Aerobic kinetoplastid flagellate Phytomonas does not require heme for viability
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22355128
PubMed Central
PMC3309753
DOI
10.1073/pnas.1201089109
PII: 1201089109
Knihovny.cz E-zdroje
- MeSH
- biologické modely MeSH
- Crithidia fasciculata metabolismus MeSH
- ergosterol chemie MeSH
- fylogeneze MeSH
- hem chemie MeSH
- Kinetoplastida metabolismus MeSH
- kyslík chemie MeSH
- lanosterol chemie MeSH
- mastné kyseliny chemie MeSH
- oxidace-redukce MeSH
- oxidační stres MeSH
- porfyriny chemie MeSH
- steroly chemie MeSH
- transport elektronů MeSH
- Trypanosomatina metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ergosterol MeSH
- hem MeSH
- kyslík MeSH
- lanosterol MeSH
- mastné kyseliny MeSH
- porfyriny MeSH
- steroly MeSH
Heme is an iron-coordinated porphyrin that is universally essential as a protein cofactor for fundamental cellular processes, such as electron transport in the respiratory chain, oxidative stress response, or redox reactions in various metabolic pathways. Parasitic kinetoplastid flagellates represent a rare example of organisms that depend on oxidative metabolism but are heme auxotrophs. Here, we show that heme is fully dispensable for the survival of Phytomonas serpens, a plant parasite. Seeking to understand the metabolism of this heme-free eukaryote, we searched for heme-containing proteins in its de novo sequenced genome and examined several cellular processes for which heme has so far been considered indispensable. We found that P. serpens lacks most of the known hemoproteins and does not require heme for electron transport in the respiratory chain, protection against oxidative stress, or desaturation of fatty acids. Although heme is still required for the synthesis of ergosterol, its precursor, lanosterol, is instead incorporated into the membranes of P. serpens grown in the absence of heme. In conclusion, P. serpens is a flagellate with unique metabolic adaptations that allow it to bypass all requirements for heme.
Zobrazit více v PubMed
Frankenberg N, Moser J, Jahn D. Bacterial heme biosynthesis and its biotechnological application. Appl Microbiol Biotechnol. 2003;63:115–127. PubMed
Panek H, O'Brian MR. A whole genome view of prokaryotic haem biosynthesis. Microbiology. 2002;148:2273–2282. PubMed
Schenkman JB, Jansson I. The many roles of cytochrome b5. Pharmacol Ther. 2003;97(2):139–152. PubMed
Anzenbacher P, Anzenbacherová E. Cytochromes P450 and metabolism of xenobiotics. Cell Mol Life Sci. 2001;58:737–747. PubMed PMC
Chelikani P, Fita I, Loewen PC. Diversity of structures and properties among catalases. Cell Mol Life Sci. 2004;61:192–208. PubMed PMC
Bonifacio A, et al. Role of peroxidases in the compensation of cytosolic ascorbate peroxidase knockdown in rice plants under abiotic stress. Plant Cell Environ. 2011;34:1705–1722. PubMed
Poole RK, Hughes MN. New functions for the ancient globin family: Bacterial responses to nitric oxide and nitrosative stress. Mol Microbiol. 2000;36:775–783. PubMed
Green J, Crack JC, Thomson AJ, LeBrun NE. Bacterial sensors of oxygen. Curr Opin Microbiol. 2009;12(2):145–151. PubMed
Hou S, Reynolds MF, Horrigan FT, Heinemann SH, Hoshi T. Reversible binding of heme to proteins in cellular signal transduction. Acc Chem Res. 2006;39:918–924. PubMed
Brooijmans R, et al. Heme and menaquinone induced electron transport in lactic acid bacteria. Microb Cell Fact. 2009;8(1):28. PubMed PMC
Lechardeur D, et al. Using heme as an energy boost for lactic acid bacteria. Curr Opin Biotechnol. 2011;22:143–149. PubMed
Sambri V, Cevenini R, La Placa M. Susceptibility of iron-loaded Borrelia burgdorferi to killing by hydrogen peroxide and human polymorphonuclear leucocytes. FEMS Microbiol Lett. 1991;65(1):67–71. PubMed
Braz GRC, Coelho HSL, Masuda H, Oliveira PL. A missing metabolic pathway in the cattle tick Boophilus microplus. Curr Biol. 1999;9:703–706. PubMed
Ghedin E, et al. Draft genome of the filarial nematode parasite Brugia malayi. Science. 2007;317:1756–1760. PubMed PMC
Rao AU, Carta LK, Lesuisse E, Hamza I. Lack of heme synthesis in a free-living eukaryote. Proc Natl Acad Sci USA. 2005;102:4270–4275. PubMed PMC
Hjort K, Goldberg AV, Tsaousis AD, Hirt RP, Embley TM. Diversity and reductive evolution of mitochondria among microbial eukaryotes. Philos Trans R Soc Lond B Biol Sci. 2010;365:713–727. PubMed PMC
Chang KP, Chang CS, Sassa S. Heme biosynthesis in bacterium-protozoon symbioses: Enzymic defects in host hemoflagellates and complemental role of their intracellular symbiotes. Proc Natl Acad Sci USA. 1975;72:2979–2983. PubMed PMC
Vanhollebeke B, et al. A haptoglobin-hemoglobin receptor conveys innate immunity to Trypanosoma brucei in humans. Science. 2008;320:677–681. PubMed
Lara FA, et al. Heme requirement and intracellular trafficking in Trypanosoma cruzi epimastigotes. Biochem Biophys Res Commun. 2007;355:16–22. PubMed
Korený L, Lukeš J, Oborník M. Evolution of the haem synthetic pathway in kinetoplastid flagellates: An essential pathway that is not essential after all? Int J Parasitol. 2010;40:149–156. PubMed
Muller E, et al. Variability in the phloem restricted plant trypanosomes (Phytomonas spp) associated with wilts of cultivated crops; Isoenzyme comparison with the lower trypanosomatids. Eur J Plant Pathol. 1994;100:425–434.
