Adaptations of Trypanosoma brucei to gradual loss of kinetoplast DNA: Trypanosoma equiperdum and Trypanosoma evansi are petite mutants of T. brucei

. 2008 Feb 12 ; 105 (6) : 1999-2004. [epub] 20080201

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid18245376

Trypanosoma brucei is a kinetoplastid flagellate, the agent of human sleeping sickness and ruminant nagana in Africa. Kinetoplastid flagellates contain their eponym kinetoplast DNA (kDNA), consisting of two types of interlocked circular DNA molecules: scores of maxicircles and thousands of minicircles. Maxicircles have typical mitochondrial genes, most of which are translatable only after RNA editing. Minicircles encode guide RNAs, required for decrypting the maxicircle transcripts. The life cycle of T. brucei involves a bloodstream stage (BS) in vertebrates and a procyclic stage (PS) in the tsetse fly vector. Partial [dyskinetoplastidy (Dk)] or total [akinetoplastidy (Ak)] loss of kDNA locks the trypanosome in the BS form. Transmission between vertebrates becomes mechanical without PS and tsetse mediation, allowing the parasite to spread outside the African tsetse belt. Trypanosoma equiperdum and Trypanosoma evansi are agents of dourine and surra, diseases of horses, camels, and water buffaloes. We have characterized representative strains of T. equiperdum and T. evansi by numerous molecular and classical parasitological approaches. We show that both species are actually strains of T. brucei, which lost part (Dk) or all (Ak) of their kDNA. These trypanosomes are not monophyletic clades and do not qualify for species status. They should be considered two subspecies, respectively T. brucei equiperdum and T. brucei evansi, which spontaneously arose recently. Dk/Ak trypanosomes may potentially emerge repeatedly from T. brucei.

Zobrazit více v PubMed

Simpson AGB, Stevens JR, Lukeš J. The evolution and diversity of kinetoplastid flagellates. Trends Parasitol. 2006;22:168–174. PubMed

Lukeš J, Hashimi H, Zíková A. Unexplained complexity of the mitochondrial genome and transcriptome in kinetoplastid flagellates. Curr Genet. 2005;48:277–299. PubMed

Stuart KD, Schnaufer A, Ernst NL, Panigrahi AK. Complex management: RNA editing in trypanosomes. Trends Biochem Sci. 2005;30:97–105. PubMed

Shlomai J. The structure and replication of kinetoplast DNA. Curr Mol Med. 2004;4:623–647. PubMed

Liu BY, Liu YN, Motyka SA, Agbo EEC, Englund PT. Fellowship of the rings: the replication of kinetoplast DNA. Trends Parasitol. 2005;21:363–369. PubMed

Schnaufer A, Domingo GJ, Stuart K. Natural and induced dyskinetoplastic trypanosomatids: how to live without mitochondrial DNA. Int J Parasitol. 2002;32:1071–1084. PubMed

Besteiro S, Barrett MP, Riviere L, Bringaud F. Energy generation in insect stages of Trypanosoma brucei: metabolism in flux. Trends Parasitol. 2005;21:185–191. PubMed

Lun Z-R, Desser SS. Is the broad range of hosts and geographical distribution of Trypanosoma evansi attributable to the loss of maxicircle kinetoplast DNA? Parasitol Today. 1995;11:131–133. PubMed

Brun R, Hecker H, Lun Z-R. Trypanosoma evansi and T. equiperdum: distribution, biology, treatment and phylogenetic relationship. Vet Parasitol. 1998;79:95–107. PubMed

Hoare CA. The Trypanosomes of Mammals. Oxford: Blackwell Scientific; 1972.

Ventura RM, et al. Molecular and morphological studies of Brazilian Trypanosoma evansi stocks: The total absence of kDNA in trypanosomes from both laboratory stocks and naturally infected domestic and wild mammals. J Parasitol. 2000;86:1289–1298. PubMed

Gibson W. Resolution of the species problem in African trypanosomes. Int J Parasitol. 2007;37:829–838. PubMed

Claes F, Buscher P, Touratier L, Goddeeris BM. Trypanosoma equiperdum: master of disguise or historical mistake? Trends Parasitol. 2005;21:316–321. PubMed

Li F-J, Lai D-H, Lukeš J, Chen X-G, Lun Z-R. Doubts about Trypanosoma equiperdum strains classed as Trypanosoma brucei or Trypanosoma evansi. Trends Parasitol. 2006;22:55–56. PubMed

