Mitochondrial heat shock protein machinery hsp70/hsp40 is indispensable for proper mitochondrial DNA maintenance and replication
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01066279
PHS HHS - United States
PubMed
25670781
PubMed Central
PMC4337576
DOI
10.1128/mbio.02425-14
PII: mBio.02425-14
Knihovny.cz E-zdroje
- MeSH
- kinetoplastová DNA genetika metabolismus MeSH
- lidé MeSH
- mitochondriální DNA genetika metabolismus MeSH
- mitochondrie genetika metabolismus MeSH
- proteiny tepelného šoku HSP40 genetika metabolismus MeSH
- proteiny tepelného šoku HSP70 genetika metabolismus MeSH
- protozoální proteiny genetika metabolismus MeSH
- replikace DNA * MeSH
- Trypanosoma brucei brucei genetika metabolismus MeSH
- trypanozomóza africká parazitologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- kinetoplastová DNA MeSH
- mitochondriální DNA MeSH
- proteiny tepelného šoku HSP40 MeSH
- proteiny tepelného šoku HSP70 MeSH
- protozoální proteiny MeSH
UNLABELLED: Mitochondrial chaperones have multiple functions that are essential for proper functioning of mitochondria. In the human-pathogenic protist Trypanosoma brucei, we demonstrate a novel function of the highly conserved machinery composed of mitochondrial heat shock proteins 70 and 40 (mtHsp70/mtHsp40) and the ATP exchange factor Mge1. The mitochondrial DNA of T. brucei, also known as kinetoplast DNA (kDNA), is represented by a single catenated network composed of thousands of minicircles and dozens of maxicircles packed into an electron-dense kDNA disk. The chaperones mtHsp70 and mtHsp40 and their cofactor Mge1 are uniformly distributed throughout the single mitochondrial network and are all essential for the parasite. Following RNA interference (RNAi)-mediated depletion of each of these proteins, the kDNA network shrinks and eventually disappears. Ultrastructural analysis of cells depleted for mtHsp70 or mtHsp40 revealed that the otherwise compact kDNA network becomes severely compromised, a consequence of decreased maxicircle and minicircle copy numbers. Moreover, we show that the replication of minicircles is impaired, although the lack of these proteins has a bigger impact on the less abundant maxicircles. We provide additional evidence that these chaperones are indispensable for the maintenance and replication of kDNA, in addition to their already known functions in Fe-S cluster synthesis and protein import. IMPORTANCE: Impairment or loss of mitochondrial DNA is associated with mitochondrial dysfunction and a wide range of neural, muscular, and other diseases. We present the first evidence showing that the entire mtHsp70/mtHsp40 machinery plays an important role in mitochondrial DNA replication and maintenance, a function likely retained from prokaryotes. These abundant, ubiquitous, and multifunctional chaperones share phenotypes with enzymes engaged in the initial stages of replication of the mitochondrial DNA in T. brucei.
