Ms1 RNA Interacts With the RNA Polymerase Core in Streptomyces coelicolor and Was Identified in Majority of Actinobacteria Using a Linguistic Gene Synteny Search
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35633709
PubMed Central
PMC9130861
DOI
10.3389/fmicb.2022.848536
Knihovny.cz E-zdroje
- Klíčová slova
- 6S RNA, Actinobacteria, Ms1 RNA, Mycobacterium, Streptomyces, gene synteny, sRNA,
- Publikační typ
- časopisecké články MeSH
Bacteria employ small non-coding RNAs (sRNAs) to regulate gene expression. Ms1 is an sRNA that binds to the RNA polymerase (RNAP) core and affects the intracellular level of this essential enzyme. Ms1 is structurally related to 6S RNA that binds to a different form of RNAP, the holoenzyme bearing the primary sigma factor. 6S RNAs are widespread in the bacterial kingdom except for the industrially and medicinally important Actinobacteria. While Ms1 RNA was identified in Mycobacterium, it is not clear whether Ms1 RNA is present also in other Actinobacteria species. Here, using a computational search based on secondary structure similarities combined with a linguistic gene synteny approach, we identified Ms1 RNA in Streptomyces. In S. coelicolor, Ms1 RNA overlaps with the previously annotated scr3559 sRNA with an unknown function. We experimentally confirmed that Ms1 RNA/scr3559 associates with the RNAP core without the primary sigma factor HrdB in vivo. Subsequently, we applied the computational approach to other Actinobacteria and identified Ms1 RNA candidates in 824 Actinobacteria species, revealing Ms1 RNA as a widespread class of RNAP binding sRNAs, and demonstrating the ability of our multifactorial computational approach to identify weakly conserved sRNAs in evolutionarily distant genomes.
Zobrazit více v PubMed
Allen T. A., Von Kaenel S., Goodrich J. A., Kugel J. F. (2004). The SINE-encoded mouse B2 RNA represses mRNA transcription in response to heat shock. Nat. Struct. Mol. Biol. 11 816–821. 10.1038/nsmb813 PubMed DOI
Arnvig K. B., Comas I., Thomson N. R., Houghton J., Boshoff H. I., Croucher N. J., et al. (2011). Sequence-based analysis uncovers an abundance of non-coding RNA in the total transcriptome of Mycobacterium tuberculosis. PLoS Pathog. 7:e1002342. 10.1371/journal.ppat.1002342 PubMed DOI PMC
Barquist L., Burge S. W., Gardner P. P. (2016). Studying RNA homology and conservation with infernal: from single sequences to RNA families. Curr. Protoc. Bioinformatics 54 12.13.1–12.13.25. 10.1002/cpbi.4. PubMed DOI PMC
Barrick J. E., Sudarsan N., Weinberg Z., Ruzzo W. L., Breaker R. R. (2005). 6S RNA is a widespread regulator of eubacterial RNA polymerase that resembles an open promoter. RNA 11 774–784. 10.1261/rna.7286705 PubMed DOI PMC
Beckmann B. M., Burenina O. Y., Hoch P. G., Kubareva E. A., Sharma C. M., Hartmann R. K. (2011). In vivo and in vitro analysis of 6S RNA-templated short transcripts in Bacillus subtilis. RNA Biol. 8 839–849. 10.4161/rna.8.5.16151 PubMed DOI
Beckmann B. M., Hoch P. G., Marz M., Willkomm D. K., Salas M., Hartmann R. K. (2012). A pRNA-induced structural rearrangement triggers 6S-1 RNA release from RNA polymerase in Bacillus subtilis. EMBO J. 31 1727–1738. 10.1038/emboj.2012.23 PubMed DOI PMC
Behra P. R. K., Pettersson B. M. F., Das S., Dasgupta S., Kirsebom L. A. (2019). Comparative genomics of Mycobacterium mucogenicum and Mycobacterium neoaurum clade members emphasizing tRNA and non-coding RNA. BMC Evol. Biol. 19:124. 10.1186/s12862-019-1447-7 PubMed DOI PMC
