Trypanocidal action of bisphosphonium salts through a mitochondrial target in bloodstream form Trypanosoma brucei
Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27054061
PubMed Central
PMC4805778
DOI
10.1016/j.ijpddr.2015.12.002
PII: S2211-3207(15)30023-3
Knihovny.cz E-zdroje
- Klíčová slova
- FoF1 ATPase, Mitochondrion, Phosphonium salt, SDH complex, Succinate dehydrogenase, Trypanosoma brucei,
- MeSH
- adenosintrifosfát metabolismus MeSH
- azidy farmakologie MeSH
- buněčné linie MeSH
- membránový potenciál mitochondrií účinky léků MeSH
- mitochondriální DNA metabolismus MeSH
- mitochondrie účinky léků genetika metabolismus MeSH
- organofosforové sloučeniny chemie farmakologie MeSH
- protonové ATPasy metabolismus MeSH
- RNA interference MeSH
- sukcinátdehydrogenasa metabolismus MeSH
- trypanocidální látky farmakologie MeSH
- Trypanosoma brucei brucei cytologie účinky léků růst a vývoj MeSH
- trypanozomóza africká parazitologie MeSH
- vápník metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenosintrifosfát MeSH
- azidy MeSH
- mitochondriální DNA MeSH
- organofosforové sloučeniny MeSH
- protonové ATPasy MeSH
- sukcinátdehydrogenasa MeSH
- trypanocidální látky MeSH
- vápník MeSH
Lipophilic bisphosphonium salts are among the most promising antiprotozoal leads currently under investigation. As part of their preclinical evaluation we here report on their mode of action against African trypanosomes, the etiological agents of sleeping sickness. The bisphosphonium compounds CD38 and AHI-9 exhibited rapid inhibition of Trypanosoma brucei growth, apparently the result of cell cycle arrest that blocked the replication of mitochondrial DNA, contained in the kinetoplast, thereby preventing the initiation of S-phase. Incubation with either compound led to a rapid reduction in mitochondrial membrane potential, and ATP levels decreased by approximately 50% within 1 h. Between 4 and 8 h, cellular calcium levels increased, consistent with release from the depolarized mitochondria. Within the mitochondria, the Succinate Dehydrogenase complex (SDH) was investigated as a target for bisphosphonium salts, but while its subunit 1 (SDH1) was present at low levels in the bloodstream form trypanosomes, the assembled complex was hardly detectable. RNAi knockdown of the SDH1 subunit produced no growth phenotype, either in bloodstream or in the procyclic (insect) forms and we conclude that in trypanosomes SDH is not the target for bisphosphonium salts. Instead, the compounds inhibited ATP production in intact mitochondria, as well as the purified F1 ATPase, to a level that was similar to 1 mM azide. Co-incubation with azide and bisphosphonium compounds did not inhibit ATPase activity more than either product alone. The results show that, in T. brucei, bisphosphonium compounds do not principally act on succinate dehydrogenase but on the mitochondrial FoF1 ATPase.