Zobrazit více v PubMed
Tyynismaa H, Mjosund KP, Wanrooij S, Lappalainen I, Ylikallio E, Jalanko A, Spelbrink JN, Paetau A, Suomalainen A. 2005. Mutant mitochondrial helicase twinkle causes multiple mtDNA deletions and a late-onset mitochondrial disease in mice. Proc Natl Acad Sci U S A 102:17687–17692. doi:10.1073/pnas.0505551102. PubMed DOI PMC
Goffart S, Cooper HM, Tyynismaa H, Wanrooij S, Suomalainen A, Spelbrink JN. 2009. Twinkle mutations associated with autosomal dominant progressive external ophthalmoplegia lead to impaired helicase function and in vivo mtDNA replication stalling. Hum Mol Genet 18:328–340. doi:10.1093/hmg/ddn359. PubMed DOI PMC
Calvo SE, Mootha VK. 2010. The mitochondrial proteome and human disease. Annu Rev Genomics Hum Genet 11:25–44. doi:10.1146/annurev-genom-082509-141720. PubMed DOI PMC
Copeland WC. 2008. Inherited mitochondrial diseases of DNA replication. Annu Rev Med 59:131–146. doi:10.1146/annurev.med.59.053006.104646. PubMed DOI PMC
El-Hattab AW, Scaglia F. 2013. Mitochondrial DNA depletion syndromes: review and updates of genetic basis, manifestations, and therapeutic options. Neurotherapeutics 10:186–198. doi:10.1007/s13311-013-0177-6. PubMed DOI PMC
Falah M, Gupta RS. 1994. Cloning of the hsp70 (dnaK) genes from Rhizobium meliloti and Pseudomonas cepacia: phylogenetic analyses of mitochondrial origin based on a highly conserved protein sequence. J Bacteriol 176:7748–7753. PubMed PMC
Folgueira C, Requena JM. 2007. A postgenomic view of the heat shock proteins in kinetoplastids. FEMS Microbiol Rev 31:359–377. doi:10.1111/j.1574-6976.2007.00069.x. PubMed DOI
Voos W, Röttgers K. 2002. Molecular chaperones as essential mediators of mitochondrial biogenesis. Biochim Biophys Acta 1592:51–62. doi:10.1016/S0167-4889(02)00264-1. PubMed DOI
Liu Q, Krzewska J, Liberek K, Craig EA. 2001. Mitochondrial Hsp70 Ssc1: role in protein folding. J Biol Chem 276:6112–6118. doi:10.1074/jbc.M009519200. PubMed DOI
Dutkiewicz R, Schilke B, Knieszner H, Walter W, Craig EA, Marszalek J. 2003. Ssq1, a mitochondrial Hsp70 involved in iron-sulfur (Fe/S) center biogenesis. Similarities to and differences from its bacterial counterpart. J Biol Chem 278:29719–29727. doi:10.1074/jbc.M303527200. PubMed DOI
Lill R, Mühlenhoff U. 2008. Maturation of iron-sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases. Annu Rev Biochem 77:669–700. doi:10.1146/annurev.biochem.76.052705.162653. PubMed DOI
Liu Q, D’Silva P, Walter W, Marszalek J, Craig EA. 2003. Regulated cycling of mitochondrial Hsp70 at the protein import channel. Science 300:139–141. doi:10.1126/science.1083379. PubMed DOI
Schneider A, Bursać D, Lithgow T. 2008. The direct route: a simplified pathway for protein import into the mitochondrion of trypanosomes. Trends Cell Biol 18:12–18. doi:10.1016/j.tcb.2007.09.009. PubMed DOI
Tschopp F, Charrière F, Schneider A. 2011. In vivo study in Trypanosoma brucei links mitochondrial transfer RNA import to mitochondrial protein import. EMBO Rep 12:825–832. doi:10.1038/embor.2011.111. PubMed DOI PMC
Alfonzo JD, Söll D. 2009. Mitochondrial tRNA import—the challenge to understand has just begun. Biol Chem 390:717–722. doi:10.1515/BC.2009.101. PubMed DOI PMC