Bellier A., Gominet M., Mazodier P. (2006). Post-translational control of the Streptomyces lividans ClgR regulon by ClpP. Microbiology 152(Pt 4), 1021–1027. 10.1099/mic.0.28564-0 PubMed DOI
Benson D. R., Brooks J. M., Huang Y., Bickhart D. M., Mastronunzio J. E. (2011). The biology of Frankia sp. strains in the post-genome era. Mol. Plant Microbe Interact. 24 1310–1316. 10.1094/MPMI-06-11-0150 PubMed DOI
Bentley S. D., Chater K. F., Cerdeno-Tarraga A. M., Challis G. L., Thomson N. R., James K. D., et al. (2002). Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417 141–147. 10.1038/417141a PubMed DOI
Bobek J., Mikulová A., Šetinová D., Elliot M., Çihák M. (2021). 6S-Like scr3559 RNA affects development and antibiotic production in Streptomyces coelicolor. Microorganisms 9:2004. 10.3390/microorganisms9102004 PubMed DOI PMC
Brown K. L., Wood S., Buttner M. J. (1992). Isolation and characterization of the major vegetative RNA polymerase of Streptomyces coelicolor A3(2); renaturation of a sigma subunit using GroEL. Mol. Microbiol. 6 1133–1139. 10.1111/j.1365-2958.1992.tb01551.x PubMed DOI
Burenina O. Y., Elkina D. A., Migur A. Y., Oretskaya T. S., Evguenieva-Hackenberg E., Hartmann R. K., et al. (2020). Similarities and differences between 6S RNAs from Bradyrhizobium japonicum and Sinorhizobium meliloti. J. Microbiol. 58 945–956. 10.1007/s12275-020-0283-1 PubMed DOI
Burenina O. Y., Hoch P. G., Damm K., Salas M., Zatsepin T. S., Lechner M., et al. (2014). Mechanistic comparison of Bacillus subtilis 6S-1 and 6S-2 RNAs–commonalities and differences. RNA 20 348–359. 10.1261/rna.042077.113 PubMed DOI PMC
Cavanagh A. T., Klocko A. D., Liu X., Wassarman K. M. (2008). Promoter specificity for 6S RNA regulation of transcription is determined by core promoter sequences and competition for region 4.2 of sigma70. Mol. Microbiol. 67 1242–1256. 10.1111/j.1365-2958.2008.06117.x PubMed DOI
Cavanagh A. T., Sperger J. M., Wassarman K. M. (2012). Regulation of 6S RNA by pRNA synthesis is required for efficient recovery from stationary phase in E. coli and B. subtilis. Nucleic Acids Res 40 2234–2246. 10.1093/nar/gkr1003 PubMed DOI PMC
Cavanagh A. T., Wassarman K. M. (2013). 6S-1 RNA function leads to a delay in sporulation in Bacillus subtilis. J. Bacteriol. 195 2079–2086. 10.1128/JB.00050-13 PubMed DOI PMC
Chen J., Wassarman K. M., Feng S., Leon K., Feklistov A., Winkelman J. T., et al. (2017). 6S RNA mimics B-form DNA to regulate Escherichia coli RNA polymerase. Mol. Cell 68 388–397.e6. 10.1016/j.molcel.2017.09.006 PubMed DOI PMC
Elkina D., Weber L., Lechner M., Burenina O., Weisert A., Kubareva E., et al. (2017). 6S RNA in Rhodobacter sphaeroides: 6S RNA and pRNA transcript levels peak in late exponential phase and gene deletion causes a high salt stress phenotype. RNA Biol. 14 1627–1637. 10.1080/15476286.2017.1342933 PubMed DOI PMC
Espinoza C. A., Allen T. A., Hieb A. R., Kugel J. F., Goodrich J. A. (2004). B2 RNA binds directly to RNA polymerase II to repress transcript synthesis. Nat. Struct. Mol. Biol. 11 822–829. 10.1038/nsmb812 PubMed DOI
Faucher S. P., Friedlander G., Livny J., Margalit H., Shuman H. A. (2010). Legionella pneumophila 6S RNA optimizes intracellular multiplication. Proc. Natl. Acad. Sci. U. S. A. 107 7533–7538. 10.1073/pnas.0911764107 PubMed DOI PMC
Fraser C. M., Gocayne J. D., White O., Adams M. D., Clayton R. A., Fleischmann R. D., et al. (1995). The minimal gene complement of Mycoplasma genitalium. Science 270 397–403. 10.1126/science.270.5235.397 PubMed DOI
