Heteroleptic Copper(II) Complexes Containing 2'-Hydroxy-4-(Dimethylamino)Chalcone Show Strong Antiproliferative Activity
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-19060S
Czech Science Foundation
CZ.02.1.01/0.0/0.0/16_019/0000754
Ministry of Education Youth and Sports
PubMed
36839630
PubMed Central
PMC9967299
DOI
10.3390/pharmaceutics15020307
PII: pharmaceutics15020307
Knihovny.cz E-zdroje
- Klíčová slova
- antiproliferative activity, cell cycle, cell death, chalcone, copper(II) complexes, in vitro cytotoxicity, mitochondrial membrane potential, reactive oxygen species,
- Publikační typ
- časopisecké články MeSH
A series of six heteroleptic copper(II) complexes with 2'-hydroxy-4-(dimethylamino)chalcone (HL) with the composition [Cu(N-N)(L)]NO3 (1-6), where N-N stands for dmbpy = 5,5'-dimethyl-2,2'-bipyridine (1), bphen = 4,7-diphenyl-1,10-phenanthroline (2), dbbpy = 4,4'-di-tert-butyl-2,2'-bipyridine (3), nphen = 5-nitro-1,10-phenanthroline (4), bpy = 2,2'-bipyridine, (5), and dpa = 2,2'-dipyridylamine (6), was prepared and thoroughly characterized. The in vitro cytotoxicity screening on eight human cancer cell lines identified complex 2, containing the bulkiest N-donor ligands (bphen) as highly cytotoxic against cancer cells, with IC50 values ranking from 1.0 to 2.3 μM, with good selectivity and low toxicity against healthy human fetal lung fibroblasts MRC-5. The cell-based assays, involving the most effective complex 2 in A2780 cancer cells, revealed its strong pro-apoptotic effects based on the effective activation of caspases 3/7, ROS overproduction, and autophagy in the A2780 cells while not impeding the cell cycle and mitochondrial membrane functions. The cellular uptake studies in A2780 and 22Rv1 cells uncovered no intracellular transport of the cationic complex 2, supporting the hypothesis that the in vitro anticancer effects of complex 2 are based on the combined extrinsic activation of apoptosis and autophagy induction.
Zobrazit více v PubMed
Rozmer Z., Perjesi P. Naturally occurring chalcones and their biological activities. Phytochem. Rev. 2016;15:87–120. doi: 10.1007/s11101-014-9387-8. DOI
Sulpizio C., Breibeck J., Romplel A. Recent progress in synthesis and characterization of metal chalcone complexes and their potential as bioactive agents. J. Inorg. Biochem. 2018;374:497–524. doi: 10.1016/j.ccr.2018.05.023. DOI
Huang X., Liu Z., Wang M., Yin X., Wang Y., Dai L., Wang H. Platinum(IV) complexes conjugated with chalcone analogs as dual targeting anticancer agents: In vitro and in vivo studies. Bioorg. Chem. 2020;105:104430. doi: 10.1016/j.bioorg.2020.104430. PubMed DOI
Huang X., Huang R., Wang Z., Li L., Gou S., Liao Z., Wang H. Pt(IV) complexes conjugating with chalcone analogues as inhibitors of microtube polymerization exhibited selective inhibition in human cancer cells. Eur. J. Med. Chem. 2018;146:435–450. doi: 10.1016/j.ejmech.2018.01.075. PubMed DOI
Dkhar L., Banothu V., Pinder E., Phillips R.M., Kaminsky W., Kollipara M.R. Ru, Rh and Ir metal complexes of pyridyl chalcone derivatives: Their potent antibacterial activity, comparable cytotoxicity potency and selectivity to cisplatin. Polyhedron. 2020;185:114606. doi: 10.1016/j.poly.2020.114606. DOI
Kaushal R., Kaur M. Bio-medical potential of chalcone derivatives and their metal complexes as antidiabetic agents: A review. J. Coord. Chem. 2021;74:725–742. doi: 10.1080/00958972.2021.1875450. DOI
Johnson J., Yardily A. Co(II), Ni(II), Cu(II), and Zn(II) metal complexes of chalcone: Synthesis, characterization, thermal, antimicrobial, photocatalytic degradation of dye and molecular modeling studies. Appl. Organomet. Chem. 2022;36:e6465. doi: 10.1002/aoc.6465. DOI
Křikavová R., Vančo J., Trávníček Z., Hutyra J., Dvořák Z. Design and characterization of highly in vitro antitumor active ternary copper(II) complexes containing 2′-hydroxychalcone ligands. J. Inorg. Biochem. 2016;163:8–17. doi: 10.1016/j.jinorgbio.2016.07.005. PubMed DOI
Shao Y., Molnar L.F., Jung Y., Kussmann J., Ochsenfeld C., Brown S.T., Gilbert A.T.B., Slipchenko L.V., Levchenko S.V., O’Neill D.P., et al. Advances in methods and algorithms in a modern quantum chemistry program package. Phys. Chem. Chem. Phys. 2006;8:3172–3191. doi: 10.1039/B517914A. PubMed DOI
Macrae C.F., Sovago I., Cottrell S.J., Galek P.T.A., McCabe P., Pidcock E., Platings M., Shields G.P., Stevens J.S., Towler M., et al. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Cryst. 2020;53:226–235. doi: 10.1107/S1600576719014092. PubMed DOI PMC
APEX3 Software Suite. © 2023 Bruker AXS Inc.; Madison, WI, USA: 2023.