Szabo A, Langer T, Schröder H, Flanagan J, Bukau B, Hartl FU. 1994. The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system DnaK, DnaJ, and GrpE. Proc Natl Acad Sci U S A 91:10345–10349. doi:10.1073/pnas.91.22.10345. PubMed DOI PMC
Miao B, Davis JE, Craig EA. 1997. Mge1 functions as a nucleotide release factor for Ssc1, a mitochondrial Hsp70 of Saccharomyces cerevisiae. J Mol Biol 265:541–552. doi:10.1006/jmbi.1996.0762. PubMed DOI
Schmidt S, Strub A, Röttgers K, Zufall N, Voos W. 2001. The two mitochondrial heat shock proteins 70, Ssc1 and Ssq1, compete for the cochaperone Mge1. J Mol Biol 313:13–26. doi:10.1006/jmbi.2001.5013. PubMed DOI
Slutsky-Leiderman O, Marom M, Iosefson O, Levy R, Maoz S, Azem A. 2007. The interplay between components of the mitochondrial protein translocation motor studied using purified components. J Biol Chem 282:33935–33942. doi:10.1074/jbc.M704435200. PubMed DOI
Fan CY, Lee S, Cyr DM. 2003. Mechanisms for regulation of Hsp70 function by Hsp40. Cell Stress Chaperones 8:309–316. doi:10.1379/1466-1268(2003)008<0309:MFROHF>2.0.CO;2. PubMed DOI PMC
Dudek J, Rehling P, van der Laan M. 2013. Mitochondrial protein import: common principles and physiological networks. Biochim Biophys Acta 1833:274–285. doi:10.1016/j.bbamcr.2012.05.028. PubMed DOI
Louw CA, Ludewig MH, Mayer J, Blatch GL. 2010. The Hsp70 chaperones of the Tritryps are characterized by unusual features and novel members. Parasitol Int 59:497–505. doi:10.1016/j.parint.2010.08.008. PubMed DOI
Uzarska MA, Dutkiewicz R, Freibert SA, Lill R, Mühlenhoff U. 2013. The mitochondrial Hsp70 chaperone Ssq1 facilitates Fe/S cluster transfer from Isu1 to Grx5 by complex formation. Mol Biol Cell 24:1830–1841. doi:10.1091/mbc.E12-09-0644. PubMed DOI PMC
Sakasegawa Y, Hachiya NS, Tsukita S, Kaneko K. 2003. Ecm10p localizes in yeast mitochondrial nucleoids and its overexpression induces extensive mitochondrial DNA aggregations. Biochem Biophys Res Commun 309:217–221. doi:10.1016/S0006-291X(03)01548-1. PubMed DOI
Baumann F, Milisav I, Neupert W, Herrmann JM. 2000. Ecm10, a novel hsp70 homolog in the mitochondrial matrix of the yeast Saccharomyces cerevisiae. FEBS Lett 487:307–312. doi:10.1016/S0014-5793(00)02364-4. PubMed DOI
Sakakibara Y. 1988. The dnaK gene of Escherichia coli functions in initiation of chromosome replication. J Bacteriol 170:972–979. PubMed PMC
Sozhamannan S, Chattoraj DK. 1993. Heat shock proteins DnaJ, DnaK, and GrpE stimulate P1 plasmid replication by promoting initiator binding to the origin. J Bacteriol 175:3546–3555. PubMed PMC
Hoffmann HJ, Lyman SK, Lu C, Petit MA, Echols H. 1992. Activity of the Hsp70 chaperone complex—DnaK, DnaJ, and GrpE—in initiating phage lambda DNA replication by sequestering and releasing lambda P protein. Proc Natl Acad Sci U S A 89:12108–12111. doi:10.1073/pnas.89.24.12108. PubMed DOI PMC
Gur E, Katz C, Ron EZ. 2005. All three J-domain proteins of the Escherichia coli DnaK chaperone machinery are DNA binding proteins. FEBS Lett 579:1935–1939. doi:10.1016/j.febslet.2005.01.084. PubMed DOI
Nosek J, Tomáška L, Bolotin-Fukuhara M, Miyakawa I. 2006. Mitochondrial chromosome structure: an insight from analysis of complete yeast genomes. FEMS Yeast Res 6:356–370. doi:10.1111/j.1567-1364.2005.00016.x. PubMed DOI