Fuchs T., Wiget P., Osterås M., Jenal U. (2001). Precise amounts of a novel member of a phosphotransferase superfamily are essential for growth and normal morphology in Caulobacter crescentus. Mol. Microbiol. 39 679–692. 10.1046/j.1365-2958.2001.02238.x PubMed DOI
Gomez M., Doukhan L., Nair G., Smith I. (1998). sigA is an essential gene in Mycobacterium smegmatis. Mol. Microbiol. 29 617–628. 10.1046/j.1365-2958.1998.00960.x PubMed DOI
Han X. X., Luo X. X., Zhang L. L. (2014). Glycomyces fuscus sp. nov. and Glycomyces albus sp. nov., actinomycetes isolated from a hypersaline habitat. Int. J. Syst. Evol. Microbiol. 64(Pt 7), 2437–2441. 10.1099/ijs.0.061788-0 PubMed DOI
Hezbri K., Ghodhbane-Gtari F., Montero-Calasanz M. D. C., Nouioui I., Rohde M., Spröer C., et al. (2016). Geodermatophilus pulveris sp. nov., a gamma-radiation-resistant actinobacterium isolated from the Sahara desert. Int. J. Syst. Evol. Microbiol. 66 3828–3834. 10.1099/ijsem.0.001272 PubMed DOI
Hindley J. (1967). Fractionation of 32P-labelled ribonucleic acids on polyacrylamide gels and their characterization by fingerprinting. J. Mol. Biol. 30 125–136. 10.1016/0022-2836(67)90248-3 PubMed DOI
Hnilicova J., Matejckova J. J., Sikova M., Pospisil J., Halada P., Panek J., et al. (2014). Ms1, a novel sRNA interacting with the RNA polymerase core in mycobacteria. Nucleic Acids Res. 42 11763–11776. 10.1093/nar/gku793 PubMed DOI PMC
Hoch P. G., Burenina O. Y., Weber M. H., Elkina D. A., Nesterchuk M. V., Sergiev P. V., et al. (2015). Phenotypic characterization and complementation analysis of Bacillus subtilis 6S RNA single and double deletion mutants. Biochimie 117 87–99. 10.1016/j.biochi.2014.12.019 PubMed DOI
Hoch P. G., Schlereth J., Lechner M., Hartmann R. K. (2016). Bacillus subtilis 6S-2 RNA serves as a template for short transcripts in vivo. RNA 22 614–622. 10.1261/rna.055616.115 PubMed DOI PMC
Hopwood D. A. (2006). Soil to genomics: the Streptomyces chromosome. Annu. Rev. Genet. 40 1–23. 10.1146/annurev.genet.40.110405.090639 PubMed DOI
Jeong Y., Kim J. N., Kim M. W., Bucca G., Cho S., Yoon Y. J., et al. (2016). The dynamic transcriptional and translational landscape of the model antibiotic producer Streptomyces coelicolor A3(2). Nat. Commun. 7:11605. 10.1038/ncomms11605 PubMed DOI PMC
Jones A. J., Venkataramanan K. P., Papoutsakis T. (2016). Overexpression of two stress-responsive, small, non-coding RNAs, 6S and tmRNA, imparts butanol tolerance in Clostridium acetobutylicum. FEMS Microbiol. Lett. 363:fnw063. 10.1093/femsle/fnw063 PubMed DOI
Kalvari I., Argasinska J., Quinones-Olvera N., Nawrocki E. P., Rivas E., Eddy S. R., et al. (2017). Rfam 13.0: shifting to a genome-centric resource for non-coding RNA families. Nucleic Acids Res. 46 D335–D342. 10.1093/nar/gkx1038 PubMed DOI PMC
Kim W., Hwang S., Lee N., Lee Y., Cho S., Palsson B., et al. (2020). Transcriptome and translatome profiles of Streptomyces species in different growth phases. Sci. Data 7:138. 10.1038/s41597-020-0476-9 PubMed DOI PMC
Klocko A. D., Wassarman K. M. (2009). 6S RNA binding to Esigma(70) requires a positively charged surface of sigma(70) region 4.2. Mol. Microbiol. 73 152–164. 10.1111/j.1365-2958.2009.06758.x PubMed DOI PMC
Köhler K., Duchardt-Ferner E., Lechner M., Damm K., Hoch P. G., Salas M., et al. (2015). Structural and mechanistic characterization of 6S RNA from the hyperthermophilic bacterium Aquifex aeolicus. Biochimie 117 72–86. 10.1016/j.biochi.2015.03.004 PubMed DOI
Korf I., Yandell M., Bedell J. (2003). BLAST. Sebastopol, CA: O’Reilly & Associates.
