Bioenergetic consequences of FoF1-ATP synthase/ATPase deficiency in two life cycle stages of Trypanosoma brucei
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
MR/L019701/1
Medical Research Council - United Kingdom
PubMed
33539923
PubMed Central
PMC7949148
DOI
10.1016/j.jbc.2021.100357
PII: S0021-9258(21)00129-0
Knihovny.cz E-zdroje
- Klíčová slova
- ATP synthase, ATPase, Trypanosoma brucei, alternative oxidase, bioenergetics, electron transport, mitochondria, mitochondrial membrane potential, oxidative phosphorylation, respiration,
- MeSH
- adenosintrifosfát genetika metabolismus MeSH
- buněčný cyklus * MeSH
- energetický metabolismus * MeSH
- membránový potenciál mitochondrií MeSH
- mitochondrie genetika metabolismus MeSH
- protonové ATPasy nedostatek metabolismus MeSH
- protozoální proteiny genetika metabolismus MeSH
- Trypanosoma brucei brucei genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenosintrifosfát MeSH
- protonové ATPasy MeSH
- protozoální proteiny MeSH
Mitochondrial ATP synthase is a reversible nanomotor synthesizing or hydrolyzing ATP depending on the potential across the membrane in which it is embedded. In the unicellular parasite Trypanosoma brucei, the direction of the complex depends on the life cycle stage of this digenetic parasite: in the midgut of the tsetse fly vector (procyclic form), the FoF1-ATP synthase generates ATP by oxidative phosphorylation, whereas in the mammalian bloodstream form, this complex hydrolyzes ATP and maintains mitochondrial membrane potential (ΔΨm). The trypanosome FoF1-ATP synthase contains numerous lineage-specific subunits whose roles remain unknown. Here, we seek to elucidate the function of the lineage-specific protein Tb1, the largest membrane-bound subunit. In procyclic form cells, Tb1 silencing resulted in a decrease of FoF1-ATP synthase monomers and dimers, rerouting of mitochondrial electron transfer to the alternative oxidase, reduced growth rate and cellular ATP levels, and elevated ΔΨm and total cellular reactive oxygen species levels. In bloodstream form parasites, RNAi silencing of Tb1 by ∼90% resulted in decreased FoF1-ATPase monomers and dimers, but it had no apparent effect on growth. The same findings were obtained by silencing of the oligomycin sensitivity-conferring protein, a conserved subunit in T. brucei FoF1-ATP synthase. However, as expected, nearly complete Tb1 or oligomycin sensitivity-conferring protein suppression was lethal because of the inability to sustain ΔΨm. The diminishment of FoF1-ATPase complexes was further accompanied by a decreased ADP/ATP ratio and reduced oxygen consumption via the alternative oxidase. Our data illuminate the often diametrically opposed bioenergetic consequences of FoF1-ATP synthase loss in insect versus mammalian forms of the parasite.
Department of Medical Biochemistry Semmelweis University Budapest Hungary
Institute of Immunology and Infection Research University of Edinburgh United Kingdom
Institute of Parasitology Biology Centre Czech Academy of Sciences Ceske Budejovice Czech Republic
Zobrazit více v PubMed
Walker J.E. The ATP synthase: The understood, the uncertain and the unknown. Biochem. Soc. Trans. 2013;41:1–16. PubMed
Kuhlbrandt W. Structure and mechanisms of F-type ATP synthases. Annu. Rev. Biochem. 2019;88:515–549. PubMed
Miranda-Astudillo H., Cano-Estrada A., Vazquez-Acevedo M., Colina-Tenorio L., Downie-Velasco A., Cardol P., Remacle C., Dominguez-Ramirez L., Gonzalez-Halphen D. Interactions of subunits Asa2, Asa4 and Asa7 in the peripheral stalk of the mitochondrial ATP synthase of the chlorophycean alga Polytomella sp. Biochim. Biophys. Acta. 2014;1837:1–13. PubMed
van Lis R., Mendoza-Hernandez G., Groth G., Atteia A. New insights into the unique structure of the F0F1-ATP synthase from the chlamydomonad algae Polytomella sp. and Chlamydomonas reinhardtii. Plant Physiol. 2007;144:1190–1199. PubMed PMC