Vanhollebeke B, et al. Human Trypanosoma evansi infection linked to a lack of apolipoprotein L-1. N Engl J Med. 2006;355:2752–2756. PubMed

Frasch ACC, et al. The kinetoplast DNA of Trypanosoma equiperdum. Biochim Biophys Acta. 1980;607:397–401. PubMed

Lun Z-R, Brun R, Gibson W. Kinetoplast DNA and molecular karyotypes of Trypanosoma evansi and Trypanosoma equiperdum from China. Mol Biochem Parasitol. 1992;50:189–196. PubMed

Shu HH, Stuart K. Mitochondrial transcripts are processed but are not edited normally in Trypanosoma equiperdum (ATCC 30019), which has kDNA sequence deletion and duplication. Nucleic Acids Res. 1994;22:1696–1700. PubMed PMC

Riou GF, Saucier J-M. Characterization of the molecular components in kinetoplast-mitochondrial DNA of Trypanosoma equiperdum. J Cell Biol. 1979;82:248–263. PubMed PMC

Brun R, Schönenberger M. Stimulating effect of citrate and cis-aconitate on the transformation of Trypanosoma brucei bloodstream forms to procyclic forms in vitro. Z Parasitenkd. 1981;66:17–24. PubMed

Schnaufer A, Clark-Walker GD, Steinberg AG, Stuart K. The F1-ATP synthase complex in bloodstream stage trypanosomes has an unusual and essential function. EMBO J. 2005;24:4029–4040. PubMed PMC

Schnaufer A, et al. An RNA ligase essential for RNA editing and survival of the bloodstream form of Trypanosoma brucei. Science. 2001;291:2159–2162. PubMed

Brown SV, Hosking P, Li JL, Williams N. ATP synthase is responsible for maintaining mitochondrial membrane potential in bloodstream form Trypanosoma brucei. Eukaryot Cell. 2006;5:45–53. PubMed PMC

Simpson L, Thiemann OH, Savill NJ, Alfonzo JD, Maslov DA. Evolution of RNA editing in trypanosome mitochondria. Proc Natl Acad Sci USA. 2000;97:6986–6993. PubMed PMC

Domingo GJ, et al. Dyskinetoplastic Trypanosoma brucei contains functional editing complexes. Eukaryot Cell. 2003;2:569–577. PubMed PMC

Tschudi C, Ullu E. Polygene transcripts are precursors to calmodulin mRNAs in trypanosomes. EMBO J. 1988;7:455–463. PubMed PMC

El-Sayed NM, et al. Comparative genomics of trypanosomatid parasitic protozoa. Science. 2005;309:404–409. PubMed

Stevens JR, Rambaut A. Evolutionary rate differences in trypanosomes. Infect Genet Evol. 2001;1:143–150. PubMed

Artama WT, Agey MW, Donelson JE. DNA comparisons of Trypanosoma evansi (Indonesia) and Trypanosoma brucei spp. Parasitology. 1992;104:67–74. PubMed

Thomas S, Westenberger SJ, Campbell DA, Sturm NR. Intragenomic spliced leader RNA array analysis of kinetoplastids reveals unexpected transcribed region diversity in Trypanosoma cruzi. Gene. 2005;352:100–108. PubMed

Maslov DA, Westenberger SJ, Xu X, Campbell DA, Sturm NR. Discovery and barcoding by analysis of spliced leader RNA gene sequences of new isolates of Trypanosomatidae from Heteroptera in Costa Rica and Ecuador. J Eukaryot Microbiol. 2007;54:57–65. PubMed

Chen XJ, Clark-Walker GD. The petite mutations in yeasts: 50 years on. Int Rev Cytol. 2000;194:197–237. PubMed

Chen XJ, Clark-Walker GD. Specific mutations in α and γ-subunits of F1-ATPase affect mitochondrial genome integrity in the petite-negative yeast Kluyveromyces lactis. EMBO J. 1995;14:3277–3286. PubMed PMC

Lanham SM, Godfrey DG. Isolation of salivarian trypanosomes from man and other mammals using DEAE-cell. Exp Parasitol. 1970;28:521–534. PubMed

Pérez-Morga D, Englund PT. The structure of replicating kinetoplast DNA networks. J Cell Biol. 1993;123:1069–1079. PubMed PMC

Yurchenko V, Lukeš J, Xu X, Maslov DA. An integrated morphological and molecular approach to a new species description in the Trypanosomatidae: the case of Leptomonas podlipaevi n. sp., a parasite of Boisea rubrolineata (Hemiptera: Rhopalidae). J Euk Microbiol. 2006;53:103–111. PubMed

