Selective loss of ATP carriers in favour of SLC25A43 orthologues in metamonad mitochondria adapted to anaerobiosis

. 2025 Aug ; 15 (8) : 240202. [epub] 20250813

Status In-Process Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40795994

Grantová podpora
Grantová Agentura, Univerzita Karlova
European Regional Development Fund 'Centre for research of pathogenicity and virulence of parasites'
Grantová Agentura České Republiky
Ministerstvo Školství, Mládeže a Tělovýchovy
European Research Council - International
Gordon and Betty Moore Foundation

Metamonada is a eukaryotic supergroup of free-living and parasitic anaerobic protists. Their characteristic feature is the presence of highly reduced mitochondria that have lost the ability to produce ATP by oxidative phosphorylation and in some cases even by substrate phosphorylation, with all ATP being imported from the cytosol. Given this striking difference in cellular ATP metabolism when compared to aerobic mitochondria, we studied the presence of mitochondrial carrier proteins (MCPs) mediating the transport of ATP across the inner mitochondrial membrane. Our bioinformatic analyses revealed remarkable reduction of MCP repertoire in Metamonada with striking loss of the major ADP/ATP carrier (AAC). Instead, nearly all species retained carriers orthologous to human SLC25A43 protein, a little-characterized MCP. Heterologous expression of metamonad SLC25A43 carriers confirmed their mitochondrial localization, and functional analysis revealed that SLC25A43 orthologues represent a distinct group of ATP transporters, which we designate as ATP-importing carriers (AIC). Together, our findings suggest that AIC facilitate the ATP import into highly reduced anaerobic mitochondria, compensating for their diminished or absent energy metabolism.

Zobrazit více v PubMed

Fenchel T. 2012. Anaerobic eukaryotes. In Anoxia: evidence for eukaryote survival and paleontological strategies (eds Altenbach AV, Bernhard JM, Seckbach J), pp. 3–16. Dordrecht, The Netherlands: Springer. ( 10.1007/978-94-007-1896-8_1) DOI

Leger MM, et al. 2017. Organelles that illuminate the origins of Trichomonas hydrogenosomes and Giardia mitosomes. Nat. Ecol. Evol. 1, 0092. ( 10.1038/s41559-017-0092) PubMed DOI PMC

Stairs CW, Eme L, Muñoz-Gómez SA, Cohen A, Dellaire G, Shepherd JN, Fawcett JP, Roger AJ. 2018. Microbial eukaryotes have adapted to hypoxia by horizontal acquisitions of a gene involved in rhodoquinone biosynthesis. Elife 7, 1–23. ( 10.7554/elife.34292) PubMed DOI PMC

Roger AJ, Muñoz-Gómez SA, Kamikawa R. 2017. The origin and diversification of mitochondria. Curr. Biol. 27, R1177–R1192. ( 10.1016/j.cub.2017.09.015) PubMed DOI

Adl SM, et al. 2019. Revisions to the classification, nomenclature, and diversity of eukaryotes. J. Eukaryot. Microbiol. 66, 4–119. ( 10.1111/jeu.12691) PubMed DOI PMC

Cavalier-Smith T. 2003. The excavate protozoan phyla metamonada grasse emend. (Anaeromonadea, Parabasalia, Carpediemonas, Eopharyngia) and Loukozoa emend. (Jakobea, Malawimonas): their evolutionary affinities and new higher taxa. Int. J. Syst. Evol. Microbiol. 53, 1741–1758. ( 10.1099/ijs.0.02548-0) PubMed DOI

Stairs CW, et al. 2021. Anaeramoebae are a divergent lineage of eukaryotes that shed light on the transition from anaerobic mitochondria to hydrogenosomes. Curr. Biol. 31, 5605–5612.( 10.1016/j.cub.2021.10.010) PubMed DOI

Lindmark DG, Müller M. 1973. Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate Tritrichomonas foetus, and its role in pyruvate metabolism. J. Biol. Chem. 248, 7724–7728. ( 10.1016/s0021-9258(19)43249-3) PubMed DOI

