Chemical and Biological Aspects of Montanine-Type Alkaloids Isolated from Plants of the Amaryllidaceae Family
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
SVV UK 260 548; Progres/UK Q40-01 and Q42
Univerzita Karlova v Praze
CZ.02.1.01/0.0/0.0/18_069/0010046
European Union
PubMed
32429491
PubMed Central
PMC7288066
DOI
10.3390/molecules25102337
PII: molecules25102337
Knihovny.cz E-zdroje
- Klíčová slova
- Amaryllidaceae, alkaloids, biological activity, derivatives, montanine, montanine-type, pancracine,
- MeSH
- alkaloidy amarylkovitých chemie izolace a purifikace farmakologie MeSH
- Amaryllidaceae chemie metabolismus MeSH
- antiprotozoální látky chemie izolace a purifikace farmakologie MeSH
- cholinesterasové inhibitory chemie izolace a purifikace farmakologie MeSH
- fenantridiny chemie izolace a purifikace farmakologie MeSH
- fytogenní protinádorové látky chemie izolace a purifikace farmakologie MeSH
- galantamin chemie izolace a purifikace farmakologie MeSH
- heterocyklické sloučeniny tetra- a více cyklické chemie izolace a purifikace farmakologie MeSH
- inhibiční koncentrace 50 MeSH
- isochinoliny chemie izolace a purifikace farmakologie MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nootropní látky chemie izolace a purifikace farmakologie MeSH
- rostlinné extrakty chemie MeSH
- sekundární metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- alkaloidy amarylkovitých MeSH
- antiprotozoální látky MeSH
- cholinesterasové inhibitory MeSH
- fenantridiny MeSH
- fytogenní protinádorové látky MeSH
- galantamin MeSH
- hemanthamine MeSH Prohlížeč
- heterocyklické sloučeniny tetra- a více cyklické MeSH
- isochinoliny MeSH
- montanine MeSH Prohlížeč
- nootropní látky MeSH
- pancracine MeSH Prohlížeč
- rostlinné extrakty MeSH
Plants of the Amaryllidaceae family are promising therapeutic tools for human diseases and have been used as alternative medicines. The specific secondary metabolites of this plant family, called Amaryllidaceae alkaloids (AA), have attracted considerable attention due to their interesting pharmacological activities. One of them, galantamine, is already used in the therapy of Alzheimer's disease as a long acting, selective, reversible inhibitor of acetylcholinesterase. One group of AA is the montanine-type, such as montanine, pancracine and others, which share a 5,11-methanomorphanthridine core. So far, only 14 montanine-type alkaloids have been isolated. Compared with other structural-types of AA, montanine-type alkaloids are predominantly present in plants in low concentrations, but some of them display promising biological properties, especially in vitro cytotoxic activity against different cancerous cell lines. The present review aims to summarize comprehensively the research that has been published on the Amaryllidaceae alkaloids of montanine-type.
Zobrazit více v PubMed
Dahlgren R.M.T., Clifford H.T., Yeo P.F. The Families of the Monocotyledons. Structure, Evolution and Taxonomy. 1st ed. Springer; New York, NY, USA: 1985. pp. 1–520.
Elgorashi E.E., van Staden J. Bioactivity and bioactive compounds from African Amaryllidaceae. In: Juliani H.R., Simon J.E., Ho C.T., editors. African Natural Plant Products: New Discoveries and Challenges in Chemistry and Quality. Volume 1021. American Chemical Society; Washington, DC, USA: 2009. pp. 151–170. (ACS Symposium Series).
Nair J.J., Bastida J., van Staden J. In vivo cytotoxicity studies of Amaryllidaceae alkaloids. Nat. Prod. Commun. 2016;11:121–132. doi: 10.1177/1934578X1601100134. PubMed DOI
Dalecká M., Havelek R., Královec K., Brůčková L., Cahlíková L. Amaryllidaceae family alkaloids as potential drugs for cancer treatment. Chem. Listy. 2013;107:701–708.