Wang Y, Bogenhagen DF. 2006. Human mitochondrial DNA nucleoids are linked to protein folding machinery and metabolic enzymes at the mitochondrial inner membrane. J Biol Chem 281:25791–25802. doi:10.1074/jbc.M604501200. PubMed DOI
Bogenhagen DF, Rousseau D, Burke S. 2008. The layered structure of human mitochondrial DNA nucleoids. J Biol Chem 283:3665–3675. doi:10.1074/jbc.M708444200. PubMed DOI
Ciesielski GL, Plotka M, Manicki M, Schilke BA, Dutkiewicz R, Sahi C, Marszalek J, Craig EA. 2013. Nucleoid localization of Hsp40 Mdj1 is important for its function in maintenance of mitochondrial DNA. Biochim Biophys Acta 1833:2233–2243. doi:10.1016/j.bbamcr.2013.05.012. PubMed DOI PMC
Engman DM, Kirchhoff LV, Donelson JE. 1989. Molecular cloning of mtp70, a mitochondrial member of the hsp70 family. Mol Cell Biol 9:5163–5168. PubMed PMC
Effron PN, Torri AF, Engman DM, Donelson JE, Englund PT. 1993. A mitochondrial heat shock protein from Crithidia fasciculata. Mol Biochem Parasitol 59:191–200. doi:10.1016/0166-6851(93)90217-L. PubMed DOI
Duchniewicz M, Germaniuk A, Westermann B, Neupert W, Schwarz E, Marszalek J. 1999. Dual role of the mitochondrial chaperone Mdj1p in inheritance of mitochondrial DNA in yeast. Mol Cell Biol 19:8201–8210. PubMed PMC
Germaniuk A, Liberek K, Marszalek J. 2002. A bichaperone (Hsp70-Hsp78) system restores mitochondrial DNA synthesis following thermal inactivation of Mip1p polymerase. J Biol Chem 277:27801–27808. doi:10.1074/jbc.M201756200. PubMed DOI
Lu B, Garrido N, Spelbrink JN, Suzuki CK. 2006. Tid1 isoforms are mitochondrial DnaJ-like chaperones with unique carboxyl termini that determine cytosolic fate. J Biol Chem 281:13150–13158. doi:10.1074/jbc.M509179200. PubMed DOI
Hayashi M, Imanaka-Yoshida K, Yoshida T, Wood M, Fearns C, Tatake RJ, Lee JD. 2006. A crucial role of mitochondrial Hsp40 in preventing dilated cardiomyopathy. Nat Med 12:128–132. doi:10.1038/nm1327. PubMed DOI
Barrett MP, Burchmore RJ, Stich A, Lazzari JO, Frasch AC, Cazzulo JJ, Krishna S. 2003. The trypanosomiases. Lancet 362:1469–1480. doi:10.1016/S0140-6736(03)14694-6. PubMed DOI
Englund PT. 1978. The replication of kinetoplast DNA networks in Crithidia fasciculata. Cell 14:157–168. doi:10.1016/0092-8674(78)90310-0. PubMed DOI
Woodward R, Gull K. 1990. Timing of nuclear and kinetoplast DNA replication and early morphological events in the cell cycle of Trypanosoma brucei. J Cell Sci 95:49–57. PubMed
Jensen RE, Englund PT. 2012. Network news: the replication of kinetoplast DNA. Annu Rev Microbiol 66:473–491. doi:10.1146/annurev-micro-092611-150057. PubMed DOI
Hashimi H, Zimmer SL, Ammerman ML, Read LK, Lukeš J. 2013. Dual core processing: MRB1 is an emerging kinetoplast RNA editing complex. Trends Parasitol 29:91–99. doi:10.1016/j.pt.2012.11.005. PubMed DOI PMC
Verner Z, Basu S, Benz C, Dixit S, Dobáková E, Faktorová D, Hashimi H, Horáková E, Huang Z, Paris Z, Pena-Diaz P, Ridlon L, Týč J, Wildridge D, Zíková A, Lukeš J. The malleable mitochondrion of Trypanosoma brucei. Int Rev Cell Mol Biol, in press. PubMed
