What the Hel: recent advances in understanding rifampicin resistance in bacteria
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
86652036
IBT CAS
20-12109S
Czech Science Foundation
CZ.02.1.01/0.0/0.0/15_003/0000447
European Regional Development Fund
LX22NPO5103
National Institute of Virology and Bacteriology
PubMed
36549665
PubMed Central
PMC10719064
DOI
10.1093/femsre/fuac051
PII: 6957393
Knihovny.cz E-zdroje
- Klíčová slova
- HelD/HelR, RNA polymerase, antibiotics, bacteria, resistance, rifampicin,
- MeSH
- antibakteriální látky farmakologie MeSH
- Bacteria * genetika metabolismus MeSH
- bakteriální léková rezistence MeSH
- DNA řízené RNA-polymerasy genetika metabolismus MeSH
- DNA MeSH
- rifampin * farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
- DNA řízené RNA-polymerasy MeSH
- DNA MeSH
- rifampin * MeSH
Rifampicin is a clinically important antibiotic that binds to, and blocks the DNA/RNA channel of bacterial RNA polymerase (RNAP). Stalled, nonfunctional RNAPs can be removed from DNA by HelD proteins; this is important for maintenance of genome integrity. Recently, it was reported that HelD proteins from high G+C Actinobacteria, called HelR, are able to dissociate rifampicin-stalled RNAPs from DNA and provide rifampicin resistance. This is achieved by the ability of HelR proteins to dissociate rifampicin from RNAP. The HelR-mediated mechanism of rifampicin resistance is discussed here, and the roles of HelD/HelR in the transcriptional cycle are outlined. Moreover, the possibility that the structurally similar HelD proteins from low G+C Firmicutes may be also involved in rifampicin resistance is explored. Finally, the discovery of the involvement of HelR in rifampicin resistance provides a blueprint for analogous studies to reveal novel mechanisms of bacterial antibiotic resistance.
Zobrazit více v PubMed
Bottery MJ, Pitchford JW, Friman VP. Ecology and evolution of antimicrobial resistance in bacterial communities. ISME J. 2021;15:939–48. PubMed PMC
Boyaci H, Chen J, Lilic Met al. . Fidaxomicin jams Mycobacterium tuberculosis RNA polymerase motions needed for initiation via RbpA contacts. Elife. 2018;7. PubMed PMC
Campbell EA, Korzheva N, Mustaev Aet al. . Structural mechanism for rifampicin inhibition of bacterial rna polymerase. Cell. 2001;104:901–12. PubMed
Carrasco B, Fernandez S, Petit MAet al. . Genetic recombination in Bacillus subtilis168: effect of DeltahelD on DNA repair and homologous recombination. J Bacteriol. 2001;183:5772–7. PubMed PMC
Chater KF. Recent advances in understanding Streptomyces. F1000Res. 2016;5:2795. PubMed PMC
Davies J, Spiegelman GB, Yim G. The world of subinhibitory antibiotic concentrations. Curr Opin Microbiol. 2006;9:445–53. PubMed
Delumeau O, Lecointe F, Muntel Jet al. . The dynamic protein partnership of RNA polymerase in Bacillus subtilis. Proteomics. 2011;11:2992–3001. PubMed
Doherty GP, Fogg MJ, Wilkinson AJet al. . Small subunits of RNA polymerase: localization, levels and implications for core enzyme composition. Microbiology (Reading). 2010;156:3532–43. PubMed
Giddey AD, de Kock E, Nakedi KCet al. . A temporal proteome dynamics study reveals the molecular basis of induced phenotypic resistance in Mycobacterium smegmatis at sub-lethal rifampicin concentrations. Sci Rep. 2017;7:43858. PubMed PMC
Goldstein BP. Resistance to rifampicin: a review. J Antibiot (Tokyo). 2014;67:625–30. PubMed
Howe KM, Newman AJ, Garner Iet al. . Effect of rifampicin on expression of lacZ fused to promoters or terminators of theE.coli rpoBC operon. Nucleic Acids Res. 1982;10:7425–38. PubMed PMC
Hu Y, Morichaud Z, Chen Set al. . Mycobacterium tuberculosis RbpA protein is a new type of transcriptional activator that stabilizes the sigma A-containing RNA polymerase holoenzyme. Nucleic Acids Res. 2012;40:6547–57. PubMed PMC
Hubin EA, Lilic M, Darst SAet al. . Structural insights into the mycobacteria transcription initiation complex from analysis of X-ray crystal structures. Nat Commun. 2017;8:16072. PubMed PMC
