RIP-seq reveals RNAs that interact with RNA polymerase and primary sigma factors in bacteria
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
20-07473S
Czech Science Foundation
275823
Charles University
EXCELES LX22NPO5103
European Union - Next Generation EU, National Institute of Virology and Bacteriology
LM2023055
Ministry of Education
CZ.02.1.01/0.0/0.0/18_046/0015974
European Regional Development Fund
907930101413
Ministry of Defense
SVV 260679
Charles University
Czech Academy of Sciences
PubMed
38348908
PubMed Central
PMC11077062
DOI
10.1093/nar/gkae081
PII: 7606967
Knihovny.cz E-zdroje
- MeSH
- Bacillus subtilis genetika metabolismus MeSH
- bakteriální proteiny * metabolismus genetika MeSH
- bakteriální RNA * metabolismus genetika MeSH
- Corynebacterium glutamicum genetika metabolismus MeSH
- DNA řízené RNA-polymerasy * metabolismus genetika MeSH
- genetická transkripce MeSH
- konformace nukleové kyseliny MeSH
- Mycobacterium smegmatis genetika metabolismus enzymologie MeSH
- Mycobacterium tuberculosis genetika metabolismus MeSH
- nekódující RNA MeSH
- regulace genové exprese u bakterií MeSH
- sigma faktor * metabolismus genetika MeSH
- Streptomyces coelicolor genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 6S RNA MeSH Prohlížeč
- bakteriální proteiny * MeSH
- bakteriální RNA * MeSH
- DNA řízené RNA-polymerasy * MeSH
- nekódující RNA MeSH
- sigma faktor * MeSH
Bacteria have evolved structured RNAs that can associate with RNA polymerase (RNAP). Two of them have been known so far-6S RNA and Ms1 RNA but it is unclear if any other types of RNAs binding to RNAP exist in bacteria. To identify all RNAs interacting with RNAP and the primary σ factors, we have established and performed native RIP-seq in Bacillus subtilis, Corynebacterium glutamicum, Streptomyces coelicolor, Mycobacterium smegmatis and the pathogenic Mycobacterium tuberculosis. Besides known 6S RNAs in B. subtilis and Ms1 in M. smegmatis, we detected MTS2823, a homologue of Ms1, on RNAP in M. tuberculosis. In C. glutamicum, we discovered novel types of structured RNAs that associate with RNAP. Furthermore, we identified other species-specific RNAs including full-length mRNAs, revealing a previously unknown landscape of RNAs interacting with the bacterial transcription machinery.
Department of Bioinformatics 2nd Faculty of Medicine Charles University Prague150 06 Czech Republic
Department of Cell Biology Faculty of Science Charles University Prague128 00 Czech Republic
Laboratory of Regulatory RNAs Faculty of Science Charles University Prague128 44 Czech Republic
Military Health Institute Military Medical Agency Prague169 02 Czech Republic
Zobrazit více v PubMed
Sensi P. History of the development of rifampin. Rev. Infect. Dis. 1983; 5:S402–S406. PubMed
Chen J., Boyaci H., Campbell E.A.. Diverse and unified mechanisms of transcription initiation in bacteria. Nat. Rev. Micro. 2021; 19:95–109. PubMed PMC
Gomez M., Doukhan L., Nair G., Smith I.. sigA is an essential gene in Mycobacterium smegmatis. Mol. Microbiol. 1998; 29:617–628. PubMed
Brown K.L., Wood S., Buttner M.J.. Isolation and characterization of the major vegetative RNA polymerase of Streptomyces coelicolor A3(2); renaturation of a sigma subunit using GroEL. Mol. Microbiol. 1992; 6:1133–1139. PubMed
Browning D.F., Busby S.J.. Local and global regulation of transcription initiation in bacteria. Nat. Rev. Micro. 2016; 14:638–650. PubMed
Wassarman K.M. 6S RNA, a global regulator of transcription. Microbiol. Spectr. 2018; 6:355–367. PubMed PMC
Steuten B., Hoch P.G., Damm K., Schneider S., Köhler K., Wagner R., Hartmann R.K.. Regulation of transcription by 6S RNAs: insights from the Escherichia coli and Bacillus subtilis model systems. RNA Biol. 2014; 11:508–521. PubMed PMC
Trotochaud A.E., Wassarman K.M.. A highly conserved 6S RNA structure is required for regulation of transcription. Nat. Struct. Mol. Biol. 2005; 12:313–319. PubMed