Ogbadoyi EO, Robinson DR, Gull K. 2003. A high-order trans-membrane structural linkage is responsible for mitochondrial genome positioning and segregation by flagellar basal bodies in trypanosomes. Mol Biol Cell 14:1769–1779. doi:10.1091/mbc.E02-08-0525. PubMed DOI PMC
Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H, Bartholomeu DC, Lennard NJ, Caler E, Hamlin NE, Haas B, Böhme U, Hannick L, Aslett MA, Shallom J, Marcello L, Hou L, Wickstead B, Alsmark UC, Arrowsmith C, Atkin RJ, Barron AJ, Bringaud F, Brooks K, Carrington M, Cherevach I, Chillingworth TJ, Churcher C, Clark LN, Corton CH, Cronin A, Davies RM, Doggett J, Djikeng A, Feldblyum T, Field MC, Fraser A, Goodhead I, Hance Z, Harper D, Harris BR, Hauser H, Hostetler J, Ivens A, Jagels K, Johnson D, Johnson J, Jones K, Kerhornou AX, Koo H, Larke N, et al. . 2005. The genome of the African trypanosome Trypanosoma brucei. Science 309:416–422. doi:10.1126/science.1112642. PubMed DOI
Aslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, Carrington M, Depledge DP, Fischer S, Gajria B, Gao X, Gardner MJ, Gingle A, Grant G, Harb OS, Heiges M, Hertz-Fowler C, Houston R, Innamorato F, Iodice J, Kissinger JC, Kraemer E, Li W, Logan FJ, Miller JA, Mitra S, Myler PJ, Nayak V, Pennington C, Phan I, Pinney DF, Ramasamy G, Rogers MB, Roos DS, Ross C, Sivam D, Smith DF, Srinivasamoorthy G, Stoeckert CJ, Subramanian S, Thibodeau R, Tivey A, Treatman C, Velarde G, Wang H. 2010. TriTrypDB: a functional genomic resource for the trypanosomatidae. Nucleic Acids Res 38:D457–D462. doi:10.1093/nar/gkp851. PubMed DOI PMC
Ivens AC, Peacock CS, Worthey EA, Murphy L, Aggarwal G, Berriman M, Sisk E, Rajandream MA, Adlem E, Aert R, Anupama A, Apostolou Z, Attipoe P, Bason N, Bauser C, Beck A, Beverley SM, Bianchettin G, Borzym K, Bothe G, Bruschi CV, Collins M, Cadag E, Ciarloni L, Clayton C, Coulson RM, Cronin A, Cruz AK, Davies RM, De Gaudenzi J, Dobson DE, Fazelina G, Fosker N, Frasch AC, Fraser A, Fuchs M, Gabel C, Goble A, Goffeau A, Harris D, Hertz-Fowler C, Hilbert H, Horn D, Huang Y, Klages S, Knights A, Kube M, Larke N, Litvin L, et al. . 2005. The genome of the kinetoplastid parasite, Leishmania major. Science 309:436–442. doi:10.1126/science.1112680. PubMed DOI PMC
El-Sayed NM, Myler PJ, Bartholomeu DC, Nilsson D, Aggarwal G, Tran AN, Ghedin E, Worthey EA, Delcher AL, Blandin G, Westenberger SJ, Caler E, Cerqueira GC, Branche C, Haas B, Anupama A, Arner E, Aslund L, Attipoe P, Bontempi E, Bringaud F, Burton P, Cadag E, Campbell DA, Carrington M, Crabtree J, Darban H, da Silveira JF, de Jong P, Edwards K, Englund PT, Fazelina G, Feldblyum T, Ferella M, Frasch AC, Gull K, Horn D, Hou L, Huang Y, Kindlund E, Klingbeil M, Kluge S, Koo H, Lacerda D, Levin MJ, Lorenzi H, Louie T, Machado CR, McCulloch R, et al. . 2005. The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 309:409–415. doi:10.1126/science.1112631. PubMed DOI
Panigrahi AK, Ogata Y, Zíková A, Anupama A, Dalley RA, Acestor N, Myler PJ, Stuart KD. 2009. A comprehensive analysis of Trypanosoma brucei mitochondrial proteome. Proteomics 9:434–450. doi:10.1002/pmic.200800477. PubMed DOI PMC
