Chemical and Biological Aspects of Montanine-Type Alkaloids Isolated from Plants of the Amaryllidaceae Family

. 2020 May 16 ; 25 (10) : . [epub] 20200516

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32429491

Grantová podpora
SVV UK 260 548; Progres/UK Q40-01 and Q42 Univerzita Karlova v Praze
CZ.02.1.01/0.0/0.0/18_069/0010046 European Union

Plants of the Amaryllidaceae family are promising therapeutic tools for human diseases and have been used as alternative medicines. The specific secondary metabolites of this plant family, called Amaryllidaceae alkaloids (AA), have attracted considerable attention due to their interesting pharmacological activities. One of them, galantamine, is already used in the therapy of Alzheimer's disease as a long acting, selective, reversible inhibitor of acetylcholinesterase. One group of AA is the montanine-type, such as montanine, pancracine and others, which share a 5,11-methanomorphanthridine core. So far, only 14 montanine-type alkaloids have been isolated. Compared with other structural-types of AA, montanine-type alkaloids are predominantly present in plants in low concentrations, but some of them display promising biological properties, especially in vitro cytotoxic activity against different cancerous cell lines. The present review aims to summarize comprehensively the research that has been published on the Amaryllidaceae alkaloids of montanine-type.

Zobrazit více v PubMed

Dahlgren R.M.T., Clifford H.T., Yeo P.F. The Families of the Monocotyledons. Structure, Evolution and Taxonomy. 1st ed. Springer; New York, NY, USA: 1985. pp. 1–520.

Elgorashi E.E., van Staden J. Bioactivity and bioactive compounds from African Amaryllidaceae. In: Juliani H.R., Simon J.E., Ho C.T., editors. African Natural Plant Products: New Discoveries and Challenges in Chemistry and Quality. Volume 1021. American Chemical Society; Washington, DC, USA: 2009. pp. 151–170. (ACS Symposium Series).

Nair J.J., Bastida J., van Staden J. In vivo cytotoxicity studies of Amaryllidaceae alkaloids. Nat. Prod. Commun. 2016;11:121–132. doi: 10.1177/1934578X1601100134. PubMed DOI

Dalecká M., Havelek R., Královec K., Brůčková L., Cahlíková L. Amaryllidaceae family alkaloids as potential drugs for cancer treatment. Chem. Listy. 2013;107:701–708.

Jin Z. Amaryllidaceae and Sceletium alkaloids. Nat. Prod. Rep. 2016;33:1318–1343. doi: 10.1039/C6NP00068A. PubMed DOI

Havelek R., Muthna D., Tomsik P., Kralovec K., Seifrtova M., Cahlikova L., Hostalkova A., Safratova M., Perwein M., Cermakova E., et al. Anticancer potential of Amaryllidaceae alkaloids evaluated by screening with a panel of human cells, real-time cellular analysis and Ehrlich tumor-bearing mice. Chem. Biol. Interact. 2017;275:121–132. doi: 10.1016/j.cbi.2017.07.018. PubMed DOI

Fennell C.W., van Staden J. Crinum species in traditional and modern medicine. J. Ethnopharmacol. 2001;78:15–26. doi: 10.1016/S0378-8741(01)00305-1. PubMed DOI

Graham J.G., Quinn M.L., Fabricant D.S., Farnsworth N.R. Plants used against cancer—An extension of the work of Jonathan Hartwell. J. Ethnopharmacol. 2000;73:347–377. doi: 10.1016/S0378-8741(00)00341-X. PubMed DOI

Caamal-Fuentes E., Torres-Tapia L.W., Simá-Polanco P., Peraza-Sánchez S.R., Moo-Puc R. Screening of plants used in Mayan traditional medicine to treat cancer-like symptoms. J. Ethnopharmacol. 2011;135:719–724. doi: 10.1016/j.jep.2011.04.004. PubMed DOI

Herrera M.R., Machocho A.K., Brun R., Viladomat F., Codina C., Bastida J. Crinane and lycorane type alkaloids from Zephyranthes citrina. Planta Med. 2001;67:191–193. doi: 10.1055/s-2001-11495. PubMed DOI

Nair J.J., van Staden J. Pharmacological and toxicological insights to the South African Amaryllidaceae. Food Chem. Toxicol. 2013;62:262–275. doi: 10.1016/j.fct.2013.08.042. PubMed DOI

Ingrassia L., Lefranc F., Mathieu V., Darro F., Kiss R. Amaryllidaceae isocarbostyril alkaloids and their derivatives as promising antitumor agents. Transl. Oncol. 2008;1:1–13. doi: 10.1593/tlo.08100. PubMed DOI PMC

Kornienko A., Evidente A. Chemistry, biology, and medicinal potential of narciclasine and its congeners. Chem. Rev. 2008;108:1982–2014. doi: 10.1021/cr078198u. PubMed DOI PMC

Anand R., Gill K.D., Mahdi A.A. Therapeutics of Alzheimer’s disease: Past, present and future. Neuropharmacology. 2014;76:27–50. doi: 10.1016/j.neuropharm.2013.07.004. PubMed DOI

Kilgore M.B., Kutchan T.M. The Amaryllidaceae alkaloids: Biosynthesis and methods for enzyme discovery. Phytochem. Rev. 2016;15:317–337. doi: 10.1007/s11101-015-9451-z. PubMed DOI PMC