Jin Z. Amaryllidaceae and Sceletium alkaloids. Nat. Prod. Rep. 2016;33:1318–1343. doi: 10.1039/C6NP00068A. PubMed DOI
Havelek R., Muthna D., Tomsik P., Kralovec K., Seifrtova M., Cahlikova L., Hostalkova A., Safratova M., Perwein M., Cermakova E., et al. Anticancer potential of Amaryllidaceae alkaloids evaluated by screening with a panel of human cells, real-time cellular analysis and Ehrlich tumor-bearing mice. Chem. Biol. Interact. 2017;275:121–132. doi: 10.1016/j.cbi.2017.07.018. PubMed DOI
Fennell C.W., van Staden J. Crinum species in traditional and modern medicine. J. Ethnopharmacol. 2001;78:15–26. doi: 10.1016/S0378-8741(01)00305-1. PubMed DOI
Graham J.G., Quinn M.L., Fabricant D.S., Farnsworth N.R. Plants used against cancer—An extension of the work of Jonathan Hartwell. J. Ethnopharmacol. 2000;73:347–377. doi: 10.1016/S0378-8741(00)00341-X. PubMed DOI
Caamal-Fuentes E., Torres-Tapia L.W., Simá-Polanco P., Peraza-Sánchez S.R., Moo-Puc R. Screening of plants used in Mayan traditional medicine to treat cancer-like symptoms. J. Ethnopharmacol. 2011;135:719–724. doi: 10.1016/j.jep.2011.04.004. PubMed DOI
Herrera M.R., Machocho A.K., Brun R., Viladomat F., Codina C., Bastida J. Crinane and lycorane type alkaloids from Zephyranthes citrina. Planta Med. 2001;67:191–193. doi: 10.1055/s-2001-11495. PubMed DOI
Nair J.J., van Staden J. Pharmacological and toxicological insights to the South African Amaryllidaceae. Food Chem. Toxicol. 2013;62:262–275. doi: 10.1016/j.fct.2013.08.042. PubMed DOI
Ingrassia L., Lefranc F., Mathieu V., Darro F., Kiss R. Amaryllidaceae isocarbostyril alkaloids and their derivatives as promising antitumor agents. Transl. Oncol. 2008;1:1–13. doi: 10.1593/tlo.08100. PubMed DOI PMC
Kornienko A., Evidente A. Chemistry, biology, and medicinal potential of narciclasine and its congeners. Chem. Rev. 2008;108:1982–2014. doi: 10.1021/cr078198u. PubMed DOI PMC
Anand R., Gill K.D., Mahdi A.A. Therapeutics of Alzheimer’s disease: Past, present and future. Neuropharmacology. 2014;76:27–50. doi: 10.1016/j.neuropharm.2013.07.004. PubMed DOI
Kilgore M.B., Kutchan T.M. The Amaryllidaceae alkaloids: Biosynthesis and methods for enzyme discovery. Phytochem. Rev. 2016;15:317–337. doi: 10.1007/s11101-015-9451-z. PubMed DOI PMC
Reis A., Magne K., Massot S., Tallini L.R., Scopel M., Bastida J., Ratet P., Zuanazzi J.A.S. Amaryllidaceae alkaloids: Identification and partial characterization of montanine production in Rhodophiala bifida plant. Sci. Rep. 2019;9:1–11. doi: 10.1038/s41598-019-44746-7. PubMed DOI PMC
Singh A., Desgagné-Penix I. Biosynthesis of the Amaryllidaceae alkaloids. Plant Sci. Today. 2014;1:114–120. doi: 10.14719/pst.2014.1.3.41. DOI
Wang R., Xu S., Wang N., Xia B., Jiang Y., Wang R. Transcriptome analysis of secondary metabolism pathway, transcription factors, and transporters in response to methyl jasmonate in Lycoris aurea. Front. Plant Sci. 2017;7:1971. doi: 10.3389/fpls.2016.01971. PubMed DOI PMC
Ferdausi A. Ph.D. Thesis. University of Liverpool; Liverpool, UK: 2017. A Metabolomics and Transcriptomics Comparison of Narcissus pseudonarcissus cv. Carlton Feld and In Vitro Tissues in Relation to Alkaloid Production.