Hurst-Hess K, Biswas R, Yang Yet al. . SigA and SigB cotranscribe essential housekeeping genes during exponential growth. Mbio. 2019;10. PubMed PMC
Hurst-Hess KR, Saxena A, Rudra Pet al. . Mycobacterium abscessus HelR interacts with RNA polymerase to confer intrinsic rifamycin resistance. Mol Cell. 2022;82:3166–77. e3165. PubMed PMC
Hutter B, Fischer C, Jacobi Aet al. . Panel of Bacillus subtilis reporter strains indicative of various modes of action. Antimicrob Agents Chemother. 2004;48:2588–94. PubMed PMC
Iavicoli I, Fontana L, Agathokleous Eet al. . Hormetic dose responses induced by antibiotics in bacteria: a phantom menace to be thoroughly evaluated to address the environmental risk and tackle the antibiotic resistance phenomenon. Sci Total Environ. 2021;798:149255. PubMed
Ishikawa J, Chiba K, Kurita Het al. . Contribution of rpoB2 RNA polymerase beta subunit gene to rifampin resistance in Nocardia species. Antimicrob Agents Chemother. 2006;50:1342–6. PubMed PMC
Jensen D, Manzano AR, Rammohan Jet al. . CarD and RbpA modify the kinetics of initial transcription and slow promoter escape of the Mycobacterium tuberculosisRNA polymerase. Nucleic Acids Res. 2019;47:6685–98. PubMed PMC
Juang YL, Helmann JD. The delta subunit of Bacillus subtilis RNA polymerase. An allosteric effector of the initiation and core-recycling phases of transcription. J Mol Biol. 1994;239:1–14. PubMed
Kouba T, Koval T, Sudzinova Pet al. . Mycobacterial HelD is a nucleic acids-clearing factor for RNA polymerase. Nat Commun. 2020;11:6419. PubMed PMC
Koval T, Sudzinova P, Perhacova Tet al. . Domain structure of HelD, an interaction partner of Bacillus subtilis RNA polymerase. FEBS Lett. 2019;593:996–1005. PubMed
Kuban V, Srb P, Stegnerova Het al. . Quantitative conformational analysis of functionally important electrostatic interactions in the intrinsically disordered region of delta subunit of bacterial RNA polymerase. J Am Chem Soc. 2019;141:16817–28. PubMed
Kurepina N, Chudaev M, Kreiswirth BNet al. . Mutations compensating for the fitness cost of rifampicin resistance in Escherichia coli exert pleiotropic effect on RNA polymerase catalysis. Nucleic Acids Res. 2022;50:5739–56. PubMed PMC
Larsen JS, Miller M, Oakley AJet al. . Multiple classes and isoforms of the RNA polymerase recycling motor protein HelD. Microbiologyopen. 2021;10:e1251. PubMed PMC
Leehan JD, Nicholson WL. The spectrum of spontaneous rifampin resistance mutations in the Bacillus subtilis rpoB gene depends on the growth environment. Appl Environ Microbiol. 2021;87:e0123721. PubMed PMC
Li G, Zhang J, Guo Qet al. . Study of efflux pump gene expression in rifampicin-monoresistant Mycobacterium tuberculosis clinical isolates. J Antibiot (Tokyo). 2015;68:431–5. PubMed
Lin W, Mandal S, Degen Det al. . Structural basis of Mycobacterium tuberculosistranscription and transcription inhibition. Mol Cell. 2017;66:169–79. e168. PubMed PMC
Machado D, Perdigao J, Portugal Iet al. . Efflux activity differentially modulates the levels of isoniazid and rifampicin resistance among multidrug resistant and monoresistant Mycobacterium tuberculosis strains. Antibiotics (Basel). 2018;7:1–17. PubMed PMC
Martini MC, Zhou Y, Sun Het al. . Defining the transcriptional and post-transcriptional landscapes of Mycobacterium smegmatis in aerobic growth and hypoxia. Front Microbiol. 2019;10:591. PubMed PMC
Mast Y, Stegmann E. Actinomycetes: the antibiotics producers. Antibiotics (Basel). 2019;8. PubMed PMC
Maurer FP, Bruderer VL, Ritter Cet al. . Lack of antimicrobial bactericidal activity in Mycobacterium abscessus. Antimicrob Agents Chemother. 2014;58:3828–36. PubMed PMC
Mazumder A, Lin M, Kapanidis ANet al. . Closing and opening of the RNA polymerase trigger loop. Proc Natl Acad Sci USA. 2020;117:15642–9. PubMed PMC
Morgado S, Fonseca E, Vicente AC. Genomic epidemiology of rifampicin ADP-ribosyltransferase (Arr) in the Bacteria domain. Sci Rep. 2021;11:19775. PubMed PMC