Sánchez-Moreno M, Lasztity D, Coppens I, Opperdoes FR. Characterization of carbohydrate metabolism and demonstration of glycosomes in a Phytomonas sp. isolated from Euphorbia characias. Mol Biochem Parasitol. 1992;54:185–199. PubMed
Tripodi KE, Buttigliero LV, Altabe SG, Uttaro AD. Functional characterization of front-end desaturases from trypanosomatids depicts the first polyunsaturated fatty acid biosynthetic pathway from a parasitic protozoan. FEBS J. 2006;273:271–280. PubMed
Flannery AR, Huynh C, Mittra B, Mortara RA, Andrews NW. LFR1 ferric iron reductase of Leishmania amazonensis is essential for the generation of infective parasite forms. J Biol Chem. 2011;286:23266–23279. PubMed PMC
Vonlaufen N, Kanzok SM, Wek RC, Sullivan WJ., Jr Stress response pathways in protozoan parasites. Cell Microbiol. 2008;10:2387–2399. PubMed
Nawathean P, Maslov DA. The absence of genes for cytochrome c oxidase and reductase subunits in maxicircle kinetoplast DNA of the respiration-deficient plant trypanosomatid Phytomonas serpens. Curr Genet. 2000;38(2):95–103. PubMed
González-Halphen D, Maslov DA. NADH-ubiquinone oxidoreductase activity in the kinetoplasts of the plant trypanosomatid Phytomonas serpens. Parasitol Res. 2004;92:341–346. PubMed
Maslov DA, Zíková A, Kyselová I, Lukeš J. A putative novel nuclear-encoded subunit of the cytochrome c oxidase complex in trypanosomatids. Mol Biochem Parasitol. 2002;125:113–125. PubMed
Chaumont F, Schanck AN, Blum JJ, Opperdoes FR. Aerobic and anaerobic glucose metabolism of Phytomonas sp. isolated from Euphorbia characias. Mol Biochem Parasitol. 1994;67:321–331. PubMed
Cermáková P, Verner Z, Man P, Lukeš J, Horváth A. Characterization of the NADH:ubiquinone oxidoreductase (complex I) in the trypanosomatid Phytomonas serpens (Kinetoplastida) FEBS J. 2007;274:3150–3158. PubMed
Van Hellemond JJ, Simons B, Millenaar FF, Tielens AG. A gene encoding the plant-like alternative oxidase is present in Phytomonas but absent in Leishmania spp. J Eukaryot Microbiol. 1998;45:426–430. PubMed
Morales J, et al. Novel mitochondrial complex II isolated from Trypanosoma cruzi is composed of 12 peptides including a heterodimeric Ip subunit. J Biol Chem. 2009;284:7255–7263. PubMed PMC
Tran QM, Rothery RA, Maklashina E, Cecchini G, Weiner JH. Escherichia coli succinate dehydrogenase variant lacking the heme b. Proc Natl Acad Sci USA. 2007;104:18007–18012. PubMed PMC
Oyedotun KS, Sit CS, Lemire BD. The Saccharomyces cerevisiae succinate dehydrogenase does not require heme for ubiquinone reduction. Biochim Biophys Acta. 2007;1767:1436–1445. PubMed
Lemarie A, Grimm S. Mutations in the heme b-binding residue of SDHC inhibit assembly of respiratory chain complex II in mammalian cells. Mitochondrion. 2009;9:254–260. PubMed
Bringaud F, Rivière L, Coustou V. Energy metabolism of trypanosomatids: Adaptation to available carbon sources. Mol Biochem Parasitol. 2006;149:1–9. PubMed
Jeffcoat R, Brawn PR, Safford R, James AT. Properties of rat liver microsomal stearoyl-coenzyme A desaturase. Biochem J. 1977;161:431–437. PubMed PMC
Uttaro AD. Biosynthesis of polyunsaturated fatty acids in lower eukaryotes. IUBMB Life. 2006;58:563–571. PubMed
Mitchell AG, Martin CE. A novel cytochrome b5-like domain is linked to the carboxyl terminus of the Saccharomyces cerevisiae delta-9 fatty acid desaturase. J Biol Chem. 1995;270:29766–29772. PubMed
Domergue F, et al. New insight into Phaeodactylum tricornutum fatty acid metabolism. Cloning and functional characterization of plastidial and microsomal δ12-fatty acid desaturases. Plant Physiol. 2003;131:1648–1660. PubMed PMC
Hongsthong A, et al. Revealing the complementation of ferredoxin by cytochrome b (5) in the Spirulina- (6)-desaturation reaction by N-terminal fusion and co-expression of the fungal-cytochrome b (5) domain and Spirulina- (6)-acyl-lipid desaturase. Appl Microbiol Biotechnol. 2006;72:1192–1201. PubMed