Salunke R., Mourier T., Banerjee M., Pain A., Shanmugam D. Highly diverged novel subunit composition of apicomplexan F-type ATP synthase identified from Toxoplasma gondii. PLoS Biol. 2018;16 PubMed PMC
Muhleip A., McComas S.E., Amunts A. Structure of a mitochondrial ATP synthase with bound native cardiolipin. Elife. 2019;8 PubMed PMC
Balabaskaran Nina P., Dudkina N.V., Kane L.A., van Eyk J.E., Boekema E.J., Mather M.W., Vaidya A.B. Highly divergent mitochondrial ATP synthase complexes in Tetrahymena thermophila. PLoS Biol. 2010;8 PubMed PMC
Zikova A., Schnaufer A., Dalley R.A., Panigrahi A.K., Stuart K.D. The F(0)F(1)-ATP synthase complex contains novel subunits and is essential for procyclic Trypanosoma brucei. PLoS Pathog. 2009;5 PubMed PMC
Gahura O., Subrtova K., Vachova H., Panicucci B., Fearnley I.M., Harbour M.E., Walker J.E., Zikova A. The F1 -ATPase from Trypanosoma brucei is elaborated by three copies of an additional p18-subunit. FEBS J. 2018;285:614–628. PubMed
Montgomery M.G., Gahura O., Leslie A.G.W., Zikova A., Walker J.E. ATP synthase from Trypanosoma brucei has an elaborated canonical F1-domain and conventional catalytic sites. Proc. Natl. Acad. Sci. U. S. A. 2018;115:2102–2107. PubMed PMC
Subrtova K., Panicucci B., Zikova A. ATPaseTb2, a unique membrane-bound FoF1-ATPase component, is essential in bloodstream and dyskinetoplastic Trypanosomes. PLoS Pathog. 2015;11 PubMed PMC
Bringaud F., Riviere L., Coustou V. Energy metabolism of trypanosomatids: Adaptation to available carbon sources. Mol. Biochem. Parasitol. 2006;149:1–9. PubMed
Hellemond J.J., Bakker B.M., Tielens A.G. Energy metabolism and its compartmentation in Trypanosoma brucei. Adv. Microb. Physiol. 2005;50:199–226. PubMed
Smith T.K., Bringaud F., Nolan D.P., Figueiredo L.M. Metabolic reprogramming during the Trypanosoma brucei life cycle. F1000Res. 2017;6 F1000 Faculty Rev-683. PubMed PMC
Nolan D.P., Voorheis H.P. The mitochondrion in bloodstream forms of Trypanosoma brucei is energized by the electrogenic pumping of protons catalysed by the F1F0-ATPase. Eur. J. Biochem. 1992;209:207–216. PubMed
Schnaufer A., Clark-Walker G.D., Steinberg A.G., Stuart K. The F1-ATP synthase complex in bloodstream stage trypanosomes has an unusual and essential function. EMBO J. 2005;24:4029–4040. PubMed PMC
Futai M., Kanazawa H. Structure and function of proton-translocating adenosine triphosphatase (F0F1): Biochemical and molecular biological approaches. Microbiol. Rev. 1983;47:285–312. PubMed PMC
Chinopoulos C., Adam-Vizi V. Mitochondria as ATP consumers in cellular pathology. Biochim. Biophys. Acta. 2010;1802:221–227. PubMed
Chinopoulos C. Mitochondrial consumption of cytosolic ATP: Not so fast. FEBS Lett. 2011;585:1255–1259. PubMed
Chen X.J., Clark-Walker G.D. The petite mutation in yeasts: 50 years on. Int. Rev. Cytol. 2000;194:197–238. PubMed
Appleby R.D., Porteous W.K., Hughes G., James A.M., Shannon D., Wei Y.H., Murphy M.P. Quantitation and origin of the mitochondrial membrane potential in human cells lacking mitochondrial DNA. Eur. J. Biochem. 1999;262:108–116. PubMed
Dean S., Gould M.K., Dewar C.E., Schnaufer A.C. Single point mutations in ATP synthase compensate for mitochondrial genome loss in trypanosomes. Proc. Natl. Acad. Sci. U. S. A. 2013;110:14741–14746. PubMed PMC
Campanella M., Casswell E., Chong S., Farah Z., Wieckowski M.R., Abramov A.Y., Tinker A., Duchen M.R. Regulation of mitochondrial structure and function by the F1Fo-ATPase inhibitor protein, IF1. Cell Metab. 2008;8:13–25. PubMed
Panicucci B., Gahura O., Zikova A. Trypanosoma brucei TbIF1 inhibits the essential F1-ATPase in the infectious form of the parasite. PLoS Negl. Trop. Dis. 2017;11 PubMed PMC