Singh A., Desgagné-Penix I. Transcriptome and metabolome profiling of Narcissus pseudonarcissus ‘King Alfred’ reveal components of Amaryllidaceae alkaloid metabolism. Sci. Rep. 2017;7:17356. doi: 10.1038/s41598-017-17724-0. PubMed DOI PMC
Fuganti C., Ghiringhelli D., Grasselli P. Stereochemistry of hydrogen removal β to nitrogen in the biological conversion of O-methylnorbelladine into the montanine-type alkaloids. J. Chem. Soc. Chem. Commun. 1973;13:430–431. doi: 10.1039/c39730000430. DOI
Wildman W.C., Olesen B. Biosynthesis of montanine. J. Chem. Soc. Chem. Commun. 1976;14:551. doi: 10.1039/c39760000551. DOI
Feinstein A.I., Wildman W.C. Biosynthetic oxidation and rearrangement of vittatine and its derivatives. J. Org. Chem. 1976;41:2447–2450. doi: 10.1021/jo00876a020. DOI
Laurain-Mattar D., Ptak A. Amaryllidaceae alkaloid accumulation by plant in vitro system. In: Pavlov A., Bley T., editors. Bioprocessing of Plant In Vitro Systems, Reference Series in Phytochemistry. Springer International Publishing; Cham, Switzerland: 2016. pp. 1–22.
Jin Z. Amaryllidaceae and Sceletium alkaloids. Nat. Prod. Rep. 2007;24:886–905. doi: 10.1039/b502163b. PubMed DOI
Wildman W.C., Kaufman C.J. Alkaloids of the Amaryllidaceae. III. Isolation of five new alkaloids from Haemanthus species1. J. Am. Chem. Soc. 1955;77:1248–1252. doi: 10.1021/ja01610a045. DOI
Cedrón J.C., Oberti J.C., Estévez-Braun A., Ravelo A.G., del Arco-Aguilar M., López M. Pancratium canariense as an important source of Amaryllidaceae alkaloids. J. Nat. Prod. 2009;72:112–116. doi: 10.1021/np800459d. PubMed DOI
Viladomat F., Bastida J., Codina C., Campbell W.E., Mathee S. Alkaloids from Boophane flava. Phytochemistry. 1995;40:307–311. doi: 10.1016/0031-9422(95)00191-9. DOI
Guan Y., Zhang H., Pan C., Wang J., Huang R., Li Q. Flexible synthesis of montanine-like alkaloids: Revisiting the structure of montabuphine. Org. Biomol. Chem. 2012;10:3812–3814. doi: 10.1039/c2ob25374g. PubMed DOI
Matveenko M., Banwell M.G., Willis A.C. A chemoenzymatic total synthesis of the structure assigned to the alkaloid (+)-montabuphine. Org. Lett. 2008;10:4693–4696. doi: 10.1021/ol801815k. PubMed DOI
Farinon M., Clarimundo V.S., Pedrazza G.P., Gulko P.S., Zuanazzi J.A., Xavier R.M., de Oliveira P.G. Disease modifying anti-rheumatic activity of the alkaloid montanine on experimental arthritis and fibroblast-like synoviocytes. Eur. J. Pharmacol. 2017;799:180–187. doi: 10.1016/j.ejphar.2017.02.013. PubMed DOI
Wildman W.C., Brown C.L. Mass spectra of 5,11-methanomorphanthridine alkaloids. The structure of pancracine. J. Am. Chem. Soc. 1968;90:6439–6446. doi: 10.1021/ja01025a036. PubMed DOI
Masi M., Van Slambrouck S., Gunawardana S., van Rensburg M.J., James P.C., Mochel J.G., Heliso P.S., Albalawi A.S., Cimmino A., van Otterlo W.A.L., et al. Alkaloids isolated from Haemanthus humilis Jacq., an indigenous South African Amaryllidaceae: Anticancer activity of coccinine and montanine. S. Afr. J. Bot. 2019;126:277–281. doi: 10.1016/j.sajb.2019.01.036. DOI
Stafford G.I., Birer C., Brodin B., Christensen S.B., Eriksson A.H., Jäger A.K., Rønsted N. Serotonin transporter protein (SERT) and P-glycoprotein (P-gp) binding activity of montanine and coccinine from three species of Haemanthus L.(Amaryllidaceae) S. Afr. J. Bot. 2013;88:101–106. doi: 10.1016/j.sajb.2013.06.002. DOI