Zhou W, Lepesheva GI, Waterman MR, Nes WD. Mechanistic analysis of a multiple product sterol methyltransferase implicated in ergosterol biosynthesis in Trypanosoma brucei. J Biol Chem. 2006;281:6290–6296. PubMed
Lamb DC, et al. Plant sterol 14 α-demethylase affinity for azole fungicides. Biochem Biophys Res Commun. 2001;284:845–849. PubMed
Lepesheva GI, et al. Sterol 14α-demethylase as a potential target for antitrypanosomal therapy: Enzyme inhibition and parasite cell growth. Chem Biol. 2007;14:1283–1293. PubMed PMC
Rangel H, Dagger F, Hernandez A, Liendo A, Urbina JA. Naturally azole-resistant Leishmania braziliensis promastigotes are rendered susceptible in the presence of terbinafine: Comparative study with azole-susceptible Leishmania mexicana promastigotes. Antimicrob Agents Chemother. 1996;40:2785–2791. PubMed PMC
Buttke TM, Van Cleave S. Adaptation of a cholesterol deficient human T cell line to growth with lanosterol. Biochem Biophys Res Commun. 1994;200:206–212. PubMed
Gachotte D, et al. A yeast sterol auxotroph (erg25) is rescued by addition of azole antifungals and reduced levels of heme. Proc Natl Acad Sci USA. 1997;94:11173–11178. PubMed PMC
Nozaki T, Shigeta Y, Saito-Nakano Y, Imada M, Kruger WD. Characterization of transsulfuration and cysteine biosynthetic pathways in the protozoan hemoflagellate, Trypanosoma cruzi. Isolation and molecular characterization of cystathionine β-synthase and serine acetyltransferase from Trypanosoma. J Biol Chem. 2001;276:6516–6523. PubMed
Farr H, Gull K. Functional studies of an evolutionarily conserved, cytochrome b5 domain protein reveal a specific role in axonemal organisation and the general phenomenon of post-division axonemal growth in trypanosomes. Cell Motil Cytoskeleton. 2009;66(1):24–35. PubMed
Das S, et al. Lipid metabolism in mucous-dwelling amitochondriate protozoa. Int J Parasitol. 2002;32:655–675. PubMed
Rieske JS. The quantitative determination of mitochondrial hemoproteins. Methods Enzymol. 1967;10:488–493.
Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–917. PubMed
Horváth A, et al. Downregulation of the nuclear-encoded subunits of the complexes III and IV disrupts their respective complexes but not complex I in procyclic Trypanosoma brucei. Mol Microbiol. 2005;58:116–130. PubMed
Chevreux B, Wetter T, Suhai S. Proceedings of German Conference on Bioinformatics, GCB ‘99. Braunschweig, Germany: German Research Centre for Biotechnology; 1999. Genome sequence assembly using trace signals and additional sequence information; pp. 45–56.
Katoh K, Toh H. Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform. 2008;9:286–298. PubMed
Hall TA. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser. 1999;41:95–98.
Stamatakis A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–2690. PubMed
Gould MK, Vu XL, Seebeck T, de Koning HP. Propidium iodide-based methods for monitoring drug action in the kinetoplastidae: Comparison with the Alamar Blue assay. Anal Biochem. 2008;382(2):87–93. PubMed
Räz B, Iten M, Grether-Bühler Y, Kaminsky R, Brun R. The Alamar Blue assay to determine drug sensitivity of African trypanosomes (T.b. rhodesiense and T.b. gambiense) in vitro. Acta Trop. 1997;68(2):139–147. PubMed
Complex Endosymbioses I: From Primary to Complex Plastids, Serial Endosymbiotic Events
Genomics of Trypanosomatidae: Where We Stand and What Needs to Be Done?
Using Diatom and Apicomplexan Models to Study the Heme Pathway of Chromera velia
Enigmatic Evolutionary History of Porphobilinogen Deaminase in Eukaryotic Phototrophs
Comparative genomics of Leishmania (Mundinia)
Not in your usual Top 10: protists that infect plants and algae
A Narnavirus in the Trypanosomatid Protist Plant Pathogen Phytomonas serpens
Heme pathway evolution in kinetoplastid protists
Giardia intestinalis incorporates heme into cytosolic cytochrome b₅
Make it, take it, or leave it: heme metabolism of parasites