Wassarman K.M., Storz G.. 6S RNA regulates E. coli RNA polymerase activity. Cell. 2000; 101:613–623. PubMed
Hindley J. Fractionation of 32P-labelled ribonucleic acids on polyacrylamide gels and their characterization by fingerprinting. J. Mol. Biol. 1967; 30:125–136. PubMed
Burenina O.Y., Elkina D.A., Hartmann R.K., Oretskaya T.S., Kubareva E.A.. Small noncoding 6S RNAs of bacteria. Biochemistry. 2015; 80:1429–1446. PubMed
Neusser T., Polen T., Geissen R., Wagner R.. Depletion of the non-coding regulatory 6S RNA in E. coli causes a surprising reduction in the expression of the translation machinery. Bmc Genomics [Electronic Resource]. 2010; 11:165. PubMed PMC
Cavanagh A.T., Chandrangsu P., Wassarman K.M.. 6S RNA regulation of relA alters ppGpp levels in early stationary phase. Microbiology. 2010; 156:3791–3800. PubMed PMC
Cavanagh A.T., Klocko A.D., Liu X., Wassarman K.M.. Promoter specificity for 6S RNA regulation of transcription is determined by core promoter sequences and competition for region 4.2 of sigma70. Mol. Microbiol. 2008; 67:1242–1256. PubMed
Trotochaud A.E., Wassarman K.M.. 6S RNA function enhances long-term cell survival. J. Bacteriol. 2004; 186:4978–4985. PubMed PMC
Trotochaud A.E., Wassarman K.M.. 6S RNA regulation of pspF transcription leads to altered cell survival at high pH. J. Bacteriol. 2006; 188:3936–3943. PubMed PMC
Klocko A.D., Wassarman K.M.. 6S RNA binding to Esigma(70) requires a positively charged surface of sigma(70) region 4.2. Mol. Microbiol. 2009; 73:152–164. PubMed PMC
Chen J., Wassarman K.M., Feng S., Leon K., Feklistov A., Winkelman J.T., Li Z., Walz T., Campbell E.A., Darst S.A.. 6S RNA mimics B-form DNA to regulate Escherichia coli RNA polymerase. Mol. Cell. 2017; 68:388–397. PubMed PMC
Steuten B., Setny P., Zacharias M., Wagner R.. Mapping the spatial neighborhood of the regulatory 6S RNA bound to Escherichia coli RNA polymerase holoenzyme. J. Mol. Biol. 2013; 425:3649–3661. PubMed
Cavanagh A.T., Sperger J.M., Wassarman K.M.. Regulation of 6S RNA by pRNA synthesis is required for efficient recovery from stationary phase in E. coli and B. subtilis. Nucleic Acids Res. 2012; 40:2234–2246. PubMed PMC
Wassarman K.M., Saecker R.M.. Synthesis-mediated release of a small RNA inhibitor of RNA polymerase. Science. 2006; 314:1601–1603. PubMed
Beckmann B.M., Burenina O.Y., Hoch P.G., Kubareva E.A., Sharma C.M., Hartmann R.K.. In vivo and in vitro analysis of 6S RNA-templated short transcripts in Bacillus subtilis. RNA Biol. 2011; 8:839–849. PubMed
Hoch P.G., Schlereth J., Lechner M., Hartmann R.K.. Bacillus subtilis 6S-2 RNA serves as a template for short transcripts in vivo. RNA. 2016; 22:614–622. PubMed PMC
Beckmann B.M., Hoch P.G., Marz M., Willkomm D.K., Salas M., Hartmann R.K.. A pRNA-induced structural rearrangement triggers 6S-1 RNA release from RNA polymerase in Bacillus subtilis. EMBO J. 2012; 31:1727–1738. PubMed PMC
Panchapakesan S.S., Unrau P.J.. E. coli 6S RNA release from RNA polymerase requires σ70 ejection by scrunching and is orchestrated by a conserved RNA hairpin. RNA. 2012; 18:2251–2259. PubMed PMC
Wurm R., Neusser T., Wagner R.. 6S RNA-dependent inhibition of RNA polymerase is released by RNA-dependent synthesis of small de novo products. Biol. Chem. 2010; 391:187–196. PubMed
Gildehaus N., Neusser T., Wurm R., Wagner R.. Studies on the function of the riboregulator 6S RNA from E. coli: RNA polymerase binding, inhibition of in vitro transcription and synthesis of RNA-directed de novo transcripts. Nucleic Acids Res. 2007; 35:1885–1896. PubMed PMC
Barrick J.E., Sudarsan N., Weinberg Z., Ruzzo W.L., Breaker R.R.. 6S RNA is a widespread regulator of eubacterial RNA polymerase that resembles an open promoter. RNA. 2005; 11:774–784. PubMed PMC
