memon S., Bhanger M.I. Synthesis, characterization, spectroscopic and antioxidation studies of Cu(II)-morin complex. J. Mol. Struct. 2010;967:47–53. doi: 10.1016/j.molstruc.2009.12.037. DOI
Jomova K., Hudecova L., Lauro P., Simunkova M., Alwasel S.H., Alhazza I.M., Valko M. A Switch between Antioxidant and Prooxidant Properties of the Phenolic Compounds Myricetin, Morin, 3′,4′-Dihydroxyflavone, Taxifolin and 4-Hydroxy-Coumarin in the Presence of Copper(II) Ions: A Spectroscopic, Absorption Titration and DNA Damage Study. Molecules. 2019;24:4335. doi: 10.3390/molecules24234335. PubMed DOI PMC
Lugrin J., Rosenblatt-Velin N., Parapanov R., Liaudet L. The role of oxidative stress during inflammatory processes. Biol. Chem. 2014;395:203–230. doi: 10.1515/hsz-2013-0241. PubMed DOI
Sies H., Berndt C., Jones D.P. Oxidative Stress. Annu. Rev. Biochem. 2017;86:715–748. doi: 10.1146/annurev-biochem-061516-045037. PubMed DOI
Vančo J., Trávníček Z., Hošek J., Suchý P. In vitro and in vivo anti-inflammatory active copper(II)-lawsone complexes. PLoS ONE. 2017;12:e0181822. doi: 10.1371/journal.pone.0181822. PubMed DOI PMC
Matsuyama S., Reed J.C. Mitochondria-dependent apoptosis and cellular pH regulation. Cell Death Differ. 2000;7:1155–1165. doi: 10.1038/sj.cdd.4400779. PubMed DOI
Kathiresan S., Mugesh S., Annaraj J., Murugan M. Mixed-ligand copper(II) Schiff base complexes: The vital role of co-ligands in DNA/protein interactions and cytotoxicity. New. J. Chem. 2017;41:1267–1283. doi: 10.1039/C6NJ03501A. DOI
Massoud S.S., Perkins R.S., Louka F.R., Xu W., Le Roux A., Dutercq Q., Fischer R.C., Mautner F.A., Handa M., Hiraoka Y., et al. Efficient hydrolytic cleavage of plasmid DNA by chloro-cobalt(II) complexes based on sterically hindered pyridyl tripod tetraamine ligands: Synthesis, crystal structure and DNA cleavage. Dalton. Trans. 2014;43:10086–10103. doi: 10.1039/c4dt00615a. PubMed DOI
Gup R., Gokce C., Dilek N. Seven-coordinated cobalt(II) complexes with 2,6-diacetylpyridine bis(4-hydroxybenzoylhydrazone): Synthesis, characterisation, DNA binding and cleavage properties. Supramol. Chem. 2015;27:629–641. doi: 10.1080/10610278.2015.1051978. DOI
Brezani V., Lelakova V., Hassan S.T.S., Berchova-Bimova K., Novy P., Kloucek P., Marsik P., Dall’Acqua S., Hosek J., Smejkal K. Anti-Infectivity against Herpes Simplex Virus and Selected Microbes and Anti-Inflammatory Activities of Compounds Isolated from Eucalyptus globulus Labill. Viruses. 2018;10:360. doi: 10.3390/v10070360. PubMed DOI PMC
Massoud S.S., Ledet C.C., Junk T., Bosch S., Comba P., Herchel R., Hošek J., Trávníček Z., Fischer R.C., Mautner F.A. Dinuclear metal(II)-acetato complexes based on bicompartmental 4-chlorophenolate: Syntheses, structures, magnetic properties, DNA interactions and phosphodiester hydrolysis. Dalton Trans. 2016;45:12933–12950. doi: 10.1039/C6DT02596J. PubMed DOI
Bancirova M. Sodium azide as a specific quencher of singlet oxygen during chemiluminescent detection by luminol and Cypridina luciferin analogues. Luminescence. 2011;26:685–688. doi: 10.1002/bio.1296. PubMed DOI
Repine J.E., Eaton J.W., Anders M.W., Hoidal J.R., Fox R.B. Generation of Hydroxyl Radical by Enzymes, Chemicals, and Human Phagocytes Invitro - Detection with the Anti-Inflammatory Agent, Dimethyl-Sulfoxide. J. Clin. Investig. 1979;64:1642–1651. doi: 10.1172/JCI109626. PubMed DOI PMC