Tovar J, León-Avila G, Sánchez LB, Sutak R, Tachezy J, van der Giezen M, Hernández M, Müller M, Lucocq JM. 2003. Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature 426, 172–176. ( 10.1038/nature01945) PubMed DOI

Karnkowska A, et al. 2016. A eukaryote without a mitochondrial organelle. Curr. Biol. 26, 1274–1284. ( 10.1016/j.cub.2016.03.053) PubMed DOI

Goldberg AV, et al. 2008. Localization and functionality of microsporidian iron–sulphur cluster assembly proteins. Nature 452, 624–628. ( 10.1038/nature06606) PubMed DOI

Motyčková A, et al. 2023. Adaptation of the late ISC pathway in the anaerobic mitochondrial organelles of Giardia intestinalis. PLoS Pathog. 19, e1010773. ( 10.1371/journal.ppat.1010773) PubMed DOI PMC

Tachezy J, Doležal P. 2007. Iron-sulfur proteins and iron-sulfur cluster assembly in organisms with hydrogenosomes and mitosomes. Orig. Mitochondria Hydrog 105–133. ( 10.1007/978-3-540-38502-8_6) DOI

Zorova LD, et al. 2018. Mitochondrial membrane potential. Anal. Biochem. 552, 50–59. ( 10.1016/j.ab.2017.07.009) PubMed DOI PMC

Ruprecht JJ, Kunji ERS. 2020. The SLC25 mitochondrial carrier family: structure and mechanism. Trends Biochem. Sci. 45, 244–258. ( 10.1016/j.tibs.2019.11.001) PubMed DOI PMC

Palmieri F, Monné M. 2016. Discoveries, metabolic roles and diseases of mitochondrial carriers: a review. Biochim. Et Biophys. Acta 1863, 2362–2378. ( 10.1016/j.bbamcr.2016.03.007) PubMed DOI

Rada P, et al. 2011. The core components of organelle biogenesis and membrane transport in the hydrogenosomes of Trichomonas vaginalis. PLoS One 6, e24428. ( 10.1371/journal.pone.0024428) PubMed DOI PMC

Stairs CW, Eme L, Brown MW, Mutsaers C, Susko E, Dellaire G, Soanes DM, van der Giezen M, Roger AJ. 2014. A SUF Fe-S cluster biogenesis system in the mitochondrion-related organelles of the anaerobic protist Pygsuia. Curr. Biol. 24, 1176–1186. ( 10.1016/j.cub.2014.04.033) PubMed DOI

Saraste M, Walker JE. 1982. Internal sequence repeats and the path of polypeptide in mitochondrial ADP/ATP translocase. FEBS Lett. 144, 250–254. ( 10.1016/0014-5793(82)80648-0) PubMed DOI

Pebay-Peyroula E, Dahout-Gonzalez C, Kahn R, Trézéguet V, Lauquin GJM, Brandolin G. 2003. Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside. Nature 426, 39–44. ( 10.1038/nature02056) PubMed DOI

Nelson DR, Felix CM, Swanson JM. 1998. Highly conserved charge-pair networks in the mitochondrial carrier family. J. Mol. Biol. 277, 285–308. ( 10.1006/jmbi.1997.1594) PubMed DOI

Robinson AJ, Overy C, Kunji ERS. 2008. The mechanism of transport by mitochondrial carriers based on analysis of symmetry. Proc. Natl Acad. Sci. USA 105, 17766–17771. ( 10.1073/pnas.0809580105) PubMed DOI PMC

Ruprecht JJ, King MS, Zögg T, Aleksandrova AA, Pardon E, Crichton PG, Steyaert J, Kunji ERS. 2019. The molecular mechanism of transport by the mitochondrial ADP/ATP carrier. Cell 176, 435–447.( 10.1016/j.cell.2018.11.025) PubMed DOI PMC

Duncan AL, Ruprecht JJ, Kunji ERS, Robinson AJ. 2018. Cardiolipin dynamics and binding to conserved residues in the mitochondrial ADP/ATP carrier. Biochim. Biophys. Acta Biomembr. 1860, 1035–1045. ( 10.1016/j.bbamem.2018.01.017) PubMed DOI PMC