Gahura O., Panicucci B., Vachova H., Walker J.E., Zikova A. Inhibition of F1 -ATPase from Trypanosoma brucei by its regulatory protein inhibitor TbIF1. FEBS J. 2018;285:4413–4423. PubMed
Vertommen D., Van Roy J., Szikora J.P., Rider M.H., Michels P.A., Opperdoes F.R. Differential expression of glycosomal and mitochondrial proteins in the two major life-cycle stages of Trypanosoma brucei. Mol. Biochem. Parasitol. 2008;158:189–201. PubMed
Frazier A.E., Taylor R.D., Mick D.U., Warscheid B., Stoepel N., Meyer H.E., Ryan M.T., Guiard B., Rehling P. Mdm38 interacts with ribosomes and is a component of the mitochondrial protein export machinery. J. Cell Biol. 2006;172:553–564. PubMed PMC
Chaudhuri M., Ott R.D., Hill G.C. Trypanosome alternative oxidase: From molecule to function. Trends Parasitol. 2006;22:484–491. PubMed
Brand M.D. The sites and topology of mitochondrial superoxide production. Exp. Gerontol. 2010;45:466–472. PubMed PMC
Maxwell D.P., Wang Y., McIntosh L. The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc. Natl. Acad. Sci. U. S. A. 1999;96:8271–8276. PubMed PMC
Fernandez-Ayala D.J., Sanz A., Vartiainen S., Kemppainen K.K., Babusiak M., Mustalahti E., Costa R., Tuomela T., Zeviani M., Chung J., O'Dell K.M., Rustin P., Jacobs H.T. Expression of the Ciona intestinalis alternative oxidase (AOX) in Drosophila complements defects in mitochondrial oxidative phosphorylation. Cell Metab. 2009;9:449–460. PubMed
El-Khoury R., Dufour E., Rak M., Ramanantsoa N., Grandchamp N., Csaba Z., Duvillie B., Benit P., Gallego J., Gressens P., Sarkis C., Jacobs H.T., Rustin P. Alternative oxidase expression in the mouse enables bypassing cytochrome c oxidase blockade and limits mitochondrial ROS overproduction. PLoS Genet. 2013;9 PubMed PMC
Chinopoulos C. The “B space” of mitochondrial phosphorylation. J. Neurosci. Res. 2011;89:1897–1904. PubMed
Bakker B.M., Michels P.A., Opperdoes F.R., Westerhoff H.V. What controls glycolysis in bloodstream form Trypanosoma brucei? J. Biol. Chem. 1999;274:14551–14559. PubMed
Alberto Luevano-Martinez L., Girard R., Alencar M.B., Silber A.M. ATP regulates the activity of an alternative oxidase in Trypanosoma brucei. FEBS Lett. 2020 doi: 10.1002/1873-3468.13790. PubMed DOI
Nowikovsky K., Reipert S., Devenish R.J., Schweyen R.J. Mdm38 protein depletion causes loss of mitochondrial K+/H+ exchange activity, osmotic swelling and mitophagy. Cell Death Differ. 2007;14:1647–1656. PubMed
Bauerschmitt H., Mick D.U., Deckers M., Vollmer C., Funes S., Kehrein K., Ott M., Rehling P., Herrmann J.M. Ribosome-binding proteins Mdm38 and Mba1 display overlapping functions for regulation of mitochondrial translation. Mol. Biol. Cell. 2010;21:1937–1944. PubMed PMC
Perez E., Lapaille M., Degand H., Cilibrasi L., Villavicencio-Queijeiro A., Morsomme P., Gonzalez-Halphen D., Field M.C., Remacle C., Baurain D., Cardol P. The mitochondrial respiratory chain of the secondary green alga Euglena gracilis shares many additional subunits with parasitic Trypanosomatidae. Mitochondrion. 2014;19 Pt B:338–349. PubMed
Horvath A., Horakova E., Dunajcikova P., Verner Z., Pravdova E., Slapetova I., Cuninkova L., Lukes J. Downregulation of the nuclear-encoded subunits of the complexes III and IV disrupts their respective complexes but not complex I in procyclic Trypanosoma brucei. Mol. Microbiol. 2005;58:116–130. PubMed
Gnipova A., Panicucci B., Paris Z., Verner Z., Horvath A., Lukes J., Zikova A. Disparate phenotypic effects from the knockdown of various Trypanosoma brucei cytochrome c oxidase subunits. Mol. Biochem. Parasitol. 2012;184:90–98. PubMed
Coustou V., Besteiro S., Biran M., Diolez P., Bouchaud V., Voisin P., Michels P.A., Canioni P., Baltz T., Bringaud F. ATP generation in the Trypanosoma brucei procyclic form: Cytosolic substrate level is essential, but not oxidative phosphorylation. J. Biol. Chem. 2003;278:49625–49635. PubMed