Silva A.F.S., de Andrade J.P., Machado K.R.B., Rocha A.B., Apel M.A., Sobral M.E.G., Henriques A.T., Zuanazzi J.A. Screening for cytotoxic activity of extracts and isolated alkaloids from bulbs of Hippeastrum vittatum. Phytomedicine. 2008;15:882–885. doi: 10.1016/j.phymed.2007.12.001. PubMed DOI
Ortiz J.E., Pigni N.B., Andujar S.A., Roitman G., Suvire F.D., Enriz R.D., Tapia A., Bastida J., Feresin G.E. Alkaloids from Hippeastrum argentinum and their cholinesterase-inhibitory activities: An in vitro and in silico study. J. Nat. Prod. 2016;79:1241–1248. doi: 10.1021/acs.jnatprod.5b00785. PubMed DOI
Cahlíková L., Benešová N., Macáková K., Urbanová K., Opletal L. GC/MS analysis of three Amaryllidaceae species and their cholinesterase activity. Nat. Prod. Commun. 2011;6:1255–1258. doi: 10.1177/1934578X1100600912. PubMed DOI
Duffield A.M., Aplin R.T., Budzikiewicz H., Djerassi C., Murphy C.F., Wildman W.C. Mass spectrometry in structural and stereochemical problems. LXXXII. 1 A study of the fragmentation of some Amaryllidaceae alkaloids2. J. Am. Chem. Soc. 1965;87:4902–4912. doi: 10.1021/ja00949a038. PubMed DOI
Ishizaki M., Hoshino O., Iitaka Y. Total synthesis of montanine-type Amaryllidaceae alkaloids, which possess a 5, 11-methanomorphanthridine ring system, through cyclization with sodium bis (2-methoxyethoxy) aluminum hydride (SMEAH): The first stereoselective total syntheses of (±)-montanine, (±)-coccinine, (±)-O-acetylmontanine, (±)-pancracine, and (±)-brunsvigine. J. Org. Chem. 1992;57:7285–7295.
Bao X., Cao Y.X., Chu W.D., Qu H., Du J.Y., Zhao X.H., Ma X.Y., Wang C.T., Fan C.A. Bioinspired total synthesis of montanine-type Amaryllidaceae alkaloids. Angew. Chem. Int. Edit. 2013;52:14167–14172. doi: 10.1002/anie.201307324. PubMed DOI
Crouch N.R., Pohl T.L., Mulholland D.A., Ndlovu E., Van staden J. Alkaloids from three ethnomedicinal Haemanthus species: H. albiflos, H. deformis and H. pauculifolius (Amaryllidaceae) S. Afr. J. Bot. 2005;71:49–52. doi: 10.1016/S0254-6299(15)30148-4. DOI
da Silva A.F.S., de Andrade J.P., Bevilaqua L.R.M., de Souza M.M., Izquierdo I., Henriques A.T., Zuanazzi J.A.S. Anxiolytic-, antidepressant- and anticonvulsant-like effects of the alkaloid montanine isolated from Hippeastrum vittatum. Pharmacol. Biochem. Behav. 2006;85:148–154. doi: 10.1016/j.pbb.2006.07.027. PubMed DOI
Al Shammari L., Al Mamun A., Koutová D., Majorošová M., Hulcová D., Šafratová M., Breiterová K., Maříková J., Havelek R., Cahlíková L. Alkaloid profiling of Hippeastrum cultivars by GC-MS, isolation of Amaryllidaceae alkaloids and evaluation of their cytotoxicity. Rec. Nat. Prod. 2020;14:154–159. doi: 10.25135/rnp.147.19.06.1302. DOI
Berkov S., Evstatieva L., Popov S. Alkaloids in Bulgarian Pancratium maritimum L. Zeitschrift für Naturforschung C. 2004;59:65–69. doi: 10.1515/znc-2004-1-214. PubMed DOI
Bozkurt B., Kaya G.I., Somer N.U. Chemical composition and enzyme inhibitory activities of Turkish Pancratium maritimum bulbs. Nat. Prod. Commun. 2019;14:1–14. doi: 10.1177/1934578X19872905. DOI