Labeda D. P., Kroppenstedt R. M. (2004). Emended description of the genus Glycomyces and description of Glycomyces algeriensis sp. nov., Glycomyces arizonensis sp. nov. and Glycomyces lechevalierae sp. nov. Int. J. Syst. Evol. Microbiol. 54(Pt 6), 2343–2346. 10.1099/ijs.0.63089-0 PubMed DOI
Lee Y., Lee N., Hwang S., Kim W., Jeong Y., Cho S., et al. (2020). Genome-scale determination of 5′ and 3′ boundaries of RNA transcripts in Streptomyces genomes. Sci. Data 7:436. 10.1038/s41597-020-00775-w PubMed DOI PMC
Lorenz R., Bernhart S. H., Honer Zu Siederdissen C., Tafer H., Flamm C., Stadler P. F., et al. (2011). ViennaRNA Package 2.0. Algorithms Mol. Biol. 6:26. 10.1186/1748-7188-6-26 PubMed DOI PMC
Markham N. R., Zuker M. (2008). UNAFold: software for nucleic acid folding and hybridization. Methods Mol. Biol. 453 3–31. 10.1007/978-1-60327-429-6_1 PubMed DOI
Martini M. C., Zhou Y., Sun H., Shell S. S. (2019). Defining the transcriptional and post-transcriptional landscapes of. Front. Microbiol. 10:591. 10.3389/fmicb.2019.00591 PubMed DOI PMC
Mikulík K., Bobek J., Zídková J., Felsberg J. (2014). 6S RNA modulates growth and antibiotic production in Streptomyces coelicolor. Appl. Microbiol. Biotechnol. 98 7185–7197. 10.1007/s00253-014-5806-4 PubMed DOI
Moody M. J., Young R. A., Jones S. E., Elliot M. A. (2013). Comparative analysis of non-coding RNAs in the antibiotic-producing Streptomyces bacteria. BMC Genomics 14:558. 10.1186/1471-2164-14-558 PubMed DOI PMC
Neusser T., Polen T., Geissen R., Wagner R. (2010). Depletion of the non-coding regulatory 6S RNA in E. coli causes a surprising reduction in the expression of the translation machinery. BMC Genomics 11:165. 10.1186/1471-2164-11-165 PubMed DOI PMC
Nikitina E., Liu S. W., Li F. N., Buyantueva L., Abidueva E., Sun C. H. (2020). sp. nov., an actinobacterium isolated from steppe soil. Int. J. Syst. Evol. Microbiol. 70 1356–1363. 10.1099/ijsem.0.003923 PubMed DOI
Nouioui I., Carro L., García-López M., Meier-Kolthoff J. P., Woyke T., Kyrpides N. C., et al. (2018). Genome-based taxonomic classification of the phylum. Front. Microbiol. 9:2007. 10.3389/fmicb.2018.02007 PubMed DOI PMC
Panchapakesan S. S., Unrau P. J. (2012). E. coli 6S RNA release from RNA polymerase requires σ70 ejection by scrunching and is orchestrated by a conserved RNA hairpin. RNA 18 2251–2259. 10.1261/rna.034785.112 PubMed DOI PMC
Panek J., Bobek J., Mikulik K., Basler M., Vohradsky J. (2008). Biocomputational prediction of small non-coding RNAs in Streptomyces. BMC Genomics 9:217. 10.1186/1471-2164-9-217 PubMed DOI PMC
Pánek J., Krásny L., Bobek J., Jezková E., Korelusová J., Vohradsky J. (2011). The suboptimal structures find the optimal RNAs: homology search for bacterial non-coding RNAs using suboptimal RNA structures. Nucleic Acids Res. 39 3418–3426. 10.1093/nar/gkq1186 PubMed DOI PMC