Lamour N., Riviere L., Coustou V., Coombs G.H., Barrett M.P., Bringaud F. Proline metabolism in procyclic Trypanosoma brucei is down-regulated in the presence of glucose. J. Biol. Chem. 2005;280:11902–11910. PubMed
Krauth-Siegel R.L., Comini M.A. Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism. Biochim. Biophys. Acta. 2008;1780:1236–1248. PubMed
Prochazkova M., Panicucci B., Zikova A. Cultured bloodstream Trypanosoma brucei adapt to life without mitochondrial translation release factor 1. Sci. Rep. 2018;8:5135. PubMed PMC
Chowdhury S.R., Djordjevic J., Albensi B.C., Fernyhough P. Simultaneous evaluation of substrate-dependent oxygen consumption rates and mitochondrial membrane potential by TMRM and safranin in cortical mitochondria. Biosci. Rep. 2015;36 PubMed PMC
Helfert S., Estevez A.M., Bakker B., Michels P., Clayton C. Roles of triosephosphate isomerase and aerobic metabolism in Trypanosoma brucei. Biochem. J. 2001;357:117–125. PubMed PMC
Lai D.H., Hashimi H., Lun Z.R., Ayala F.J., Lukes J. Adaptations of Trypanosoma brucei to gradual loss of kinetoplast DNA: Trypanosoma equiperdum and Trypanosoma evansi are petite mutants of T. brucei. Proc. Natl. Acad. Sci. U. S. A. 2008;105:1999–2004. PubMed PMC
Schnaufer A. Evolution of dyskinetoplastic trypanosomes: How, and how often? Trends Parasitol. 2010;26:557–558. PubMed PMC
Carnes J., Anupama A., Balmer O., Jackson A., Lewis M., Brown R., Cestari I., Desquesnes M., Gendrin C., Hertz-Fowler C., Imamura H., Ivens A., Koreny L., Lai D.H., MacLeod A. Genome and phylogenetic analyses of Trypanosoma evansi reveal extensive similarity to T. brucei and multiple independent origins for dyskinetoplasty. PLoS Negl. Trop. Dis. 2015;9 PubMed PMC
Brun R., Hecker H., Lun Z.R. Trypanosoma evansi and T. equiperdum: Distribution, biology, treatment and phylogenetic relationship (a review) Vet. Parasitol. 1998;79:95–107. PubMed
Motta M.C. Kinetoplast as a potential chemotherapeutic target of trypanosomatids. Curr. Pharm. Des. 2008;14:847–854. PubMed
Shapiro T.A., Englund P.T. Selective cleavage of kinetoplast DNA minicircles promoted by antitrypanosomal drugs. Proc. Natl. Acad. Sci. U. S. A. 1990;87:950–954. PubMed PMC
Giordani F., Morrison L.J., Rowan T.G., De Koning H.P., Barrett M.P. The animal trypanosomiases and their chemotherapy: A review. Parasitology. 2016;143:1862–1889. PubMed PMC
Eze A.A., Gould M.K., Munday J.C., Tagoe D.N., Stelmanis V., Schnaufer A., De Koning H.P. Reduced mitochondrial membrane potential is a late adaptation of trypanosoma brucei brucei to Isometamidium preceded by mutations in the gamma subunit of the F1Fo-ATPase. PLoS Negl. Trop. Dis. 2016;10 PubMed PMC
Gould M.K., Schnaufer A. Independence from kinetoplast DNA maintenance and expression is associated with multidrug resistance in Trypanosoma brucei in vitro. Antimicrob. Agents Chemother. 2014;58:2925–2928. PubMed PMC
Agbe A., Yielding K.L. Kinetoplasts play an important role in the drug responses of Trypanosoma brucei. J. Parasitol. 1995;81:968–973. PubMed
Young M.J., Copeland W.C. Human mitochondrial DNA replication machinery and disease. Curr. Opin. Genet. Dev. 2016;38:52–62. PubMed PMC
Ghozlane A., Bringaud F., Soueidan H., Dutour I., Jourdan F., Thebault P. Flux analysis of the Trypanosoma brucei glycolysis based on a multiobjective-criteria bioinformatic approach. Adv. Bioinformatics. 2012;2012:159423. PubMed PMC
Kiaira J.K., Njogu M.R. Oligomycin-sensitivity of hexose-sugar catabolism in the bloodstream form of Trypanosoma brucei brucei. Biotechnol. Appl. Biochem. 1994;20:347–356. PubMed
Miller P.G., Klein R.A. Effects of oligomycin on glucose utilization and calcium transport in African trypanosomes. J. Gen. Microbiol. 1980;116:391–396. PubMed
