Ms1 RNA Dotaz Zobrazit nápovědu
Ms1 is a sRNA recently found in mycobacteria and several other actinobacterial species. Ms1 interacts with the RNA polymerase (RNAP) core devoid of sigma factors, which differs from 6S RNA that binds to RNAP holoenzymes containing the primary sigma factor. Here we show that Ms1 is the most abundant non-rRNA transcript in stationary phase in Mycobacterium smegmatis. The accumulation of Ms1 stems from its high-level synthesis combined with decreased degradation. We identify the Ms1 promoter, PMs1 , and cis-acting elements important for its activity. Furthermore, we demonstrate that PNPase (an RNase) contributes to the differential accumulation of Ms1 during growth. Then, by comparing the transcriptomes of wt and ΔMs1 strains from stationary phase, we reveal that Ms1 affects the intracellular level of RNAP. The absence of Ms1 results in decreased levels of the mRNAs encoding β and β' subunits of RNAP, which is also reflected at the protein level. Thus, the ΔMs1 strain has a smaller pool of RNAPs available when the transcriptional demand increases. This contributes to the inability of the ΔMs1 strain to rapidly react to environmental changes during outgrowth from stationary phase.
- MeSH
- bakteriální RNA metabolismus MeSH
- delece genu MeSH
- DNA řízené RNA-polymerasy metabolismus MeSH
- malá nekódující RNA genetika metabolismus MeSH
- Mycobacterium smegmatis enzymologie genetika růst a vývoj metabolismus MeSH
- stanovení celkové genové exprese MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Small RNAs (sRNAs) are molecules essential for a number of regulatory processes in the bacterial cell. Here we characterize Ms1, a sRNA that is highly expressed in Mycobacterium smegmatis during stationary phase of growth. By glycerol gradient ultracentrifugation, RNA binding assay, and RNA co-immunoprecipitation, we show that Ms1 interacts with the RNA polymerase (RNAP) core that is free of the primary sigma factor (σA) or any other σ factor. This contrasts with the situation in most other species where it is 6S RNA that interacts with RNAP and this interaction requires the presence of σA. The difference in the interaction of the two types of sRNAs (Ms1 or 6S RNA) with RNAP possibly reflects the difference in the composition of the transcriptional machinery between mycobacteria and other species. Unlike Escherichia coli, stationary phase M. smegmatis cells contain relatively few RNAP molecules in complex with σA. Thus, Ms1 represents a novel type of small RNAs interacting with RNAP.
- MeSH
- bakteriální chromozomy MeSH
- DNA řízené RNA-polymerasy metabolismus MeSH
- konformace nukleové kyseliny MeSH
- malá nekódující RNA chemie genetika metabolismus MeSH
- Mycobacterium smegmatis enzymologie genetika růst a vývoj MeSH
- Mycobacterium genetika MeSH
- sigma faktor metabolismus MeSH
- syntenie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Bacteria employ small non-coding RNAs (sRNAs) to regulate gene expression. Ms1 is an sRNA that binds to the RNA polymerase (RNAP) core and affects the intracellular level of this essential enzyme. Ms1 is structurally related to 6S RNA that binds to a different form of RNAP, the holoenzyme bearing the primary sigma factor. 6S RNAs are widespread in the bacterial kingdom except for the industrially and medicinally important Actinobacteria. While Ms1 RNA was identified in Mycobacterium, it is not clear whether Ms1 RNA is present also in other Actinobacteria species. Here, using a computational search based on secondary structure similarities combined with a linguistic gene synteny approach, we identified Ms1 RNA in Streptomyces. In S. coelicolor, Ms1 RNA overlaps with the previously annotated scr3559 sRNA with an unknown function. We experimentally confirmed that Ms1 RNA/scr3559 associates with the RNAP core without the primary sigma factor HrdB in vivo. Subsequently, we applied the computational approach to other Actinobacteria and identified Ms1 RNA candidates in 824 Actinobacteria species, revealing Ms1 RNA as a widespread class of RNAP binding sRNAs, and demonstrating the ability of our multifactorial computational approach to identify weakly conserved sRNAs in evolutionarily distant genomes.
- Publikační typ
- časopisecké články MeSH
Bacteria have evolved structured RNAs that can associate with RNA polymerase (RNAP). Two of them have been known so far-6S RNA and Ms1 RNA but it is unclear if any other types of RNAs binding to RNAP exist in bacteria. To identify all RNAs interacting with RNAP and the primary σ factors, we have established and performed native RIP-seq in Bacillus subtilis, Corynebacterium glutamicum, Streptomyces coelicolor, Mycobacterium smegmatis and the pathogenic Mycobacterium tuberculosis. Besides known 6S RNAs in B. subtilis and Ms1 in M. smegmatis, we detected MTS2823, a homologue of Ms1, on RNAP in M. tuberculosis. In C. glutamicum, we discovered novel types of structured RNAs that associate with RNAP. Furthermore, we identified other species-specific RNAs including full-length mRNAs, revealing a previously unknown landscape of RNAs interacting with the bacterial transcription machinery.
- MeSH
- Bacillus subtilis genetika metabolismus MeSH
- bakteriální proteiny * metabolismus genetika MeSH
- bakteriální RNA * metabolismus genetika MeSH
- Corynebacterium glutamicum genetika metabolismus MeSH
- DNA řízené RNA-polymerasy * metabolismus genetika MeSH
- genetická transkripce MeSH
- konformace nukleové kyseliny MeSH
- Mycobacterium smegmatis genetika metabolismus enzymologie MeSH
- Mycobacterium tuberculosis genetika metabolismus MeSH
- nekódující RNA MeSH
- regulace genové exprese u bakterií MeSH
- sigma faktor * metabolismus genetika MeSH
- Streptomyces coelicolor genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The population genetics of the family Partitiviridae was studied within the European race of the conifer pathogen Gremmeniella abietina. One hundred sixty-two isolates were collected from different countries, including Canada, the Czech Republic, Finland, Italy, Montenegro, Serbia, Spain, Switzerland, Turkey and the United States. A unique species of G. abietina RNA virus-MS1 (GaRV-MS1) appears to occur indistinctly in G. abietina biotypes A and B, without a particular geographical distribution pattern. Forty-six isolates were shown to host GaRV-MS1 according to direct specific RT-PCR screening, and the virus was more common in biotype A than B. Phylogenetic analysis based on 46 partial coat protein (CP) cDNA sequences divided the GaRV-MS1 population into two closely related clades, while RNA-dependent RNA polymerase (RdRp) sequences revealed only one clade. The evolution of the virus appears to mainly occur through purifying selection but also through recombination. Recombination events were detected within alignments of the three complete CP and RdRp sequences of GaRV-MS1. This is the first time that recombination events have been directly identified in fungal partitiviruses and in G. abietina in particular. The results suggest that the population dynamics of GaRV-MS1 do not have a direct impact on the genetic structure of its host, G. abietina, though they might have had an innocuous ancestral relationship.
- MeSH
- Ascomycota izolace a purifikace virologie MeSH
- fylogeneze MeSH
- genotyp MeSH
- molekulární evoluce MeSH
- molekulární sekvence - údaje MeSH
- polymerázová řetězová reakce s reverzní transkripcí MeSH
- rekombinace genetická MeSH
- RNA virová genetika MeSH
- RNA-viry klasifikace genetika izolace a purifikace MeSH
- sekvenční analýza DNA MeSH
- sekvenční homologie MeSH
- shluková analýza MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
- Kanada MeSH
- Spojené státy americké MeSH