Wehner S., Damm K., Hartmann R.K., Marz M.. Dissemination of 6S RNA among bacteria. RNA Biol. 2014; 11:1467–1478. PubMed PMC
Bobek J., Mikulová A., Šetinová D., Elliot M., Čihák M.. 6S-Like scr3559 RNA affects development and antibiotic production in Streptomyces coelicolor. Microorganisms. 2021; 9:2004. PubMed PMC
Mikulík K., Bobek J., Zídková J., Felsberg J.. 6S RNA modulates growth and antibiotic production in Streptomyces coelicolor. Appl. Microbiol. Biotechnol. 2014; 98:7185–7197. PubMed
Pánek J., Krásny L., Bobek J., Jezková E., Korelusová J., Vohradsky J.. The suboptimal structures find the optimal RNAs: homology search for bacterial non-coding RNAs using suboptimal RNA structures. Nucleic Acids Res. 2011; 39:3418–3426. PubMed PMC
Hnilicová J., Jirát Matějčková J., Šiková M., Pospíšil J., Halada P., Pánek J., Krásný L.. Ms1, a novel sRNA interacting with the RNA polymerase core in mycobacteria. Nucleic Acids Res. 2014; 42:11763–11776. PubMed PMC
Šiková M., Janoušková M., Ramaniuk O., Páleníková P., Pospíšil J., Bartl P., Suder A., Pajer P., Kubičková P., Pavliš O.et al. .. Ms1 RNA increases the amount of RNA polymerase in mycobacterium smegmatis. Mol. Microbiol. 2019; 111:354–372. PubMed
Arnvig K.B., Comas I., Thomson N.R., Houghton J., Boshoff H.I., Croucher N.J., Rose G., Perkins T.T., Parkhill J., Dougan G.et al. .. Sequence-based analysis uncovers an abundance of non-coding RNA in the total transcriptome of mycobacterium tuberculosis. PLoS Pathog. 2011; 7:e1002342. PubMed PMC
Behra P.R.K., Pettersson B.M.F., Das S., Dasgupta S., Kirsebom L.A.. Comparative genomics of Mycobacterium mucogenicum and Mycobacterium neoaurum clade members emphasizing tRNA and non-coding RNA. BMC Evol. Biol. 2019; 19:124. PubMed PMC
Vaňková Hausnerová V., Marvalová O., Šiková M., Shoman M., Havelková J., Kambová M., Janoušková M., Kumar D., Halada P., Schwarz M.et al. .. Ms1 RNA interacts with the RNA polymerase core in streptomyces coelicolor and was identified in majority of actinobacteria using a linguistic gene synteny search. Front. Microbiol. 2022; 13:848536. PubMed PMC
Šmídová K., Ziková A., Pospíšil J., Schwarz M., Bobek J., Vohradsky J.. DNA mapping and kinetic modeling of the HrdB regulon in Streptomyces coelicolor. Nucleic Acids Res. 2019; 47:621–633. PubMed PMC
Moody M.J., Young R.A., Jones S.E., Elliot M.A.. Comparative analysis of non-coding RNAs in the antibiotic-producing Streptomyces bacteria. Bmc Genomics [Electronic Resource]. 2013; 14:558. PubMed PMC
Bolger A.M., Lohse M., Usadel B.. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014; 30:2114–2120. PubMed PMC
Kim D., Langmead B., Salzberg S.L.. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods. 2015; 12:357–360. PubMed PMC
Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R., Subgroup G.P.D.P.. The sequence alignment/map format and SAMtools. Bioinformatics. 2009; 25:2078–2079. PubMed PMC
Bonfield J.K., Marshall J., Danecek P., Li H., Ohan V., Whitwham A., Keane T., Davies R.M.. HTSlib: c library for reading/writing high-throughput sequencing data. Gigascience. 2021; 10:giab007. PubMed PMC
Ramírez F., Ryan D.P., Grüning B., Bhardwaj V., Kilpert F., Richter A.S., Heyne S., Dündar F., Manke T.. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 2016; 44:W160–W165. PubMed PMC
Zhang Y., Liu T., Meyer C.A., Eeckhoute J., Johnson D.S., Bernstein B.E., Nusbaum C., Myers R.M., Brown M., Li W.et al. .. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008; 9:R137. PubMed PMC
Quinn T.P., Erb I., Richardson M.F., Crowley T.M.. Understanding sequencing data as compositions: an outlook and review. Bioinformatics. 2018; 34:2870–2878. PubMed PMC
Love M.I., Huber W., Anders S.. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15:550. PubMed PMC
Benjamini Y., Hochberg Y.. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol. 1995; 57:289–300.