Labraña J., Machocho A.K., Kricsfalusy V., Brun R., Codina C., Viladomat F., Bastida J. Alkaloids from Narcissus angustifolius subsp. transcarpathicus. Phytochemistry. 2002;60:847–852. doi: 10.1016/S0031-9422(02)00154-1. PubMed DOI
Cedrón J.C., Ravelo A.G., León L.G., Padrón J.M., Estévez-Braun A. Antiproliferative and structure activity relationships of Amaryllidaceae alkaloids. Molecules. 2015;20:13854–13863. doi: 10.3390/molecules200813854. PubMed DOI PMC
Li X., Yu H.Y., Wang Z.Y., Pi H.F., Zhang P., Ruan H.L. Neuroprotective compounds from the bulbs of Lycoris radiata. Fitoterapia. 2013;88:82–90. doi: 10.1016/j.fitote.2013.05.006. PubMed DOI
Hong A.W., Cheng T.H., Raghukumar V., Sha C.K. An expedient route to montanine-type Amaryllidaceae alkaloids: Total syntheses of (−)-brunsvigine and (−)-manthine. J. Org. Chem. 2008;73:7580–7585. doi: 10.1021/jo801089y. PubMed DOI
Inubushi Y., Fales H.M., Warnhoff E.W., Wildman W.C. Structures of montanine, coccinine, and manthine. J. Org. Chem. 1960;25:2153–2164. doi: 10.1021/jo01082a019. DOI
Clark R.C., Warren F.L., Pachler K.G.R. Alkaloids of the Amaryllidaceae: Brunsvigine: NMR, ORD/CD and mass spectrometry, degradation and interconversion studies. Tetrahedron. 1975;31:1855–1859. doi: 10.1016/0040-4020(75)87041-4. DOI
Dry L.J., Poynton M., Thompson M.E., Warren F.L. The alkaloids of the Amaryllidaceae. Part IV. The alkaloids of Brunsvigia cooperi Baker. J. Chem. Soc. 1958:4701–4704. doi: 10.1039/jr9580004701. DOI
Wildman W.C., Brown C.L., Michel K.H., Bailey D.T., Heimer N.E., Shaffer R., Murphy C.F. Alkaloids from Rhodophiala bifida, Crinum erubescens and Sprekelia formisissima. Pharmazie. 1967;22:725.
Nair J.J., Bastida J., Viladomat F., van Staden J. Cytotoxic agents of the crinane series of Amaryllidaceae alkaloids. Nat. Prod. Comm. 2012;7:1677–1688. doi: 10.1177/1934578X1200701234. PubMed DOI
He M., Qu C., Gao O., Hu X., Hong X. Biological and pharmacological activities of Amaryllidaceae alkaloids. RSC Adv. 2015;5:16562–16574. doi: 10.1039/C4RA14666B. DOI
Sener B., Orhan I., Satayavivad J. Antimalarial activity screening of some alkaloids and the plant extracts from Amaryllidaceae. Phytother. Res. 2003;17:1220–1223. doi: 10.1002/ptr.1346. PubMed DOI
Osorio E.J., Berkov S., Brun R., Codina C., Viladomat F., Cabezas F., Bastida J. In vitro antiprotozoal activity of alkaloids from Phaedranassa dubia (Amaryllidaceae) Phytochem. Lett. 2010;3:161–163. doi: 10.1016/j.phytol.2010.06.004. DOI
Kulhánková A., Cahlíková L., Novák Z., Macáková K., Kuneš J., Opletal L. Alkaloids from Zephyranthes robusta Baker and their acetylcholinesterase and butyrylcholinesterase inhibition activity. Chem. Biodivers. 2013;10:1120–1127. doi: 10.1002/cbdv.201200144. PubMed DOI
Havelek R., Seifrtová M., Královec K., Bručková L., Cahlíková L., Dalecká M., Vávrová J., Řezáčová M., Opletal L., Bílková Z. The effect of Amaryllidaceae alkaloids Haemanthamine and Haemanthidine on cell cycle progression and apoptosis in p53-negative human leukemic Jurkat cells. Phytomedicine. 2014;21:479–490. doi: 10.1016/j.phymed.2013.09.005. PubMed DOI
Nair J.J., Van Staden J., Bastida J. Cytotoxic alkaloids constituents of the Amaryllidaceae. In: Rahman A.U., editor. Studies in Natural Products Chemistry. 1st ed. Volume 49. Elsevier; Amsterdam, The Netherlands: 2016. pp. 107–156.