Sheldrick G.M. SHELXTL Version 2014/7. [(accessed on 5 April 2020)]. Available online: http://shelx.uni-ac.gwdg.de/SHELX/index.php.
Putz H., Brandenburg K. Diamond-Crystal and Molecular Structure Visualization, Crystal Impact-Dr. H. Putz & Dr. K. Brandenburg GbR; Bonn, Germany: 2006.
Hernychova L., Alexandri E., Tzakos A.G., Zatloukalová M., Primykiri A., Gerothanassis I.P., Uhrik L., Šebela M., Kopečný D., Jedinák L., et al. Serum albumin as a primary non-covalent binding protein for nitro-oleic acid. Int. J. Biol. Macromol. 2022;203:116–129. doi: 10.1016/j.ijbiomac.2022.01.050. PubMed DOI
Arndt C., Koristka S., Feldmann A., Bachmann M. Native Polyacrylamide Gels. In: Kurien B., Scofield R., editors. Electrophoretic Separation of Proteins. Methods in Molecular Biology. Volume 1855. Humana Press; New York, NY, USA: 2019. pp. 87–91. PubMed DOI
Shevchenko A., Tomas H., Havlis J., Olsen J.V., Mann M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 2006;1:2856–2860. doi: 10.1038/nprot.2006.468. PubMed DOI
TIBCO Software Inc. Statistica (Data Analysis Software System), Version 13. 2018. [(accessed on 28 April 2022)]. Available online: http://tibco.com.
Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry. 6th ed. Wiley Publications; Hoboken, NJ, USA: 2008. pp. 1–273. DOI
Geary W.J. The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord. Chem. Rev. 1971;7:81–122. doi: 10.1016/S0010-8545(00)80009-0. DOI
Ito K., Ito T. Magnetic moments of copper(II) complexes. Aust. J. Chem. 1958;11:406–414. doi: 10.1071/CH9580406. DOI
Casanova D., Cirera J., Llunell M., Alemany P., Avnir D., Alvarez S. Minimal distortion pathways in polyhedral rearrangements. J. Am. Chem. Soc. 2004;126:1755–1763. doi: 10.1021/ja036479n. PubMed DOI
Kathiresan S., Mugesh S., Annaraj J., Murugan M. Mixed-ligand copper(II) Schiff base complexes: The vital role of co-ligands in DNA/protein interactions and cytotoxicity. New J. Chem. 2017;41:1267–1283. doi: 10.1039/C6NJ03501A. DOI
Hirohama T., Kuranuki Y., Ebina E., Sugizaki T., Arii H., Chikira M., Selvi P.T., Palaniandavar M. Copper(II) complexes of 1,10-phenanthroline-derived ligands: Studies on DNA binding properties and nuclease activity. J. Inorg. Biochem. 2005;99:1205–1219. doi: 10.1016/j.jinorgbio.2005.02.020. PubMed DOI
Vančo J., Trávníček Z., Hošek J., Dvořák Z. Heteroleptic copper(II) complexes of prenylated flavonoid osajin behave as selective and effective antiproliferative and anti-inflammatory agents. J. Inorg. Biochem. 2022;226:111639. doi: 10.1016/j.jinorgbio.2021.111639. PubMed DOI
Vančo J., Trávníček Z., Hošek J., Malina T., Dvořák Z. Copper(II) Complexes Containing Natural Flavonoid Pomiferin Show Considerable In Vitro Cytotoxicity and Anti-inflammatory Effects. Int. J. Mol. Sci. 2021;22:7626. doi: 10.3390/ijms22147626. PubMed DOI PMC
Ly J.D., Grubb D.R., Lawen A. The mitochondrial membrane potential (deltapsi(m)) in apoptosis; an update. Apoptosis. 2003;8:115–128. doi: 10.1023/A:1022945107762. PubMed DOI
Ray P.D., Huang B.W., Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal. 2012;24:981–990. doi: 10.1016/j.cellsig.2012.01.008. PubMed DOI PMC
Anshul G., Mumper R.J. Elevated copper and oxidative stress in cancer cells as a target for cancer treatment. Cancer Treat. Rev. 2009;35:32–46. doi: 10.1016/j.ctrv.2008.07.004. PubMed DOI
Redza-Dutordoir M., Averill-Bates D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta Mol. Cell Res. 2016;1863:2977–2992. doi: 10.1016/j.bbamcr.2016.09.012. PubMed DOI
Poillet-Perez L., Despouy G., Delage-Mourroux R., Boyer-Guittaut M. Interplay between ROS and autophagy in cancer cells, from tumor initiation to cancer therapy. Redox Biol. 2015;4:184–192. doi: 10.1016/j.redox.2014.12.003. PubMed DOI PMC
Zhong W., Zhu H., Sheng F., Tian Y., Zhou J., Chen Y., Li S., Lin J. Activation of the MAPK11/12/13/14 (p38 MAPK) pathway regulates the transcription of autophagy genes in response to oxidative stress induced by a novel copper complex in HeLa cells. Autophagy. 2014;10:1285–1300. doi: 10.4161/auto.28789. PubMed DOI PMC