Ruprecht JJ, Hellawell AM, Harding M, Crichton PG, McCoy AJ, Kunji ERS. 2014. Structures of yeast mitochondrial ADP/ATP carriers support a domain-based alternating-access transport mechanism. Proc. Natl Acad. Sci. USA 111, E426–34. ( 10.1073/pnas.1320692111) PubMed DOI PMC

Klingenberg M. 2008. The ADP and ATP transport in mitochondria and its carrier. Biochim. Et Biophys. Acta Biomembr. 1778, 1978–2021. ( 10.1016/j.bbamem.2008.04.011) PubMed DOI

Mifsud J, Ravaud S, Krammer EM, Chipot C, Kunji ERS, Pebay-Peyroula E, Dehez F. 2013. The substrate specificity of the human ADP/ATP carrier AAC1. Mol. Membr. Biol. 30, 160–168. ( 10.3109/09687688.2012.745175) PubMed DOI

Ruprecht JJ, Kunji ER. 2019. Structural changes in the transport cycle of the mitochondrial ADP/ATP carrier. Curr. Opin. Struct. Biol. 57, 135–144. ( 10.1016/j.sbi.2019.03.029) PubMed DOI PMC

Aprille JR. 1988. Regulation of the mitochondrial adenine nucleotide pool size in liver: mechanism and metabolic role. FASEB J. 2, 2547–2556. ( 10.1096/fasebj.2.10.3290024) PubMed DOI

Fiermonte G, De Leonardis F, Todisco S, Palmieri L, Lasorsa FM, Palmieri F. 2004. Identification of the mitochondrial ATP-Mg/Pi transporter. Bacterial expression, reconstitution, functional characterization, and tissue distribution. J. Biol. Chem. 279, 30722–30730. ( 10.1074/jbc.M400445200) PubMed DOI

Harborne SPD, Ruprecht JJ, Kunji ERS. 2015. Calcium-induced conformational changes in the regulatory domain of the human mitochondrial ATP-Mg/Pi carrier. Biochim. Et Biophys. Acta 1847, 1245–1253. ( 10.1016/j.bbabio.2015.07.002) PubMed DOI PMC

Monné M, Miniero DV, Obata T, Daddabbo L, Palmieri L, Vozza A, Nicolardi MC, Fernie AR, Palmieri F. 2015. Functional characterization and organ distribution of three mitochondrial ATP-Mg/Pi carriers in Arabidopsis thaliana. Biochim. Et Biophys. Acta 1847, 1220–1230. ( 10.1016/j.bbabio.2015.06.015) PubMed DOI

Bahaji A, et al. 2019. Mitochondrial Zea mays Brittle1-1 is a major determinant of the metabolic fate of incoming sucrose and mitochondrial function in developing maize endosperms. Front. Plant Sci. 10, 441153. ( 10.3389/fpls.2019.00242) PubMed DOI PMC

Kirchberger S, Leroch M, Huynen MA, Wahl M, Neuhaus HE, Tjaden J. 2007. Molecular and biochemical analysis of the plastidic ADP-glucose transporter (ZmBT1) from Zea mays. J. Biol. Chem. 282, 22481–22491. ( 10.1074/jbc.m702484200) PubMed DOI

Palmieri F, et al. 2009. Molecular identification and functional characterization of Arabidopsis thaliana mitochondrial and chloroplastic NAD+ carrier proteins. J. Biol. Chem. 284, 31249–31259. ( 10.1074/jbc.m109.041830) PubMed DOI PMC

Palmieri L, Santoro A, Carrari F, Blanco E, Nunes-Nesi A, Arrigoni R, Genchi F, Fernie AR, Palmieri F. 2008. Identification and characterization of ADNT1, a novel mitochondrial adenine nucleotide transporter from Arabidopsis. Plant Physiol. 148, 1797–1808. ( 10.1104/pp.108.130310) PubMed DOI PMC