Fuchs S., Hsieh L.T., Saarberg W., Erdelmeier C.A.J., Wichelhaus T.A., Schaefer L., Koch E., Fürst R. Haemanthus coccineus extract and its main bioactive component narciclasine display profound anti-inflammatory activities in vitro and in vivo. J. Cell Mol. Med. 2015;19:1021–1032. doi: 10.1111/jcmm.12493. PubMed DOI PMC
Breiterová K., Koutová D., Maříková J., Havelek R., Kuneš J., Majorošová M., Opletal L., Hošťálková A., Jenčo J., Řezáčová M., et al. Amaryllidaceae alkaloids of different structural types from Narcissus L. cv. Professor Einstein and their cytotoxic activity. Plants. 2020;9:137. doi: 10.3390/plants9020137. PubMed DOI PMC
Govindaraju K., Ingels A., Hasan M.N., Sun D., Mathieu V., Masi M., Evidente A., Kornienko A. Synthetic analogues of the montanine-type alkaloids with activity against apoptosis-resistant cancer cells. Bioorg. Med. Chem. Lett. 2018;28:589–593. doi: 10.1016/j.bmcl.2018.01.041. PubMed DOI PMC
Pagliosa L.B., Monteiro S.C., Silva K.B., De Andrade J.P., Dutilh J., Bastida J., Cammarota M., Zuanazzi J.A.S. Effect of isoquinoline alkaloids from two Hippeastrum species on in vitro acetylcholinesterase activity. Phytomedicine. 2010;17:698–701. doi: 10.1016/j.phymed.2009.10.003. PubMed DOI
Evidente A., Andolfi A., Abou-Donia A.H., Touema S.M., Hammoda H.M., Shawky E., Motta A. (−)-Amarbellisine, a lycorine-type alkaloid from Amaryllis belladonna L. growing in Egypt. Phytochemistry. 2004;65:2113–2118. doi: 10.1016/j.phytochem.2004.03.020. PubMed DOI
Mathew S., Faheem M., Al-Malki A.L., Kumosani T.A., Qadri I. In silico inhibition of GABARAP activity using antiepileptic medicinal derived compounds. Bioinformation. 2015;11:189–195. doi: 10.6026/97320630011189. PubMed DOI PMC
Castilhos T.S., Giordani R.B., Henriques A.T., Menezes F.S., Zuanazzi J.A.S. Availacao in vitro das atividades antiinflamatoria, antioxidante e antimicrobiana do alcaloide montanina. Rev. Bras. Pharmacogn. 2007;17:209–214. doi: 10.1590/S0102-695X2007000200013. DOI
De Oliveira P.G., Pedrazza G.P.R., Farinon M., Machado X.R., Zuanazzi J.A.S., Spies F. Process for Extracting the Alkaloid Fraction of Rhodophiala bifida (Herb.) Traub and Uses Threof. 2020/0000798 A1. US Patent. 2020 Jan 2;
Kohelová E., Peřinová R., Maafi N., Korábečný J., Hulcová D., Maříková J., Kučera T., Martínez González L., Hrabinova M., Vorčáková K., et al. Derivatives of the β-crinane Amaryllidaceae alkaloid haemanthamine as multi-target directed ligands for Alzheimer’s Disease. Molecules. 2019;24:1307. doi: 10.3390/molecules24071307. PubMed DOI PMC
Tallini L.R., Bastida J., Cortes N., Osorio E.H., Theoduloz C., Schmeda-Hirschmann G. Cholinesterase inhibition activity, alkaloid profiling and molecular docking of Chilean Rhodophiala (Amaryllidaceae) Molecules. 2018;23:1532. doi: 10.3390/molecules23071532. PubMed DOI PMC