Hofacker I.L., Priwitzer B., Stadler P.F.. Prediction of locally stable RNA secondary structures for genome-wide surveys. Bioinformatics. 2004; 20:186–190. PubMed
Gruber A.R., Lorenz R., Bernhart S.H., Neuböck R., Hofacker I.L.. The Vienna RNA websuite. Nucleic Acids Res. 2008; 36:W70–W74. PubMed PMC
Lorenz R., Bernhart S.H., Höner Zu Siederdissen C., Tafer H., Flamm C., Stadler P.F., Hofacker I.L.. ViennaRNA package 2.0. Algorithms Mol. Biol. 2011; 6:26. PubMed PMC
Kouba T., Koval' T., Sudzinová P., Pospíšil J., Brezovská B., Hnilicová J., Šanderová H., Janoušková M., Šiková M., Halada Pet al. .. Mycobacterial HelD is a nucleic acids-clearing factor for RNA polymerase. Nat. Commun. 2020; 11:6419. PubMed PMC
Hör J., Garriss G., Di Giorgio S., Hack L.M., Vanselow J.T., Förstner K.U., Schlosser A., Henriques-Normark B., Vogel J.. Grad-seq in a gram-positive bacterium reveals exonucleolytic sRNA activation in competence control. EMBO J. 2020; 39:e103852. PubMed PMC
Hu Y., Morichaud Z., Perumal A.S., Roquet-Baneres F., Brodolin K.. Mycobacterium RbpA cooperates with the stress-response σb subunit of RNA polymerase in promoter DNA unwinding. Nucleic Acids Res. 2014; 42:10399–10408. PubMed PMC
Lee J.H., Karakousis P.C., Bishai W.R.. Roles of SigB and SigF in the mycobacterium tuberculosis sigma factor network. J. Bacteriol. 2008; 190:699–707. PubMed PMC
Hurst-Hess K., Biswas R., Yang Y., Rudra P., Lasek-Nesselquist E., Ghosh P.. Mycobacterial SigA and SigB cotranscribe essential housekeeping genes during exponential growth. mBio. 2019; 10:e00273-19. PubMed PMC
Moore S.D., Sauer R.T.. The tmRNA system for translational surveillance and ribosome rescue. Annu. Rev. Biochem. 2007; 76:101–124. PubMed
Valle M., Gillet R., Kaur S., Henne A., Ramakrishnan V., Frank J.. Visualizing tmRNA entry into a stalled ribosome. Science. 2003; 300:127–130. PubMed
Kapopoulou A., Lew J.M., Cole S.T.. The MycoBrowser portal: a comprehensive and manually annotated resource for mycobacterial genomes. Tuberculosis (Edinb.). 2011; 91:8–13. PubMed
Robinson J.T., Thorvaldsdottir H., Turner D., Mesirov J.P.. igv.Js: an embeddable JavaScript implementation of the Integrative Genomics Viewer (IGV). Bioinformatics. 2023; 39:btac830. PubMed PMC
Dronkert M.L., Kanaar R.. Repair of DNA interstrand cross-links. Mutat. Res. 2001; 486:217–247. PubMed
IYER V.N., SZYBALSKI W.. Mitomycins and porfiromycin: chemical mechanism of activation and cross-linking of dna. Science. 1964; 145:55–58. PubMed
Flynn J.L., Chan J.. Immunology of tuberculosis. Annu. Rev. Immunol. 2001; 19:93–129. PubMed
Manganelli R., Voskuil M.I., Schoolnik G.K., Dubnau E., Gomez M., Smith I.. Role of the extracytoplasmic-function sigma factor sigma(H) in mycobacterium tuberculosis global gene expression. Mol. Microbiol. 2002; 45:365–374. PubMed
Hu Y., Coates A.R.. Transcription of two sigma 70 homologue genes, sigA and sigB, in stationary-phase mycobacterium tuberculosis. J. Bacteriol. 1999; 181:469–476. PubMed PMC
Manganelli R., Dubnau E., Tyagi S., Kramer F.R., Smith I.. Differential expression of 10 sigma factor genes in mycobacterium tuberculosis. Mol. Microbiol. 1999; 31:715–724. PubMed
Müller A.U., Imkamp F., Weber-Ban E.. The mycobacterial LexA/RecA-independent DNA damage response is controlled by PafBC and the pup-proteasome system. Cell Rep. 2018; 23:3551–3564. PubMed