Perez J. T., Varble A., Sachidanandam R., Zlatev I., Manoharan M., García-Sastre A., et al. (2010). tenOever: Influenza a virus-generated small RNAs regulate the switch from transcription to replication. Proc. Natl. Acad. Sci. U. S. A. 107, 11525–11530. 10.1073/pnas.1001984107 PubMed DOI PMC
Perez J. T., Zlatev I., Aggarwal S., Subramanian S., Sachidanandam R., Kim B., et al. (2012). tenOever: A small-RNA enhancer of viral polymerase activity. J. Virol. 86, 13475-13485. 10.1128/JVI.02295-12 PubMed DOI PMC
Rediger A., Geissen R., Steuten B., Heilmann B., Wagner R., Axmann I. M. (2012). 6S RNA - an old issue became blue-green. Microbiology 158(Pt 10), 2480–2491. 10.1099/mic.0.058958-0 PubMed DOI
Romero D. A., Hasan A. H., Lin Y. F., Kime L., Ruiz-Larrabeiti O., Urem M., et al. (2014). A comparison of key aspects of gene regulation in Streptomyces coelicolor and Escherichia coli using nucleotide-resolution transcription maps produced in parallel by global and differential RNA sequencing. Mol. Microbiol. 94 963–987. 10.1111/mmi.12810 PubMed DOI PMC
Schoch C. L., Ciufo S., Domrachev M., Hotton C. L., Kannan S., Khovanskaya R., et al. (2020). NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database 2020:baaa062. 10.1093/database/baaa062 PubMed DOI PMC
Sedlyarova N., Rescheneder P., Magán A., Popitsch N., Rziha N., Bilusic I., et al. (2017). Natural RNA polymerase aptamers regulate transcription in E. coli. Mol. Cell 67 30–43.e6. 10.1016/j.molcel.2017.05.025 PubMed DOI PMC
Sharma C. M., Hoffmann S., Darfeuille F., Reignier J., Findeiss S., Sittka A., et al. (2010). The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464 250–255. 10.1038/nature08756 PubMed DOI
Shephard L., Dobson N., Unrau P. J. (2010). Binding and release of the 6S transcriptional control RNA. RNA 16 885–892. 10.1261/rna.2036210 PubMed DOI PMC
Sikova M., Janouskova M., Ramaniuk O., Palenikova P., Pospisil J., Bartl P., et al. (2019). Ms1 RNA increases the amount of RNA polymerase in Mycobacterium smegmatis. Mol. Microbiol. 111 354–372. 10.1111/mmi.14159 PubMed DOI
Šmídová K., Ziková A., Pospíšil J., Schwarz M., Bobek J., Vohradsky J. (2019). DNA mapping and kinetic modeling of the HrdB regulon in Streptomyces coelicolor. Nucleic Acids Res. 47 621–633. 10.1093/nar/gky1018 PubMed DOI PMC
Sridhar J., Gunasekaran P. (2013). Computational small RNA prediction in bacteria. Bioinform. Biol. Insights 7 83–95. 10.4137/BBI.S11213 PubMed DOI PMC
Sridhar J., Rafi Z. A. (2007). Small RNA identification in Enterobacteriaceae using synteny and genomic backbone retention. OMICS 11 74–99. 10.1089/omi.2006.0006 PubMed DOI
Steuten B., Setny P., Zacharias M., Wagner R. (2013). Mapping the spatial neighborhood of the regulatory 6S RNA bound to Escherichia coli RNA polymerase holoenzyme. J. Mol. Biol. 425 3649–3661. 10.1016/j.jmb.2013.07.008 PubMed DOI