Besteiro S, Barrett MP, Rivière L, Bringaud F. 2005. Energy generation in insect stages of Trypanosoma brucei: metabolism in flux. Trends Parasitol 21:185–191. doi:10.1016/j.pt.2005.02.008. PubMed DOI
Liu B, Molina H, Kalume D, Pandey A, Griffith JD, Englund PT. 2006. Role of p38 in replication of Trypanosoma brucei kinetoplast DNA. Mol Cell Biol 26:5382–5393. doi:10.1128/MCB.00369-06. PubMed DOI PMC
Klingbeil MM, Motyka SA, Englund PT. 2002. Multiple mitochondrial DNA polymerases in Trypanosoma brucei. Mol Cell 10:175–186. doi:10.1016/S1097-2765(02)00571-3. PubMed DOI
Chandler J, Vandoros AV, Mozeleski B, Klingbeil MM. 2008. Stem-loop silencing reveals that a third mitochondrial DNA polymerase, POLID, is required for kinetoplast DNA replication in trypanosomes. Eukaryot Cell 7:2141–2146. doi:10.1128/EC.00199-08. PubMed DOI PMC
Scocca JR, Shapiro TA. 2008. A mitochondrial topoisomerase IA essential for late theta structure resolution in African trypanosomes. Mol Microbiol 67:820–829. doi:10.1111/j.1365-2958.2007.06087.x. PubMed DOI
Hines JC, Ray DS. 2010. A mitochondrial DNA primase is essential for cell growth and kinetoplast DNA replication in Trypanosoma brucei. Mol Cell Biol 30:1319–1328. doi:10.1128/MCB.01231-09. PubMed DOI PMC
Panigrahi AK, Zíková A, Dalley RA, Acestor N, Ogata Y, Anupama A, Myler PJ, Stuart KD. 2008. Mitochondrial complexes in Trypanosoma brucei: a novel complex and a unique oxidoreductase complex. Mol Cell Proteomics 7:534–545. doi:10.1074/mcp.M700430-MCP200. PubMed DOI
Concepción-Acevedo J, Luo J, Klingbeil MM. 2012. Dynamic localization of Trypanosoma brucei mitochondrial DNA polymerase ID. Eukaryot Cell 11:844–855. doi:10.1128/EC.05291-11. PubMed DOI PMC
Yurchenko V, Votýpka J, Tesařová M, Klepetková H, Kraeva N, Jirků M, Lukeš J. 2014. Ultrastructure and molecular phylogeny of four new species of monoxenous trypanosomatids from flies (Diptera: Brachycera) with redefinition of the genus Wallaceina. Folia Parasitol 61:97–112. doi:10.14411/fp.2014.023. PubMed DOI
Gentle IE, Perry AJ, Alcock FH, Likić VA, Dolezal P, Ng ET, Purcell AW, McConnville M, Naderer T, Chanez AL, Charrière F, Aschinger C, Schneider A, Tokatlidis K, Lithgow T. 2007. Conserved motifs reveal details of ancestry and structure in the small TIM chaperones of the mitochondrial intermembrane space. Mol Biol Evol 24:1149–1160. doi:10.1093/molbev/msm031. PubMed DOI
Singha UK, Hamilton V, Duncan MR, Weems E, Tripathi MK, Chaudhuri M. 2012. Protein translocase of mitochondrial inner membrane in Trypanosoma brucei. J Biol Chem 287:14480–14493. doi:10.1074/jbc.M111.322925. PubMed DOI PMC
Miyahira Y, Dvorak JA. 1994. Kinetoplastidae display naturally occurring ancillary DNA-containing structures. Mol Biochem Parasitol 65:339–349. doi:10.1016/0166-6851(94)90084-1. PubMed DOI
Vondrušková E, van den Burg J, Zíková A, Ernst NL, Stuart K, Benne R, Lukeš J. 2005. RNA interference analyses suggest a transcript-specific regulatory role for mitochondrial RNA-binding proteins MRP1 and MRP2 in RNA editing and other RNA processing in Trypanosoma brucei. J Biol Chem 280:2429–2438. doi:10.1074/jbc.M405933200. PubMed DOI