Motackova V, Novacek J, Zawadzka-Kazimierczuk Aet al. . Strategy for complete NMR assignment of disordered proteins with highly repetitive sequences based on resolution-enhanced 5D experiments. J Biomol NMR. 2010;48:169–77. PubMed PMC
Narlikar L, Hartemink AJ. Sequence features of DNA binding sites reveal structural class of associated transcription factor. Bioinformatics. 2006;22:157–63. PubMed
Newell KV, Thomas DP, Brekasis Det al. . The RNA polymerase-binding protein RbpA confers basal levels of rifampicin resistance on Streptomyces coelicolor. Mol Microbiol. 2006;60:687–96. PubMed
Newing TP, Oakley AJ, Miller Met al. . Molecular basis for RNA polymerase-dependent transcription complex recycling by the helicase-like motor protein HelD. Nat Commun. 2020;11:6420. PubMed PMC
Pei HH, Hilal T, Chen ZAet al. . The delta subunit and ntpase HelD institute a two-pronged mechanism for RNA polymerase recycling. Nat Commun. 2020;11:6418. PubMed PMC
Rabatinova A, Sanderova H, Jirat Matejckova Jet al. . The delta subunit of RNA polymerase is required for rapid changes in gene expression and competitive fitness of the cell. J Bacteriol. 2013;195:2603–11. PubMed PMC
Sensi P. History of the development of rifampin. Rev Infect Dis. 1983;5:S402–406. PubMed
Spanogiannopoulos P, Waglechner N, Koteva Ket al. . A rifamycin inactivating phosphotransferase family shared by environmental and pathogenic bacteria. Proc Natl Acad Sci USA. 2014;111:7102–7. PubMed PMC
Stogios PJ, Cox G, Spanogiannopoulos Pet al. . Rifampin phosphotransferase is an unusual antibiotic resistance kinase. Nat Commun. 2016;7:11343. PubMed PMC
Surette MD, Waglechner N, Koteva Ket al. . HelR is a helicase-like protein that protects RNA polymerase from rifamycin antibiotics. Mol Cell. 2022;82:3151–65. PubMed
Tupin A, Gualtieri M, Roquet-Baneres Fet al. . Resistance to rifampicin: at the crossroads between ecological, genomic and medical concerns. Int J Antimicrob Agents. 2010;35:519–23. PubMed
Urban A, Eckermann S, Fast Bet al. . Novel whole-cell antibiotic biosensors for compound discovery. Appl Environ Microbiol. 2007;73:6436–43. PubMed PMC
Vankova Hausnerova V, Marvalova O, Sikova Met al. . Ms1 RNA interacts with the RNA polymerase core in Streptomyces coelicolor and was identified in majority of actinobacteria using a linguistic gene synteny search. Front Microbiol. 2022;13:848536. PubMed PMC
Verma AK, Chatterji D. Dual role of MsRbpA: transcription activation and rescue of transcription from the inhibitory effect of rifampicin. Microbiology (Reading). 2014;160:2018–29. PubMed
Walker JE, Saraste M, Runswick MJet al. . Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1982;1:945–51. PubMed PMC
Wassarman KM. 6S RNA, a global regulator of transcription. Microbiol Spectr. 2018;6. PubMed PMC
Wiedermannova J, Krasny L. beta-CASP proteins removing RNA polymerase from DNA: when a torpedo is needed to shoot a sitting duck. Nucleic Acids Res. 2021;49:10221–34. PubMed PMC
Wiedermannova J, Sudzinova P, Koval Tet al. . Characterization of HelD, an interacting partner of RNA polymerase from Bacillus subtilis. Nucleic Acids Res. 2014;42:5151–63. PubMed PMC
Wilson DN, Hauryliuk V, Atkinson GCet al. . Target protection as a key antibiotic resistance mechanism. Nat Rev Microbiol. 2020;18:637–48. PubMed
Yim G, Spiegelman GB, Davies JE. Separate mechanisms are involved in rifampicin upmodulated and downmodulated gene expression in Salmonella Typhimurium.. Res Microbiol. 2013;164:416–24. PubMed
Zhu JH, Wang BW, Pan Met al. . Rifampicin can induce antibiotic tolerance in Mycobacteria via paradoxical changes in rpoB transcription. Nat Commun. 2018;9:4218. PubMed PMC
Zhu Y, Mao C, Ge Xet al. . Characterization of a Minimal Type of Promoter Containing the -10 Element and a Guanine at the -14 or -13 Position in Mycobacteria. J Bacteriol. 2017;199. PubMed PMC
MoaB2, a newly identified transcription factor, binds to σA in Mycobacterium smegmatis
Mycobacterial HelD connects RNA polymerase recycling with transcription initiation