Strnad H., Patek M., Fousek J., Szokol J., Ulbrich P., Nesvera J., et al. (2014). Genome sequence of Rhodococcus erythropolis strain CCM2595, a phenol derivative-degrading bacterium. Genome Announc. 2:e00208-14. 10.1128/genomeA.00208-14 PubMed DOI PMC
Svensson S. L., Sharma C. M. (2016). Small RNAs in bacterial virulence and communication. Microbiol. Spectr. 4 169–212. 10.1128/microbiolspec.VMBF-0028-2015 PubMed DOI
Trotochaud A. E., Wassarman K. M. (2004). 6S RNA function enhances long-term cell survival. J. Bacteriol. 186 4978–4985. 10.1128/JB.186.15.4978-4985.2004 PubMed DOI PMC
Trotochaud A. E., Wassarman K. M. (2005). A highly conserved 6S RNA structure is required for regulation of transcription. Nat. Struct. Mol. Biol. 12 313–319. 10.1038/nsmb917 PubMed DOI
Trotochaud A. E., Wassarman K. M. (2006). 6S RNA regulation of pspF transcription leads to altered cell survival at high pH. J. Bacteriol. 188 3936–3943. 10.1128/JB.00079-06 PubMed DOI PMC
Vockenhuber M. P., Sharma C. M., Statt M. G., Schmidt D., Xu Z., Dietrich S., et al. (2011). Deep sequencing-based identification of small non-coding RNAs in Streptomyces coelicolor. RNA Biol. 8 468–477. 10.4161/rna.8.3.14421 PubMed DOI PMC
Vogel D. W., Hartmann R. K., Struck J. C., Ulbrich N., Erdmann V. A. (1987). The sequence of the 6S RNA gene of Pseudomonas aeruginosa. Nucleic Acids Res. 15 4583–4591. 10.1093/nar/15.11.4583 PubMed DOI PMC
Wassarman K. M. (2018). 6S RNA, a global regulator of transcription. Microbiol. Spectr. 6: RWR-0019-2018 10.1128/microbiolspec.RWR-0019-2018 PubMed DOI PMC
Wassarman K. M., Saecker R. M. (2006). Synthesis-mediated release of a small RNA inhibitor of RNA polymerase. Science 314 1601–1603. 10.1126/science.1134830 PubMed DOI
Wassarman K. M., Storz G. (2000). 6S RNA regulates E. coli RNA polymerase activity. Cell 101 613–623. 10.1016/s0092-8674(00)80873-9 PubMed DOI
Wehner S., Damm K., Hartmann R. K., Marz M. (2014). Dissemination of 6S RNA among bacteria. RNA Biol. 11 1467–1478. 10.4161/rna.29894 PubMed DOI PMC
Wurm R., Neusser T., Wagner R. (2010). 6S RNA-dependent inhibition of RNA polymerase is released by RNA-dependent synthesis of small de novo products. Biol. Chem. 391 187–196. 10.1515/BC.2010.018 PubMed DOI
Xing K., Qin S., Zhang W. D., Cao C. L., Ruan J. S., Huang Y., et al. (2014). Glycomyces phytohabitans sp. nov., a novel endophytic actinomycete isolated from the coastal halophyte in Jiangsu, East China. J. Antibiot. 67 559–563. 10.1038/ja.2014.40 PubMed DOI
MoaB2, a newly identified transcription factor, binds to σA in Mycobacterium smegmatis
RIP-seq reveals RNAs that interact with RNA polymerase and primary sigma factors in bacteria
What the Hel: recent advances in understanding rifampicin resistance in bacteria