Smíd O, Horáková E, Vilímová V, Hrdy I, Cammack R, Horváth A, Lukeš J, Tachezy J. 2006. Knock-downs of iron-sulfur cluster assembly proteins IscS and IscU down-regulate the active mitochondrion of procyclic Trypanosoma brucei. J Biol Chem 281:28679–28686. doi:10.1074/jbc.M513781200. PubMed DOI
Long S, Jirků M, Mach J, Ginger ML, Sutak R, Richardson D, Tachezy J, Lukeš J. 2008. Ancestral roles of eukaryotic frataxin: mitochondrial frataxin function and heterologous expression of hydrogenosomal Trichomonas homologues in trypanosomes. Mol Microbiol 69:94–109. doi:10.1111/j.1365-2958.2008.06260.x. PubMed DOI
Paris Z, Changmai P, Rubio MA, Zíková A, Stuart KD, Alfonzo JD, Lukeš J. 2010. The Fe/S cluster assembly protein Isd11 is essential for tRNA thiolation in Trypanosoma brucei. J Biol Chem 285:22394–22402. doi:10.1074/jbc.M109.083774. PubMed DOI PMC
Siegel TN, Hekstra DR, Cross GA. 2008. Analysis of the Trypanosoma brucei cell cycle by quantitative DAPI imaging. Mol Biochem Parasitol 160:171–174. doi:10.1016/j.molbiopara.2008.04.004. PubMed DOI PMC
Englund PT. 1979. Free minicircles of kinetoplast DNA in Crithidia fasciculata. J Biol Chem 254:4895–4900. PubMed
Ryan KA, Englund PT. 1989. Synthesis and processing of kinetoplast DNA minicircles in Trypanosoma equiperdum. Mol Cell Biol 9:3212–3217. PubMed PMC
Chowdhury AR, Zhao Z, Englund PT. 2008. Effect of hydroxyurea on procyclic Trypanosoma brucei: an unconventional mechanism for achieving synchronous growth. Eukaryot Cell 7:425–428. doi:10.1128/EC.00369-07. PubMed DOI PMC
Klein KG, Olson CL, Engman DM. 1995. Mitochondrial heat shock protein 70 is distributed throughout the mitochondrion in a dyskinetoplastic mutant of Trypanosoma brucei. Mol Biochem Parasitol 70:207–209. doi:10.1016/0166-6851(95)00013-Q. PubMed DOI
Searle S, McCrossan MV, Smith DF. 1993. Expression of a mitochondrial stress protein in the protozoan parasite Leishmania major. J Cell Sci 104:1091–1100. PubMed
Campos RM, Nascimento M, Ferraz JC, Pereira MM, Rocha PO, Thompson GM, Cysne-Finkelstein L, Figueiredo RC, de Melo Neto OP. 2008. Distinct mitochondrial HSP70 homologues conserved in various Leishmania species suggest novel biological functions. Mol Biochem Parasitol 160:157–162. doi:10.1016/j.molbiopara.2008.04.013. PubMed DOI
Fisk JC, Li J, Wang H, Aletta JM, Qu J, Read LK. 2013. Proteomic analysis reveals diverse classes of arginine methylproteins in mitochondria of trypanosomes. Mol Cell Proteomics 12:302–311. doi:10.1074/mcp.M112.022533. PubMed DOI PMC
Wang J, Englund PT, Jensen RE. 2012. TbPIF8, a Trypanosoma brucei protein related to the yeast Pif1 helicase, is essential for cell viability and mitochondrial genome maintenance. Mol Microbiol 83:471–485. doi:10.1111/j.1365-2958.2011.07938.x. PubMed DOI PMC
Lai D-, Hashimi H, Lun Z-, Ayala FJ, Lukeš J. 2008. Adaptations of Trypanosoma brucei to gradual loss of kinetoplast DNA: Trypanosoma equiperdum and Trypanosoma evansi are petite mutants of T. brucei. Proc Natl Acad Sci U S A 105:1999–2004. doi:10.1073/pnas.0711799105. PubMed DOI PMC
Liu B, Wang J, Yaffe N, Lindsay ME, Zhao Z, Zick A, Shlomai J, Englund PT. 2009. Trypanosomes have six mitochondrial DNA helicases with one controlling kinetoplast maxicircle replication. Mol Cell 35:490–501. doi:10.1016/j.molcel.2009.07.004. PubMed DOI PMC