Zobrazit více v PubMed
Acestor N., Zikova A., Dalley R.A., Anupama A., Panigrahi A.K., Stuart K.D. Trypanosoma brucei mitochondrial respiratome: composition and organization in procyclic form. Mol. Cell Proteom. 2011;10 M110 006908. PubMed PMC
Allemann N., Schneider A. ATP production in isolated mitochondria of procyclic Trypanosoma brucei. Mol. Biochem. Parasitol. 2000;111:87–94. PubMed
Beck K., Acestor N., Schulfer A., Anupama A., Carnes J., Panigrahi A.K., Stuart K. Trypanosoma brucei Tb927.2.6100 is an essential protein associated with kinetoplast DNA. Eukaryot. Cell. 2013;12:970–978. PubMed PMC
Benein P., Almuteri M.A., Mehanna A.S., D'Souza G.G. Synthesis of triphenylphosphonium phospholipid conjugates for the preparation of mitochondriotropic liposomes. Methods Mol. Biol. 2015;1265:51–57. PubMed
Birch-Machin M.A., Turnbull D.M. Assaying mitochondrial respiratory complex activity in mitochondria isolated from human cells and tissues. Methods Cell Biol. 2001;65:97–117. PubMed
Bowler M.W., Montgomery M.G., Leslie A.G., Walker J.E. How azide inhibits ATP hydrolysis by the F-ATPases. Proc. Natl. Acad. Sci. U. S. A. 2006;103:8646–8649. PubMed PMC
Bruhn D.F., Sammartino M.P., Klingbeil M.M. Three mitochondrial DNA polymerases are essential for kinetoplast DNA replication and survival of bloodstream form Trypanosoma brucei. Eukaryot. Cell. 2011;10:734–743. PubMed PMC
Brun R., Blum J., Chappuis F., Burri C. Human African trypanosomiasis. Lancet. 2010;375:148–159. PubMed
Cairns A.G., McQuaker S.J., Murphy M.P., Hartley R.C. Targeting mitochondria with small molecules: the preparation of MitoB and MitoP as exomarkers of mitochondrial hydrogen peroxide. Methods Mol. Biol. 2015;1265:25–50. PubMed
Chaudhuri M., Ajayi W., Hill G.C. Biochemical and molecular properties of the Trypanosoma brucei alternative oxidase. Mol. Biochem. Parasitol. 1998;95:53–68. PubMed
Cortes L.A., Castro L., Pesce B., Maya J.D., Ferreira J., Castro-Castillo V., Parra E., Jara J.A., Lopez-Munoz R. Novel gallate triphenylphosphonium derivatives with potent antichagasic activity. PLoS One. 2015;10:e0136852. PubMed PMC
Coustou V., Biran M., Breton M., Guegan F., Riviere L., Plazolles N., Nolan D., Barrett M.P., Franconi J.M., Bringaud F. Glucose-induced remodeling of intermediary and energy metabolism in procyclic Trypanosoma brucei. J. Biol. Chem. 2008;283:16342–16354. PubMed
Dardonville C., Alkhaldi A.A., De Koning H.P. SAR studies of diphenyl cationic trypanocides: superior activity of phosphonium over ammonium salts. ACS Med. Chem. Lett. 2015;6:151–155. PubMed PMC
Dardonville C., Barrett M.P., Brun R., Kaiser M., Tanious F., Wilson W.D. DNA binding affinity of bisguanidine and bis(2-aminoimidazoline) derivatives with in vivo antitrypanosomal activity. J. Med. Chem. 2006;49:3748–3752. PubMed
Delespaux V., de Koning H.P. Drugs and drug resistance in African trypanosomiasis. Drug Resist. Updates. 2007;10:30–50. PubMed
Denninger V., Figarella K., Schonfeld C., Brems S., Busold C., Lang F., Hoheisel J., Duszenko M. Troglitazone induces differentiation in Trypanosoma brucei. Exp. Cell Res. 2007;313:1805–1819. PubMed
Desquesnes M., Dargantes A., Lai D.H., Lun Z.R., Holzmuller P., Jittapalapong S. Trypanosoma evansi and surra: a review and perspectives on transmission, epidemiology and control, impact, and zoonotic aspects. Biomed. Res. Int. 2013:321237. PubMed PMC
Figarella K., Uzcategui N.L., Beck A., Schoenfeld C., Kubata B.K., Lang F., Duszenko M. Prostaglandin-induced programmed cell death in Trypanosoma brucei involves oxidative stress. Cell Death Differ. 2006;13:1802–1814. PubMed
Gnipova A., Panicucci B., Paris Z., Verner Z., Horvath A., Lukes J., Zikova A. Disparate phenotypic effects from the knockdown of various Trypanosoma brucei cytochrome c oxidase subunits. Mol. Biochem. Parasitol. 2012;184:90–98. PubMed