Haferkamp I, Hackstein JHP, Voncken FGJ, Schmit G, Tjaden J. 2002. Functional integration of mitochondrial and hydrogenosomal ADP/ATP carriers in the Escherichia coli membrane reveals different biochemical characteristics for plants, mammals and anaerobic chytrids. Eur. J. Biochem. 269, 3172–3181. ( 10.1046/j.1432-1033.2002.02991.x) PubMed DOI

van der Giezen M. 2002. Conserved properties of hydrogenosomal and mitochondrial ADP/ATP carriers: a common origin for both organelles. EMBO J. 21, 572–579. ( 10.1093/emboj/21.4.572) PubMed DOI PMC

Tjaden J, Haferkamp I, Boxma B, Tielens AGM, Huynen M, Hackstein JHP. 2004. A divergent ADP/ATP carrier in the hydrogenosomes of Trichomonas gallinae argues for an independent origin of these organelles. Mol. Microbiol. 51, 1439–1446. ( 10.1111/j.1365-2958.2004.03918.x) PubMed DOI

Zítek J, King MS, Peña-Diaz P, Pyrihová E, King AC, Kunji ERS, Hampl V. 2023. The free-living flagellate Paratrimastix pyriformis uses a distinct mitochondrial carrier to balance adenine nucleotide pools. Arch. Biochem. Biophys. 742, 109638. ( 10.1016/j.abb.2023.109638) PubMed DOI PMC

Williams BAP, Haferkamp I, Keeling PJ. 2008. An ADP/ATP-specific mitochondrial carrier protein in the microsporidian Antonospora locustae. J. Mol. Biol. 375, 1249–1257. ( 10.1016/j.jmb.2007.11.005) PubMed DOI

Chan KW, et al. 2005. A novel ADP/ATP transporter in the mitosome of the microaerophilic human parasite Entamoeba histolytica. Curr. Biol 15, 737–742. ( 10.1016/j.cub.2005.02.068) PubMed DOI

Mi-ichi F, Nozawa A, Yoshida H, Tozawa Y, Nozaki T. 2015. Evidence that the Entamoeba histolytica mitochondrial carrier family links mitosomal and cytosolic pathways through exchange of 3′-phosphoadenosine 5′-phosphosulfate and ATP. Eukaryot. Cell 14, 1144–1150. ( 10.1128/ec.00130-15) PubMed DOI PMC

King M, Tavoulari S, Mavridou V, King A, Mifsud J, Kunji E. 2020. A single cysteine residue in the translocation pathway of the mitosomal ADP/ATP carrier from Cryptosporidium parvum confers a broad nucleotide specificity. Int. J. Mol. Sci. 21, 8971. ( 10.3390/ijms21238971) PubMed DOI PMC

Xu F, Jex A, Svärd SG. 2020. A chromosome-scale reference genome for Giardia intestinalis WB. Sci. Data 7, 38. ( 10.1038/s41597-020-0377-y) PubMed DOI PMC

Richter DJ, Berney C, Strassert JFH, Poh YP, Herman EK, Muñoz-Gómez SA, Wideman JG, Burki F, de Vargas C. 2022. EukProt: a database of genome-scale predicted proteins across the diversity of eukaryotes. Peer Community J 2, 1–16. ( 10.24072/pcjournal.173) DOI

Leger MM, Kolísko M, Stairs CW, Simpson AGB. 2019. Mitochondrion-related organelles in free-living protists. In Hydrogenosomes and mitosomes: mitochondria of anaerobic eukaryotes microbiology monographs (ed. Tachezy J), pp. 287–308. Cham: Springer International Publishing. ( 10.1007/978-3-030-17941-0_12) DOI

Colasante C, Peña Diaz P, Clayton C, Voncken F. 2009. Mitochondrial carrier family inventory of Trypanosoma brucei brucei: identification, expression and subcellular localisation. Mol. Biochem. Parasitol. 167, 104–117. ( 10.1016/j.molbiopara.2009.05.004) PubMed DOI

Darbani B. 2021. Genome evolutionary dynamics meets functional genomics: a case story on the identification of SLC25A44. Int. J. Mol. Sci. 22, 5669. ( 10.3390/ijms22115669) PubMed DOI PMC