Ofer N., Wishkautzan M., Meijler M., Wang Y., Speer A., Niederweis M., Gur E.. Ectoine biosynthesis in Mycobacterium smegmatis. Appl. Environ. Microb. 2012; 78:7483–7486. PubMed PMC
Fudrini Olivencia B., Müller A.U., Roschitzki B., Burger S., Weber-Ban E., Imkamp F.. Mycobacterium smegmatis PafBC is involved in regulation of DNA damage response. Sci. Rep. 2017; 7:13987. PubMed PMC
Morichaud Z., Trapani S., Vishwakarma R.K., Chaloin L., Lionne C., Lai-Kee-Him J., Bron P., Brodolin K.. Structural basis of the mycobacterial stress-response RNA polymerase auto-inhibition via oligomerization. Nat. Commun. 2023; 14:484. PubMed PMC
Swiercz J.P., Hindra Bobek J., Haiser H.J., Di Berardo C., Tjaden B., Elliot M.A. Small non-coding RNAs in Streptomyces coelicolor. Nucleic Acids Res. 2008; 36:7240–7251. PubMed PMC
Köhler K., Duchardt-Ferner E., Lechner M., Damm K., Hoch P.G., Salas M., Hartmann R.K.. Structural and mechanistic characterization of 6S RNA from the hyperthermophilic bacterium Aquifex aeolicus. Biochimie. 2015; 117:72–86. PubMed
Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J.. Basic local alignment search tool. J. Mol. Biol. 1990; 215:403–410. PubMed
Schwarz M., Vohradský J., Pánek J.. rboAnalyzer webserver: web service for non-coding RNA characterization from NCBI BLAST output. Bioinformatics. 2021; 37:2755–2756. PubMed
Ruwe M., Persicke M., Busche T., Müller B., Kalinowski J.. Physiology and transcriptional analysis of (p)ppGpp-related regulatory effects in Corynebacterium glutamicum. Front. Microbiol. 2019; 10:2769. PubMed PMC
Graf M., Haas T., Teleki A., Feith A., Cerff M., Wiechert W., Nöh K., Busche T., Kalinowski J., Takors R.. Revisiting the growth modulon of of Corynebacterium glutamicum under glucose limited chemostat conditions. Front. Bioeng. Biotechnol. 2020; 8:584614. PubMed PMC
Haas T., Graf M., Nieß A., Busche T., Kalinowski J., Blombach B., Takors R.. Identifying the growth modulon of Corynebacterium glutamicum. Front. Microbiol. 2019; 10:974. PubMed PMC
Taniguchi H., Busche T., Patschkowski T., Niehaus K., Pátek M., Kalinowski J., Wendisch V.F.. Physiological roles of sigma factor SigD in Corynebacterium glutamicum. BMC Microbiol. 2017; 17:158. PubMed PMC
Franco E.F., Rana P., Queiroz Cavalcante A.L., da Silva A.L., Cybelle Pinto Gomide A., Carneiro Folador A.R., Azevedo V., Ghosh P., T J Ramos R.. Co-expression networks for causal gene identification based on RNA-seq data ofCorynebacterium pseudotuberculosis. Genes (Basel). 2020; 11:794. PubMed PMC
Ibraim I.C., Parise M.T.D., Parise D., Sfeir M.Z.T., de Paula Castro T.L., Wattam A.R., Ghosh P., Barh D., Souza E.M., Góes-Neto A.et al. .. Transcriptome profile of Corynebacterium pseudotuberculosis in response to iron limitation. Bmc Genomics [Electronic Resource]. 2019; 20:663. PubMed PMC
Luong T.T., Nguyen M.T., Chen Y.W., Chang C., Lee J.H., Wittchen M., Ton-That H., Cruz M., Garsin D.A., Das A.et al. .. Ribonuclease J-mediated mRNA turnover modulates cell shape, metabolism and virulence in Corynebacterium diphtheriae. Microorganisms. 2021; 9:389. PubMed PMC
Hamabata T., Senoh M., Iwaki M., Nishiyama A., Yamamoto A., Shibayama K.. Induction and resuscitation of viable but nonculturable Corynebacterium diphtheriae. Microorganisms. 2021; 9:927. PubMed PMC
Burenina O.Y., Hoch P.G., Damm K., Salas M., Zatsepin T.S., Lechner M., Oretskaya T.S., Kubareva E.A., Hartmann R.K.. Mechanistic comparison of Bacillus subtilis 6S-1 and 6S-2 RNAs–commonalities and differences. RNA. 2014; 20:348–359. PubMed PMC