Horváth A, et al. Down-regulation of the nuclear-encoded subunits of the complexes III, IV disrupts their respective complexes but not complex I in procyclic Trypanosoma brucei. Mol Microbiol. 2005;58:116–130. PubMed

Vondrušková E, et al. RNA Interference analyses suggest a transcript-specific regulatory role for mitochondrial RNA-binding proteins MRP1 and MRP2 in RNA editing and other RNA processing in Trypanosoma brucei. J Biol Chem. 2005;280:2429–2438. PubMed

Carnes J, Trotter JR, Ernst NL, Steinberg A, Stuart K. An essential Rnase III insertion editing endonuclease in Trypanosoma brucei. Proc Natl Acad Sci USA. 2005;102:16614–16619. PubMed PMC

Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:2002–2007. PubMed PMC

Agbe SA, Yielding KL. Effect of verapamil on antitrypanosomal activity of drugs in mice. Acta Trop. 1993;55:11–19. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Suramin action in African trypanosomes involves a RuvB-like DNA helicase

. 2023 Dec ; 23 () : 44-53. [epub] 20230919

Biochemical and genotyping analyses of camels (Camelus dromedaries) trypanosomiasis in North Africa

. 2023 May 03 ; 13 (1) : 7176. [epub] 20230503

Redesigned and reversed: architectural and functional oddities of the trypanosomal ATP synthase

. 2021 Sep ; 148 (10) : 1151-1160. [epub] 20210208

Temperate Zone Plant Natural Products-A Novel Resource for Activity against Tropical Parasitic Diseases

. 2021 Mar 07 ; 14 (3) : . [epub] 20210307

Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses

. 2021 Mar ; 11 (3) : 200407. [epub] 20210310

Bioenergetic consequences of FoF1-ATP synthase/ATPase deficiency in two life cycle stages of Trypanosoma brucei

. 2021 Jan-Jun ; 296 () : 100357. [epub] 20210202

The Remarkable Metabolism of Vickermania ingenoplastis: Genomic Predictions

. 2021 Jan 14 ; 10 (1) : . [epub] 20210114

Large-Scale Phylogenetic Analysis of Trypanosomatid Adenylate Cyclases Reveals Associations with Extracellular Lifestyle and Host-Pathogen Interplay

. 2020 Dec 06 ; 12 (12) : 2403-2416.

Evolution of metabolic capabilities and molecular features of diplonemids, kinetoplastids, and euglenids

. 2020 Mar 02 ; 18 (1) : 23. [epub] 20200302

Massive mitochondrial DNA content in diplonemid and kinetoplastid protists

. 2018 Dec ; 70 (12) : 1267-1274. [epub] 20181006

Diversity and evolution of anuran trypanosomes: insights from the study of European species

. 2018 Aug 02 ; 11 (1) : 447. [epub] 20180802

Cultured bloodstream Trypanosoma brucei adapt to life without mitochondrial translation release factor 1

. 2018 Mar 23 ; 8 (1) : 5135. [epub] 20180323

Trypanosoma brucei TbIF1 inhibits the essential F1-ATPase in the infectious form of the parasite

. 2017 Apr ; 11 (4) : e0005552. [epub] 20170417

Analysis of the mitochondrial maxicircle of Trypanosoma lewisi, a neglected human pathogen

. 2015 Dec 30 ; 8 () : 665. [epub] 20151230

Wild chimpanzees are infected by Trypanosoma brucei

. 2015 Dec ; 4 (3) : 277-82. [epub] 20150616

Integrity of the core mitochondrial RNA-binding complex 1 is vital for trypanosome RNA editing

. 2015 Dec ; 21 (12) : 2088-102. [epub] 20151007

Sex is a ubiquitous, ancient, and inherent attribute of eukaryotic life

Mitochondrial heat shock protein machinery hsp70/hsp40 is indispensable for proper mitochondrial DNA maintenance and replication

. 2015 Feb 10 ; 6 (1) : . [epub] 20150210

ATPaseTb2, a unique membrane-bound FoF1-ATPase component, is essential in bloodstream and dyskinetoplastic trypanosomes

. 2015 Feb ; 11 (2) : e1004660. [epub] 20150225

Genome and phylogenetic analyses of Trypanosoma evansi reveal extensive similarity to T. brucei and multiple independent origins for dyskinetoplasty

. 2015 Jan ; 9 (1) : e3404. [epub] 20150108

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...