Dolezal P, et al. 2010. The essentials of protein import in the degenerate mitochondrion of Entamoeba histolytica. PLoS Pathog. 6, e1000812. ( 10.1371/journal.ppat.1000812) PubMed DOI PMC

Palmieri F, et al. Identification of mitochondrial carriers in Saccharomyces cerevisiae by transport assay of reconstituted recombinant proteins. Biochim. Et Biophys. Acta 1757, 1249–1262. ( 10.1016/j.bbabio.2006.05.023) PubMed DOI

Picault N, Hodges M, Palmieri L, Palmieri F. 2004. The growing family of mitochondrial carriers in Arabidopsis. Trends Plant Sci. 9, 138–146. ( 10.1016/j.tplants.2004.01.007) PubMed DOI

Dyall SD, Koehler CM, Delgadillo-Correa MG, Bradley PJ, Plümper E, Leuenberger D, Turck CW, Johnson PJ. 2000. Presence of a member of the mitochondrial carrier family in hydrogenosomes: conservation of membrane-targeting pathways between hydrogenosomes and mitochondria. Mol. Cell. Biol. 20, 2488–2497. ( 10.1128/mcb.20.7.2488-2497.2000) PubMed DOI PMC

Mao X, Yao S, Yi Q, Xu ZM, Cang X. 2021. Function-related asymmetry of the specific cardiolipin binding sites on the mitochondrial ADP/ATP carrier. Biochimica et Biophysica Acta Biomembranes 1863, 183466. ( 10.1016/j.bbamem.2020.183466) PubMed DOI

Kunji ERS, Robinson AJ. The conserved substrate binding site of mitochondrial carriers. Biochim. Et Biophys. Acta 1757, 2006. ( 10.1016/j.bbabio.2006.03.021) PubMed DOI

Thumuluri V, Almagro Armenteros JJ, Johansen AR, Nielsen H, Winther O. 2022. DeepLoc 2.0: multi-label subcellular localization prediction using protein language models. Nucleic Acids Res. 50, W228–W234. ( 10.1093/nar/gkac278) PubMed DOI PMC

Fukasawa Y, Tsuji J, Fu SC, Tomii K, Horton P, Imai K. 2015. MitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sites. Mol. Cell Proteomics 14, 1113–1126. ( 10.1074/mcp.M114.043083) PubMed DOI PMC

Pfanner N, Hoeben P, Tropschug M, Neupert W. 1987. The carboxyl-terminal two-thirds of the ADP/ATP carrier polypeptide contains sufficient information to direct translocation into mitochondria. J. Biol. Chem. 262, 14851–14854. ( 10.1016/s0021-9258(18)48101-x) PubMed DOI

Horváthová L, et al. 2021. Analysis of diverse eukaryotes suggests the existence of an ancestral mitochondrial apparatus derived from the bacterial type II secretion system. Nat. Commun 12, 1–18. ( 10.1038/s41467-021-23046-7) PubMed DOI PMC

Martincová E, Voleman L, Pyrih J, Žárský V, Vondráčková P, Kolísko M, Tachezy J, Doležal P. 2015. Probing the biology of Giardia intestinalis mitosomes using in vivo enzymatic tagging. Mol. Cell. Biol. 35, 2864–2874. ( 10.1128/mcb.00448-15) PubMed DOI PMC

Gorilak P, Pružincová M, Vachova H, Olšinová M, Schmidt Cernohorska M, Varga V. 2021. Expansion microscopy facilitates quantitative super-resolution studies of cytoskeletal structures in kinetoplastid parasites. Open Biol. 11, 210131. ( 10.1098/rsob.210131) PubMed DOI PMC

Tůmová P, Voleman L, Klingl A, Nohýnková E, Wanner G, Doležal P. 2021. Inheritance of the reduced mitochondria of Giardia intestinalis is coupled to the flagellar maturation cycle. BMC Biol. 19, 193. ( 10.1186/s12915-021-01129-7) PubMed DOI PMC