Cavanagh A.T., Wassarman K.M.. 6S RNA, a global regulator of transcription in Escherichia coli, Bacillus subtilis, and beyond. Annu. Rev. Microbiol. 2014; 68:45–60. PubMed
Thüring M., Ganapathy S., Schlüter M.A.C., Lechner M., Hartmann R.K.. 6S-2 RNA deletion in the undomesticated B. subtilis strain NCIB 3610 causes a biofilm derepression phenotype. RNA Biol. 2021; 18:79–92. PubMed PMC
Delumeau O., Lecointe F., Muntel J., Guillot A., Guédon E., Monnet V., Hecker M., Becher D., Polard P., Noirot P.. The dynamic protein partnership of RNA polymerase in Bacillus subtilis. Proteomics. 2011; 11:2992–3001. PubMed
Shahbabian K., Jamalli A., Zig L., Putzer H.. RNase Y, a novel endoribonuclease, initiates riboswitch turnover in Bacillus subtilis. EMBO J. 2009; 28:3523–3533. PubMed PMC
Benda M., Woelfel S., Faßhauer P., Gunka K., Klumpp S., Poehlein A., Kálalová D., Šanderová H., Daniel R., Krásný L.et al. .. Quasi-essentiality of RNase Y in Bacillus subtilis is caused by its critical role in the control of mRNA homeostasis. Nucleic Acids Res. 2021; 49:7088–7102. PubMed PMC
Lee C.A., Fournier M.J., Beckwith J.. Escherichia coli 6S RNA is not essential for growth or protein secretion. J. Bacteriol. 1985; 161:1156–1161. PubMed PMC
Faucher S.P., Friedlander G., Livny J., Margalit H., Shuman H.A.. Legionella pneumophila 6S RNA optimizes intracellular multiplication. Proc. Natl. Acad. Sci. U.S.A. 2010; 107:7533–7538. PubMed PMC
Hoch P.G., Burenina O.Y., Weber M.H., Elkina D.A., Nesterchuk M.V., Sergiev P.V., Hartmann R.K., Kubareva E.A.. Phenotypic characterization and complementation analysis of Bacillus subtilis 6S RNA single and double deletion mutants. Biochimie. 2015; 117:87–99. PubMed
Cavanagh A.T., Wassarman K.M.. 6S-1 RNA function leads to a delay in sporulation in Bacillus subtilis. J. Bacteriol. 2013; 195:2079–2086. PubMed PMC
Thüring M., Ganapathy S., Schlüter M.A.C., Lechner M., Hartmann R.K.. 6S-2 RNA deletion in the undomesticated. RNA Biol. 2021; 18:79–92. PubMed PMC
Nguyen V.T., Kiss T., Michels A.A., Bensaude O.. 7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes. Nature. 2001; 414:322–325. PubMed
Yang Z., Zhu Q., Luo K., Zhou Q.. The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control transcription. Nature. 2001; 414:317–322. PubMed
Michels A.A., Fraldi A., Li Q., Adamson T.E., Bonnet F., Nguyen V.T., Sedore S.C., Price J.P., Price D.H., Lania L.et al. .. Binding of the 7SK snRNA turns the HEXIM1 protein into a P-TEFb (CDK9/cyclin T) inhibitor. EMBO J. 2004; 23:2608–2619. PubMed PMC
Müller A.U., Leibundgut M., Ban N., Weber-Ban E.. Structure and functional implications of WYL domain-containing bacterial DNA damage response regulator PafBC. Nat. Commun. 2019; 10:4653. PubMed PMC
Dey A., Verma A.K., Chatterji D. Role of an RNA polymerase interacting protein, MsRbpA, from Mycobacterium smegmatis in phenotypic tolerance to rifampicin. Microbiology. 2010; 156:873–883. PubMed
Hubin E.A., Fay A., Xu C., Bean J.M., Saecker R.M., Glickman M.S., Darst S.A., Campbell E.A.. Structure and function of the mycobacterial transcription initiation complex with the essential regulator RbpA. eLife. 2017; 6:e22520. PubMed PMC
MoaB2, a newly identified transcription factor, binds to σA in Mycobacterium smegmatis