Sbicego S, Alfonzo JD, Estévez AM, Rubio MA, Kang X, Turck CW, Peris M, Simpson L. 2003. RBP38, a novel RNA-binding protein from trypanosomatid mitochondria, modulates RNA stability. Eukaryot Cell 2:560–568. doi:10.1128/EC.2.3.560-568.2003. PubMed DOI PMC
Hines JC, Ray DS. 2011. A second mitochondrial DNA primase is essential for cell growth and kinetoplast minicircle DNA replication in Trypanosoma brucei. Eukaryot Cell 10:445–454. doi:10.1128/EC.00308-10. PubMed DOI PMC
Downey N, Hines JC, Sinha KM, Ray DS. 2005. Mitochondrial DNA ligases of Trypanosoma brucei. Eukaryot Cell 4:765–774. doi:10.1128/EC.4.4.765-774.2005. PubMed DOI PMC
Liu B, Wang J, Yildirir G, Englund PT. 2009. TbPIF5 is a Trypanosoma brucei mitochondrial DNA helicase involved in processing of minicircle Okazaki fragments. PLoS Pathog 5:e1000589. doi:10.1371/journal.ppat.1000589. PubMed DOI PMC
Liu B, Yildirir G, Wang J, Tolun G, Griffith JD, Englund PT. 2010. TbPIF1, a Trypanosoma brucei mitochondrial DNA helicase, is essential for kinetoplast minicircle replication. J Biol Chem 285:7056–7066. doi:10.1074/jbc.M109.084038. PubMed DOI PMC
Saxowsky TT, Choudhary G, Klingbeil MM, Englund PT. 2003. Trypanosoma brucei has two distinct mitochondrial DNA polymerase beta enzymes. J Biol Chem 278:49095–49101. doi:10.1074/jbc.M308565200. PubMed DOI
Rajão MA, Passos-Silva DG, DaRocha WD, Franco GR, Macedo AM, Pena SD, Teixeira SM, Machado CR. 2009. DNA polymerase kappa from Trypanosoma cruzi localizes to the mitochondria, bypasses 8-oxoguanine lesions and performs DNA synthesis in a recombination intermediate. Mol Microbiol 71:185–197. doi:10.1111/j.1365-2958.2008.06521.x. PubMed DOI
Voos W. 2013. Chaperone-protease networks in mitochondrial protein homeostasis. Biochim Biophys Acta 1833:388–399. doi:10.1016/j.bbamcr.2012.06.005. PubMed DOI
Wu Y, Brosh RM. 2012. DNA helicase and helicase-nuclease enzymes with a conserved iron-sulfur cluster. Nucleic Acids Res 40:4247–4260. doi:10.1093/nar/gks039. PubMed DOI PMC
Netz DJ, Stith CM, Stümpfig M, Köpf G, Vogel D, Genau HM, Stodola JL, Lill R, Burgers PM, Pierik AJ. 2012. Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes. Nat Chem Biol 8:125–132. doi:10.1038/nchembio.721. PubMed DOI PMC
Schimanski B, Nguyen TN, Günzl A. 2005. Highly efficient tandem affinity purification of trypanosome protein complexes based on a novel epitope combination. Eukaryot Cell 4:1942–1950. doi:10.1128/EC.4.11.1942-1950.2005. PubMed DOI PMC
Basu S, Netz DJ, Haindrich AC, Herlerth N, Lagny TJ, Pierik AJ, Lill R, Lukeš J. 2014. Cytosolic iron-sulphur protein assembly is functionally conserved and essential in procyclic and bloodstream Trypanosoma brucei. Mol Microbiol 93:897–910. doi:10.1111/mmi.12706. PubMed DOI
Ntambi JM, Englund PT. 1985. A gap at a unique location in newly replicated kinetoplast DNA minicircles from Trypanosoma equiperdum. J Biol Chem 260:5574–5579. PubMed
A leucine aminopeptidase is involved in kinetoplast DNA segregation in Trypanosoma brucei
Molecular mechanisms of thermal resistance of the insect trypanosomatid Crithidia thermophila
Species- and Strain-Specific Adaptation of the HSP70 Super Family in Pathogenic Trypanosomatids