Frelet-Barrand A, Boutigny S, Kunji ERS, Rolland N. 2010. Membrane protein expression in PubMed DOI

Monné M, Chan KW, Slotboom DJ, Kunji ERS. 2005. Functional expression of eukaryotic membrane proteins in Lactococcus lactis. Protein Sci. 14, 3048–3056. ( 10.1110/ps.051689905) PubMed DOI PMC

Song AA, In LLA, Lim SHE, Rahim RA. 2017. A review on Lactococcus lactis: from food to factory. Microb. Cell Factories 16, 1–16. ( 10.1186/s12934-017-0754-1) PubMed DOI PMC

Horáčková V, et al. 2022. Efficient CRISPR/Cas9-mediated gene disruption in the tetraploid protist Giardia intestinalis. Open Biol 12, 1–14. ( 10.1098/rsob.210361) PubMed DOI PMC

Taleva G, et al. 2023. Mitochondrion of the Trypanosoma brucei long slender bloodstream form is capable of ATP production by substrate-level phosphorylation. PLoS Pathog. 19, e1011699. ( 10.1371/journal.ppat.1011699) PubMed DOI PMC

Figueira TR, Melo DR, Vercesi AE, Castilho RF. 2012. Mitochondrial Bioenergetics. Methods Mol. Biol. 810, 103–117. ( 10.1007/978-1-61779-382-0_7) PubMed DOI

Hierro-Yap C, Šubrtová K, Gahura O, Panicucci B, Dewar C, Chinopoulos C, Schnaufer A, Zíková A. 2021. Bioenergetic consequences of FoF1–ATP synthase/ATPase deficiency in two life cycle stages of Trypanosoma brucei. J. Biol. Chem. 296, 100357. ( 10.1016/j.jbc.2021.100357) PubMed DOI PMC

Hashimoto M, Shinohara Y, Majima E, Hatanaka T, Yamazaki N, Terada H. 1999. Expression of the bovine heart mitochondrial ADP/ATP carrier in yeast mitochondria: significantly enhanced expression by replacement of the N-terminal region of the bovine carrier by the corresponding regions of the yeast carriers. Biochim. Et Biophys. Acta Bioenerg. 1409, 113–124. ( 10.1016/s0005-2728(98)00155-8) PubMed DOI

Burki F, Roger AJ, Brown MW, Simpson AGB. 2020. The new tree of eukaryotes. Trends Ecol. Evol. 35, 43–55. ( 10.1016/j.tree.2019.08.008) PubMed DOI

Prosén S, Eremo AG, Tsegai AD, Lindberg M, Tina E. 2017. Decreased expression of the mitochondrial solute carrier SLC25A43 in basal cell carcinoma compared with healthy skin. Oncol. Lett. 14, 2218–2222. ( 10.3892/ol.2017.6452) PubMed DOI PMC

Tina E, Lindqvist BM, Gabrielson M, Lubovac Z, Wegman P, Wingren S. 2012. The mitochondrial transporter SLC25A43 is frequently deleted and may influence cell proliferation in HER2-positive breast tumors. BMC Cancer 12, 350. ( 10.1186/1471-2407-12-350) PubMed DOI PMC

Gabrielson M, Reizer E, Stål O, Tina E. 2016. Mitochondrial regulation of cell cycle progression through SLC25A43. Biochem. Biophys. Res. Commun. 469, 1090–1096. ( 10.1016/j.bbrc.2015.12.088) PubMed DOI

Gabrielson M, Tina E. 2013. The mitochondrial transport protein SLC25A43 affects drug efficacy and drug-induced cell cycle arrest in breast cancer cell lines. Oncol. Rep. 29, 1268–1274. ( 10.3892/or.2013.2247) PubMed DOI PMC

Zhang J, Zhao Y, Tian Y, Geng M, Liu Y, Zhang W, Shuai L. 2022. Genome-wide screening in the haploid system reveals Slc25a43 as a target gene of oxidative toxicity. Cell Death Dis. 13, 284. ( 10.1038/s41419-022-04738-4) PubMed DOI PMC