Masondo N.A., Stafford G.I., Aremu A.O., Makunga N.P. Acetylcholinesterase inhibitors from southern African plants: An overview of ethnobotanical, pharmacological potential and phytochemical research including and beyond Alzheimer’s disease treatment. S. Afr. J. Bot. 2019;120:39–64. doi: 10.1016/j.sajb.2018.09.011. DOI
Cahlíková L., Pérez D.I., Štěpánková S., Chlebek J., Šafratová M., Hošt’álková A., Opletal L. In vitro inhibitory effects of 8-O-demethylmaritidine and undulatine on acetylcholinesterase and their predicted penetration across the blood–brain barrier. J. Nat. Prod. 2015;78:1189–1192. doi: 10.1021/acs.jnatprod.5b00191. PubMed DOI
Hulcová D., Maříková J., Korábečný J., Hošťálková A., Jun D., Kuneš J., Chlebek J., Opletal L., De Simone A., Nováková L., et al. Amaryllidaceae alkaloids from Narcissus pseudonarcissus L. cv. Dutch Master as potential drugs in treatment of Alzheimer’s disease. Phytochemistry. 2019;165:112055. doi: 10.1016/j.phytochem.2019.112055. PubMed DOI
Ishizaki M., Hoshino O., Iitaka Y. A first total synthesis of montanine-type Amaryllidaceae alkaloids, (±)-coccinine, (±)-montanine, and (±)-pancracine. Tetrahedron Lett. 1991;32:7079–7082. doi: 10.1016/0040-4039(91)85045-7. DOI
Overman L.E., Shim J. Synthesis applications of cationic aza-Cope rearrangements. 23. First total synthesis of Amaryllidaceae alkaloids of the 5,11-methano morphanthridine type. An efficient total synthesis of (±)-pancracine. J. Org. Chem. 1991;56:5005–5007. doi: 10.1021/jo00017a002. DOI
Ishizaki M., Kurihara K.I., Tanazawa E., Hoshino O. Radical-mediated synthesis of the 5,11-methanomorphanthridine ring system: Formal total synthesis of montanine-type Amaryllidaceae alkaloids, (±)-montanine, (±)-coccinine and (±)-pancracine. J. Chem. Soc. Perkin Trans. 1. 1993;1:101–110. doi: 10.1039/P19930000101. DOI
Overman L.E., Shim J. Total synthesis of Amaryllidaceae alkaloids of the 5,11-methanomorphanthridine type. Efficient total synthesis of (-)-pancracine and (±)-pancracine. J. Org. Chem. 1993;58:4662–4672. doi: 10.1021/jo00069a032. DOI
Jin J., Weinreb S.M. Application of a stereospecific intramolecular allenylsilane imino ene reaction to enantioselective total synthesis of the 5,11-methanomorphanthridine class of Amaryllidaceae alkaloids. J. Am. Chem. Soc. 1997;119:5773–5784. doi: 10.1021/ja970839n. DOI
Pearson W.H., Lian B.W. Application of the 2-azaallyl anion cycloaddition method to an enantioselective total synthesis of (+)-coccinine. Angew. Chem. Int. Ed. Engl. 1998;37:1724–1726. doi: 10.1002/(SICI)1521-3773(19980703)37:12<1724::AID-ANIE1724>3.0.CO;2-8. PubMed DOI
Ikeda M., Hamada M., Yamashita T., Matsui K., Sato T., Ishibashi H. Stereoselective synthesis of (3R*, 3aS*, 7aS*)-3-aryloctahydroindol-2-ones using radical cyclisation: A formal synthesis of (±)-pancracine. J. Chem. Soc. Perkin Trans. 1. 1999;14:1949–1956. doi: 10.1039/a900467j. DOI
Banwell M.G., Edwards A.J., Jolliffe K.A., Kemmler M. An operationally simple and fully regiocontrolled formal total synthesis of the montanine-type Amaryllidaceae alkaloid (±)-pancracine. J. Chem. Soc. Perkin Trans. 1. 2001;12:1345–1348. doi: 10.1039/b102252k. DOI