Gnipova A., Subrtova K., Panicucci B., Horvath A., Lukes J., Zikova A. The ADP/ATP carrier and its relationship to OXPHOS in an ancestral protist Trypanosoma brucei. Eukaryot. Cell. 2015;14:297–310. PubMed PMC
Gould M.K., Bachmaier S., Ali J.A., Alsford S., Tagoe D.N., Munday J.C., Schnaufer A.C., Horn D., Boshart M., de Koning H.P. Cyclic AMP effectors in African trypanosomes revealed by genome-scale RNA interference library screening for resistance to the phosphodiesterase inhibitor CpdA. Antimicrob. Agents Chemother. 2013;57:4882–4893. PubMed PMC
Gould M.K., Vu X.L., Seebeck T., de Koning H.P. Propidium iodide-based methods for monitoring drug action in the kinetoplastidae: comparison with the Alamar Blue assay. Anal. Biochem. 2008;382:87–93. PubMed
Guler J.L., Kriegova E., Smith T.K., Lukes J., Englund P.T. Mitochondrial fatty acid synthesis is required for normal mitochondrial morphology and function in Trypanosoma brucei. Mol. Microbiol. 2008;67:1125–1142. PubMed PMC
Hammarton T.C., Mottram J.C., Doerig C. The cell cycle of parasitic protozoa: potential for chemotherapeutic exploitation. Prog. Cell Cycle Res. 2003;5:91–101. PubMed
Hanson W.L., Chapman W.L., Jr., Kinnamon K.E. Testing of drugs for antileishmanial activity in golden hamsters infected with Leishmania donovani. Int. J. Parasitol. 1977;7:443–447. PubMed
Hiltensperger G., Jones N.G., Niedermeier S., Stich A., Kaiser M., Jung J., Puhl S., Damme A., Braunschweig H., Meinel L., Engstler M., Holzgrabe U. Synthesis and structure-activity relationships of new quinolone-type molecules against Trypanosoma brucei. J. Med. Chem. 2012;55:2538–2548. PubMed
Horvath A., Horakova E., Dunajcikova P., Verner Z., Pravdova E., Slapetova I., Cuninkova L., Lukes J. Downregulation of the nuclear-encoded subunits of the complexes III and IV disrupts their respective complexes but not complex I in procyclic Trypanosoma brucei. Mol. Microbiol. 2005;58:116–130. PubMed
Huang G., Vercesi A.E., Docampo R. Essential regulation of cell bioenergetics in Trypanosoma brucei by the mitochondrial calcium uniporter. Nat. Commun. 2013;4:2865. PubMed PMC
Ibrahim H.M., Al-Salabi M.I., El Sabbagh N., Quashie N.B., Alkhaldi A.A., Escale R., Smith T.K., Vial H.J., de Koning H.P. Symmetrical choline-derived dications display strong anti-kinetoplastid activity. J. Antimicrob. Chemother. 2011;66:111–125. PubMed PMC
Jannin J., Cattand P. Treatment and control of human African trypanosomiasis. Curr. Opin. Infect. Dis. 2004;17:565–571. PubMed
Jara J.A., Castro-Castillo V., Saavedra-Olavarria J., Peredo L., Pavanni M., Jana F., Letelier M.E., Parra E., Becker M.I., Morello A., Kemmerling U., Maya J.D., Ferreira J. Antiproliferative and uncoupling effects of delocalized, lipophilic, cationic gallic acid derivatives on cancer cell lines. Validation in vivo in singenic mice. J. Med. Chem. 2014;57:2440–2454. PubMed
Jensen R.E., Englund P.T. Network news: the replication of kinetoplast DNA. Annu. Rev. Microbiol. 2012;66:473–491. PubMed
Kelso G.F., Porteous C.M., Coulter C.V., Hughes G., Porteous W.K., Ledgerwood E.C., Smith R.A., Murphy M.P. Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J. Biol. Chem. 2001;276:4588–4596. PubMed
Kinnamon K.E., Steck E.A., Hanson W.L., Chapman W.L., Jr. In search of anti-Trypanosoma cruzi drugs: new leads from a mouse model. J. Med. Chem. 1977;20:741–744. PubMed
Kinnamon K.E., Steck E.A., Rane D.S. A new chemical series active against African trypanosomes: benzyltriphenylphosphonium salts. J. Med. Chem. 1979;22:452–455. PubMed
Koreny L., Sobotka R., Kovarova J., Gnipova A., Flegontov P., Horvath A., Obornik M., Ayala F.J., Lukes J. Aerobic kinetoplastid flagellate Phytomonas does not require heme for viability. Proc. Natl. Acad. Sci. U. S. A. 2012;109:3808–3813. PubMed PMC
Kovarova J., Horakova E., Changmai P., Vancova M., Lukes J. Mitochondrial and nucleolar localization of cysteine desulfurase Nfs and the scaffold protein Isu in Trypanosoma brucei. Eukaryot. Cell. 2014;13:353–362. PubMed PMC