Richards TA, et al. 2024. Reconstructing the last common ancestor of all eukaryotes. PLoS Biol. 22, e3002917. ( 10.1371/journal.pbio.3002917) PubMed DOI PMC

Dean P, Hirt RP, Embley TM. 2016. Microsporidia: why make nucleotides if you can steal them? PLoS Pathog. 12, e1005870. ( 10.1371/journal.ppat.1005870) PubMed DOI PMC

Tsaousis AD, Kunji ERS, Goldberg AV, Lucocq JM, Hirt RP, Embley TM. 2008. A novel route for ATP acquisition by the remnant mitochondria of Encephalitozoon cuniculi. Nature 453, 553–556. ( 10.1038/nature06903) PubMed DOI

Williams BAP, Williams TA, Trew J. 2022. Comparative genomics of microsporidia. In Experientia supplementum microsporidia, pp. 43–69. Cham: Springer International Publishing. ( 10.1007/978-3-030-93306-7_2) PubMed DOI

Jedelský PL, et al. 2011. The minimal proteome in the reduced mitochondrion of the parasitic protist Giardia intestinalis. PLoS One 6, e17285. ( 10.1371/journal.pone.0017285) PubMed DOI PMC

Morrison HG, et al. 2007. Genomic minimalism in the early diverging intestinal parasite Giardia lamblia. Science 317, 1921–1926. ( 10.1126/science.1143837) PubMed DOI

Rout S, Zumthor JP, Schraner EM, Faso C, Hehl AB. 2016. An interactome-centered protein discovery approach reveals novel components involved in mitosome function and homeostasis in Giardia lamblia. PLoS Pathog. 12, e1006036. ( 10.1371/journal.ppat.1006036) PubMed DOI PMC

Kolisko M, Cepicka I, Hampl V, Leigh J, Roger AJ, Kulda J, Simpson AG, Flegr J. 2008. Molecular phylogeny of diplomonads and enteromonads based on SSU rRNA, alpha-tubulin and HSP90 genes: implications for the evolutionary history of the double karyomastigont of diplomonads. BMC Evol. Biol 8, 1–14. ( 10.1186/1471-2148-8-205) PubMed DOI PMC

Roxström-Lindquist K, Jerlström-Hultqvist J, Jørgensen A, Troell K, Svärd SG, Andersson JO. 2010. Large genomic differences between the morphologically indistinguishable diplomonads Spironucleus barkhanus and Spironucleus salmonicida. BMC Genom. 11, 258. ( 10.1186/1471-2164-11-258) PubMed DOI PMC

Palmieri N, de Jesus Ramires M, Hess M, Bilic I. 2021. Complete genomes of the eukaryotic poultry parasite Histomonas meleagridis: linking sequence analysis with virulence / attenuation. BMC Genom. 22, 753. ( 10.1186/s12864-021-08059-2) PubMed DOI PMC

Mazumdar R, Endler L, Monoyios A, Hess M, Bilic I. 2017. Establishment of a de novo reference transcriptome of Histomonas meleagridis reveals basic insights about biological functions and potential pathogenic mechanisms of the parasite. Protist 168, 663–685. ( 10.1016/j.protis.2017.09.004) PubMed DOI

Novák LVF, et al. 2023. Genomics of Preaxostyla flagellates illuminates the path towards the loss of mitochondria. PLoS Genet. 19, e1011050. ( 10.1371/journal.pgen.1011050) PubMed DOI PMC

Gabler F, Nam S, Till S, Mirdita M, Steinegger M, Söding J, Lupas AN, Alva V. 2020. Protein sequence analysis using the MPI bioinformatics toolkit. Curr. Protoc. Bioinform. 72, e108. ( 10.1002/cpbi.108) PubMed DOI

Zimmermann L, et al. 2018. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J. Mol. Biol. 430, 2237–2243. ( 10.1016/j.jmb.2017.12.007) PubMed DOI

Paysan-Lafosse T, et al. 2023. InterPro in 2022. Nucleic Acids Res. 51, D418–D427. ( 10.1093/nar/gkac993) PubMed DOI PMC