Heinrich R., Rapoport T.A. A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur. J. Biochem. 1974;42:89–95. PubMed
Bakker B.M., Walsh M.C., ter Kuile B.H., Mensonides F.I., Michels P.A., Opperdoes F.R., Westerhoff H.V. Contribution of glucose transport to the control of the glycolytic flux in Trypanosoma brucei. Proc. Natl. Acad. Sci. U. S. A. 1999;96:10098–10103. PubMed PMC
Schaaff I., Heinisch J., Zimmermann F.K. Overproduction of glycolytic enzymes in yeast. Yeast. 1989;5:285–290. PubMed
Ruyter G.J., Postma P.W., van Dam K. Control of glucose metabolism by enzyme IIGlc of the phosphoenolpyruvate-dependent phosphotransferase system in Escherichia coli. J. Bacteriol. 1991;173:6184–6191. PubMed PMC
Koebmann B.J., Westerhoff H.V., Snoep J.L., Nilsson D., Jensen P.R. The glycolytic flux in Escherichia coli is controlled by the demand for ATP. J. Bacteriol. 2002;184:3909–3916. PubMed PMC
Wickstead B., Ersfeld K., Gull K. Targeting of a tetracycline-inducible expression system to the transcriptionally silent minichromosomes of Trypanosoma brucei. Mol. Biochem. Parasitol. 2002;125:211–216. PubMed
Poon S.K., Peacock L., Gibson W., Gull K., Kelly S. A modular and optimized single marker system for generating Trypanosoma brucei cell lines expressing T7 RNA polymerase and the tetracycline repressor. Open Biol. 2012;2:110037. PubMed PMC
Engstler M., Boshart M. Cold shock and regulation of surface protein trafficking convey sensitization to inducers of stage differentiation in Trypanosoma brucei. Genes Dev. 2004;18:2798–2811. PubMed PMC
Flaspohler J.A., Jensen B.C., Saveria T., Kifer C.T., Parsons M. A novel protein kinase localized to lipid droplets is required for droplet biogenesis in trypanosomes. Eukaryot. Cell. 2010;9:1702–1710. PubMed PMC
Wirtz E., Leal S., Ochatt C., Cross G.A. A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei. Mol. Biochem. Parasitol. 1999;99:89–101. PubMed
Stuart K.D. Evidence for the retention of kinetoplast DNA in an acriflavine-induced dyskinetoplastic strain of Trypanosoma brucei which replicates the altered central element of the kinetoplast. J. Cell Biol. 1971;49:189–195. PubMed PMC
Panigrahi A.K., Zikova A., Dalley R.A., Acestor N., Ogata Y., Anupama A., Myler P.J., Stuart K.D. Mitochondrial complexes in Trypanosoma brucei: A novel complex and a unique oxidoreductase complex. Mol. Cell. Proteomics. 2008;7:534–545. PubMed
Hannaert V., Albert M.A., Rigden D.J., da Silva Giotto M.T., Thiemann O., Garratt R.C., Van Roy J., Opperdoes F.R., Michels P.A. Kinetic characterization, structure modelling studies and crystallization of Trypanosoma brucei enolase. Eur. J. Biochem. 2003;270:3205–3213. PubMed
Wittig I., Karas M., Schagger H. High resolution clear native electrophoresis for in-gel functional assays and fluorescence studies of membrane protein complexes. Mol. Cell. Proteomics. 2007;6:1215–1225. PubMed
Acestor N., Zikova A., Dalley R.A., Anupama A., Panigrahi A.K., Stuart K.D. Trypanosoma brucei mitochondrial respiratome: Composition and organization in procyclic form. Mol. Cell. Proteomics. 2011;10 M110 006908. PubMed PMC
Acestor N., Panigrahi A.K., Ogata Y., Anupama A., Stuart K.D. Protein composition of Trypanosoma brucei mitochondrial membranes. Proteomics. 2009;9:5497–5508. PubMed PMC
Akerman K.E., Wikstrom M.K. Safranine as a probe of the mitochondrial membrane potential. FEBS Lett. 1976;68:191–197. PubMed
Chinopoulos C., Vajda S., Csanady L., Mandi M., Mathe K., Adam-Vizi V. A novel kinetic assay of mitochondrial ATP-ADP exchange rate mediated by the ANT. Biophys. J. 2009;96:2490–2504. PubMed PMC
An ancestral interaction module promotes oligomerization in divergent mitochondrial ATP synthases
Redesigned and reversed: architectural and functional oddities of the trypanosomal ATP synthase