Kovarova N., Mracek T., Nuskova H., Holzerova E., Vrbacky M., Pecina P., Hejzlarova K., Kluckova K., Rohlena J., Neuzil J., Houstek J. High molecular weight forms of mammalian respiratory chain complex II. PLoS One. 2013;8:e71869. PubMed PMC
La Greca F., Magez S. Vaccination against trypanosomiasis: can it be done or is the trypanosome truly the ultimate immune destroyer and escape artist? Hum. Vaccines. 2011;7:1225–1233. PubMed PMC
Lanteri C.A., Tidwell R.R., Meshnick S.R. The mitochondrion is a site of trypanocidal action of the aromatic diamidine DB75 in bloodstream forms of Trypanosoma brucei. Antimicrob. Agents Chemother. 2008;52:875–882. PubMed PMC
Liu B., Liu Y., Motyka S.A., Agbo E.E., Englund P.T. Fellowship of the rings: the replication of kinetoplast DNA. Trends Parasitol. 2005;21:363–369. PubMed
Luque-Ortega J.R., Reuther P., Rivas L., Dardonville C. New benzophenone-derived bisphosphonium salts as leishmanicidal leads targeting mitochondria through inhibition of respiratory complex II. J. Med. Chem. 2010;53:1788–1798. PubMed
Mazet M., Morand P., Biran M., Bouyssou G., Courtois P., Daulouede S., Millerioux Y., Franconi J.M., Vincendeau P., Moreau P., Bringaud F. Revisiting the central metabolism of the bloodstream forms of Trypanosoma brucei: production of acetate in the mitochondrion is essential for parasite viability. PLoS Negl. Trop. Dis. 2013;7:e2587. PubMed PMC
Miller P.G., Klein R.A. Effects of oligomycin on glucose utilization and calcium transport in African trypanosomes. J. General Microbiol. 1980;116:391–396. PubMed
Murphy M.P. Targeting lipophilic cations to mitochondria. Biochim. Biophys. Acta. 2008;1777:1028–1031. PubMed
Nolan D.P., Voorheis H.P. The mitochondrion in bloodstream forms of Trypanosoma brucei is energized by the electrogenic pumping of protons catalysed by the F1F0-ATPase. Eur. J. Biochem. 1992;209:207–216. PubMed
Osório A.L., Madruga C.R., Desquesnes M., Soares C.O., Ribeiro L.R., Costa S.C. Trypanosoma (Duttonella) vivax: its biology, epidemiology, pathogenesis, and introduction in the New World – a review. Mem. Inst. Oswaldo Cruz. 2008;103:1–13. PubMed
Pullman M.E., Penefsky H.S., Datta A., Racker E. Partial resolution of the enzymes catalyzing oxidative phosphorylation. I. Purification and properties of soluble dinitrophenol-stimulated adenosine triphosphatase. J. Biol. Chem. 1960;235:3322–3329. PubMed
Rios Martinez C.H., Lagartera L., Kaiser M., Dardonville C. Antiprotozoal activity and DNA binding of N-substituted N-phenylbenzamide and 1,3-diphenylurea bisguanidines. Eur. J. Med. Chem. 2014;81:481–491. PubMed
Schnaufer A., Clark-Walker G.D., Steinberg A.G., Stuart K. The F1-ATP synthase complex in bloodstream stage trypanosomes has an unusual and essential function. EMBO J. 2005;24:4029–4040. PubMed PMC
Smith R.A., Hartley R.C., Murphy M.P. Mitochondria-targeted small molecule therapeutics and probes. Antioxid. Redox Signal. 2011;15:3021–3038. PubMed
Snow B.J., Rolfe F.L., Lockhart M.M., Frampton C.M., O'Sullivan J.D., Fung V., Smith R.A., Murphy M.P., Taylor K.M., Protect Study G. A double-blind, placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson's disease. Mov. Disord. 2010;25:1670–1674. PubMed
Spivak A.Y., Keiser J., Vargas M., Gubaidullin R.R., Nedopekina D.A., Shakurova E.R., Khalitova R.R., Odinokov V.N. Synthesis and activity of new triphenylphosphonium derivatives of betulin and betulinic acid against Schistosoma mansoni in vitro and in vivo. Bioorg. Med. Chem. 2014;22:6297–6304. PubMed
Subrtova K., Panicucci B., Zikova A. ATPaseTb2, a unique membrane-bound FoF1-ATPase component, is essential in bloodstream and dyskinetoplastic trypanosomes. PLoS Pathog. 2015;11:e1004660. PubMed PMC
Swallow B.M. Food and Agriculture Organization of the United Nations; Rome: 1999. Impacts of Trypanosomiasis on African Agriculture.