Sha C.K., Hong A.W., Huang C.M. Synthesis of aza bicyclic enones via anionic cyclization: Application to the total synthesis of (−)-Brunsvigine. Org. Lett. 2001;3:2177–2179. doi: 10.1021/ol016022n. PubMed DOI
Pandey G., Banerjee P., Kumar R., Puranik V.G. Stereospecific route to 5,11-methanomorphanthridine alkaloids via intramolecular 1,3-dipolar cycloaddition of nonstabilized azomethine ylide: Formal total synthesis of (±)-pancracine. Org. Lett. 2005;7:3713–3716. doi: 10.1021/ol051321o. PubMed DOI
Banwell M.G., Kokas O.J., Willis A.C. Chemoenzymatic approaches to the montanine alkaloids: A total synthesis of (+)-brunsvigine. Org. Lett. 2007;9:3503–3506. doi: 10.1021/ol071344y. PubMed DOI
Kokas O.J., Banwell M.G., Willis A.C. Chemoenzymatic approaches to the montanine alkaloids: A total synthesis of (+)-nangustine. Tetrahedron. 2008;64:6444–6451. doi: 10.1016/j.tet.2008.04.070. PubMed DOI
Anada M., Tanaka M., Shimada N., Nambu H., Yamawaki M., Hashimoto S. Asymmetric formal synthesis of (−)-pancracine via catalytic enantioselective C–H amination process. Tetrahedron. 2009;65:3069–3077. doi: 10.1016/j.tet.2008.10.091. DOI
Pansare S.V., Lingampally R., Kirby R.L. Stereoselective synthesis of 3-aryloctahydroindoles and application in a formal synthesis of (−)-pancracine. Org. Lett. 2010;12:556–559. doi: 10.1021/ol902761a. PubMed DOI
Pandey G., Kumar R., Banerjee P., Puranik V.G. One-step stereospecific strategy for the construction of the core structure of the 5,11-methanomorphanthridine alkaloids in racemic as well as in optically pure form: Synthesis of (±)-pancracine and (±)-brunsvigine. Eur. J. Org. Chem. 2011;2011:4571–4587. doi: 10.1002/ejoc.201100601. DOI
Pandey G., Gadre S.R. Stereoselective construction of 5,11-methanomorphanthridine and 5,10b-phenanthridine structural frameworks: Total syntheses of (±)-pancracine, (±)-brunsvigine, (±)-maritidine, and (±)-crinine. Pure Appl. Chem. 2012;84:1597–1619. doi: 10.1351/PAC-CON-11-10-12. DOI
Yang H., Hou S., Tao C., Liu Z., Wang C., Cheng B., Li Y., Zhai H. Rhodium-catalyzed denitrogenative [3 + 2] cycloaddition: Access to functionalized hydroindolones and the framework of montanine-type Amaryllidaceae alkaloids. Chem. Eur. J. 2017;23:12930–12936. doi: 10.1002/chem.201702893. PubMed DOI
Pandey G., Dey D., Tiwari S.K. Synthesis of biologically active natural products by [3 + 2] cycloaddition of non-stabilized azomethine ylides (AMY): Concepts and realizations. Tetrahedron Lett. 2017;58:699–705. doi: 10.1016/j.tetlet.2017.01.036. DOI
Cedrón J.C., Estévez-Braun A., Ravelo A., Gutiérrez D., Flores N., Bucio M.A., Pérez-Hernández N., Joseph-Nathan P. Bioactive montanine derivatives from halide-induced rearrangements of haemanthamine-type alkaloids. Absolute configuration by VCD. Org. Lett. 2009;11:1491–1494. doi: 10.1021/ol900065x. PubMed DOI