Steinegger M, Söding J. 2017. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028. ( 10.1038/nbt.3988) PubMed DOI

Katoh K, Rozewicki J, Yamada KD. 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings Bioinform. 20, 1160–1166. ( 10.1093/bib/bbx108) PubMed DOI PMC

Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973. ( 10.1093/bioinformatics/btp348) PubMed DOI PMC

Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R. 2020. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534. ( 10.1093/molbev/msaa015) PubMed DOI PMC

Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589. ( 10.1038/nmeth.4285) PubMed DOI PMC

Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. 2018. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522. ( 10.1093/molbev/msx281) PubMed DOI PMC

Jumper J, et al. 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589. ( 10.1038/s41586-021-03819-2) PubMed DOI PMC

Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. 2022. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682. ( 10.1038/s41592-022-01488-1) PubMed DOI PMC

Flaspohler JA, Jensen BC, Saveria T, Kifer CT, Parsons M. 2010. A novel protein kinase localized to lipid droplets is required for droplet biogenesis in trypanosomes. Eukaryot. Cell 9, 1702–1710. ( 10.1128/ec.00106-10) PubMed DOI PMC

Singer SM, Yee J, Nash TE. 1998. Episomal and integrated maintenance of foreign DNA in Giardia lamblia. Mol. Biochem. Parasitol. 92, 59–69. ( 10.1016/s0166-6851(97)00225-9) PubMed DOI

Fry MY, Najdrová V, Maggiolo AO, Saladi SM, Doležal P, Clemons WM. 2022. Structurally derived universal mechanism for the catalytic cycle of the tail-anchored targeting factor Get3. Nat. Struct. Mol. Biol. 29, 820–830. ( 10.1038/s41594-022-00798-4) PubMed DOI

Charrière F, Helgadóttir S, Horn EK, Söll D, Schneider A. 2006. Dual targeting of a single tRNA(Trp) requires two different tryptophanyl-tRNA synthetases in Trypanosoma brucei. Proc. Natl Acad. Sci. USA 103, 6847–6852. ( 10.1073/pnas.0602362103) PubMed DOI PMC

Doleželová E, Klejch T, Špaček P, Slapničková M, Guddat L, Hocková D, Zíková A. 2021. Acyclic nucleoside phosphonates with adenine nucleobase inhibit Trypanosoma brucei adenine phosphoribosyltransferase in vitro. Sci. Rep 11, 1–27. ( 10.1038/s41598-021-91747-6) PubMed DOI PMC

Šubrtová K, Panicucci B, Zíková A. 2015. ATPaseTb2, a unique membrane-bound FoF1-ATPase component, is essential in bloodstream and dyskinetoplastic trypanosomes. PLoS Pathog. 11, e1004660. ( 10.1371/journal.ppat.1004660) PubMed DOI PMC

Najdrová V, Stairs CW, Vinopalová M, Voleman L, Doležal P. 2020. The evolution of the Puf superfamily of proteins across the tree of eukaryotes. BMC Biol. 18, 77. ( 10.1186/s12915-020-00814-3) PubMed DOI PMC

Dagley MJ, Dolezal P, Likic VA, Smid O, Purcell AW, Buchanan SK, Tachezy J, Lithgow T. 2009. The protein import channel in the outer mitosomal membrane of Giardia intestinalis. Mol. Biol. Evol. 26, 1941–1947. ( 10.1093/molbev/msp117) PubMed DOI PMC

Schindelin J, et al. 2012. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682. ( 10.1038/nmeth.2019) PubMed DOI PMC

Janowicz N, Dohnálek V, Zítek J, Peña-Diaz P, Pyrihová E, King MSet al. 2025. Supplementary material from: Selective loss of ATP carriers in favour of SLC25A43 orthologues in metamonad mitochondria adapted to anaerobiosis. Figshare. ( 10.6084/m9.figshare.c.7857345) PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Selective loss of ATP carriers in favour of SLC25A43 orthologues in metamonad mitochondria adapted to anaerobiosis

. 2025 Aug ; 15 (8) : 240202. [epub] 20250813

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...