Taladriz A., Healy A., Flores Perez E.J., Herrero Garcia V., Rios Martinez C., Alkhaldi A.A., Eze A.A., Kaiser M., de Koning H.P., Chana A., Dardonville C. Synthesis and structure-activity analysis of new phosphonium salts with potent activity against African trypanosomes. J. Med. Chem. 2012;55:2606–2622. PubMed
Tan T.H., Bochud-Allemann N., Horn E.K., Schneider A. Eukaryotic-type elongator tRNAMet of Trypanosoma brucei becomes formylated after import into mitochondria. Proc. Natl. Acad. Sci. U. S. A. 2002;99:1152–1157. PubMed PMC
Teixeira J., Soares P., Benfeito S., Gaspar A., Garrido J., Murphy M.P., Borges F. Rational discovery and development of a mitochondria-targeted antioxidant based on cinnamic acid scaffold. Free Radic. Res. 2012;46:600–611. PubMed
Tielens A.G., van Hellemond J.J. Surprising variety in energy metabolism within Trypanosomatidae. Trends Parasitol. 2009;25:482–490. PubMed
Tyc J., Klingbeil M.M., Lukes J. Mitochondrial heat shock protein machinery hsp70/hsp40 is indispensable for proper mitochondrial DNA maintenance and replication. mBio. 2015;6 PubMed PMC
Vercesi A.E., Docampo R., Moreno S.N. Energization-dependent Ca2+ accumulation in Trypanosoma brucei bloodstream and procyclic trypomastigotes mitochondria. Mol. Biochem. Parasitol. 1992;56:251–257. PubMed
Welburn S.C., Picozzi K., Fevre E.M., Coleman P.G., Odiit M., Carrington M., Maudlin I. Identification of human-infective trypanosomes in animal reservoir of sleeping sickness in Uganda by means of serum-resistance-associated (SRA) gene. Lancet. 2001;358:2017–2019. PubMed
Wickstead B., Ersfeld K., Gull K. Targeting of a tetracycline-inducible expression system to the transcriptionally silent minichromosomes of Trypanosoma brucei. Mol. Biochem. Parasitol. 2002;125:211–216. PubMed
Williams S., Saha L., Singha U.K., Chaudhuri M. Trypanosoma brucei: differential requirement of membrane potential for import of proteins into mitochondria in two developmental stages. Exp. Parasitol. 2008;118:420–433. PubMed PMC
Wirtz E., Leal S., Ochatt C., Cross G.A. A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei. Mol. Biochem. Parasitol. 1999;99:89–101. PubMed
Zikova A., Schnaufer A., Dalley R.A., Panigrahi A.K., Stuart K.D. The F(0)F(1)-ATP synthase complex contains novel subunits and is essential for procyclic Trypanosoma brucei. PLoS Pathog. 2009;5:e1000436. PubMed PMC
Chelation of Mitochondrial Iron as an Antiparasitic Strategy
Trypanosoma brucei TbIF1 inhibits the essential F1-ATPase in the infectious form of the parasite
Trypanosome Mitochondrial Translation and Tetracycline: No Sweat about Tet