Reis A., Magne K., Massot S., Tallini L.R., Scopel M., Bastida J., Ratet P., Zuanazzi J.A.S. Amaryllidaceae alkaloids: Identification and partial characterization of montanine production in Rhodophiala bifida plant. Sci. Rep. 2019;9:1–11. doi: 10.1038/s41598-019-44746-7. PubMed DOI PMC

Singh A., Desgagné-Penix I. Biosynthesis of the Amaryllidaceae alkaloids. Plant Sci. Today. 2014;1:114–120. doi: 10.14719/pst.2014.1.3.41. DOI

Wang R., Xu S., Wang N., Xia B., Jiang Y., Wang R. Transcriptome analysis of secondary metabolism pathway, transcription factors, and transporters in response to methyl jasmonate in Lycoris aurea. Front. Plant Sci. 2017;7:1971. doi: 10.3389/fpls.2016.01971. PubMed DOI PMC

Ferdausi A. Ph.D. Thesis. University of Liverpool; Liverpool, UK: 2017. A Metabolomics and Transcriptomics Comparison of Narcissus pseudonarcissus cv. Carlton Feld and In Vitro Tissues in Relation to Alkaloid Production.

Singh A., Desgagné-Penix I. Transcriptome and metabolome profiling of Narcissus pseudonarcissus ‘King Alfred’ reveal components of Amaryllidaceae alkaloid metabolism. Sci. Rep. 2017;7:17356. doi: 10.1038/s41598-017-17724-0. PubMed DOI PMC

Fuganti C., Ghiringhelli D., Grasselli P. Stereochemistry of hydrogen removal β to nitrogen in the biological conversion of O-methylnorbelladine into the montanine-type alkaloids. J. Chem. Soc. Chem. Commun. 1973;13:430–431. doi: 10.1039/c39730000430. DOI

Wildman W.C., Olesen B. Biosynthesis of montanine. J. Chem. Soc. Chem. Commun. 1976;14:551. doi: 10.1039/c39760000551. DOI

Feinstein A.I., Wildman W.C. Biosynthetic oxidation and rearrangement of vittatine and its derivatives. J. Org. Chem. 1976;41:2447–2450. doi: 10.1021/jo00876a020. DOI

Laurain-Mattar D., Ptak A. Amaryllidaceae alkaloid accumulation by plant in vitro system. In: Pavlov A., Bley T., editors. Bioprocessing of Plant In Vitro Systems, Reference Series in Phytochemistry. Springer International Publishing; Cham, Switzerland: 2016. pp. 1–22.

Jin Z. Amaryllidaceae and Sceletium alkaloids. Nat. Prod. Rep. 2007;24:886–905. doi: 10.1039/b502163b. PubMed DOI

Wildman W.C., Kaufman C.J. Alkaloids of the Amaryllidaceae. III. Isolation of five new alkaloids from Haemanthus species1. J. Am. Chem. Soc. 1955;77:1248–1252. doi: 10.1021/ja01610a045. DOI

Cedrón J.C., Oberti J.C., Estévez-Braun A., Ravelo A.G., del Arco-Aguilar M., López M. Pancratium canariense as an important source of Amaryllidaceae alkaloids. J. Nat. Prod. 2009;72:112–116. doi: 10.1021/np800459d. PubMed DOI

Viladomat F., Bastida J., Codina C., Campbell W.E., Mathee S. Alkaloids from Boophane flava. Phytochemistry. 1995;40:307–311. doi: 10.1016/0031-9422(95)00191-9. DOI

Guan Y., Zhang H., Pan C., Wang J., Huang R., Li Q. Flexible synthesis of montanine-like alkaloids: Revisiting the structure of montabuphine. Org. Biomol. Chem. 2012;10:3812–3814. doi: 10.1039/c2ob25374g. PubMed DOI

Matveenko M., Banwell M.G., Willis A.C. A chemoenzymatic total synthesis of the structure assigned to the alkaloid (+)-montabuphine. Org. Lett. 2008;10:4693–4696. doi: 10.1021/ol801815k. PubMed DOI

Farinon M., Clarimundo V.S., Pedrazza G.P., Gulko P.S., Zuanazzi J.A., Xavier R.M., de Oliveira P.G. Disease modifying anti-rheumatic activity of the alkaloid montanine on experimental arthritis and fibroblast-like synoviocytes. Eur. J. Pharmacol. 2017;799:180–187. doi: 10.1016/j.ejphar.2017.02.013. PubMed DOI

Wildman W.C., Brown C.L. Mass spectra of 5,11-methanomorphanthridine alkaloids. The structure of pancracine. J. Am. Chem. Soc. 1968;90:6439–6446. doi: 10.1021/ja01025a036. PubMed DOI

Masi M., Van Slambrouck S., Gunawardana S., van Rensburg M.J., James P.C., Mochel J.G., Heliso P.S., Albalawi A.S., Cimmino A., van Otterlo W.A.L., et al. Alkaloids isolated from Haemanthus humilis Jacq., an indigenous South African Amaryllidaceae: Anticancer activity of coccinine and montanine. S. Afr. J. Bot. 2019;126:277–281. doi: 10.1016/j.sajb.2019.01.036. DOI

Stafford G.I., Birer C., Brodin B., Christensen S.B., Eriksson A.H., Jäger A.K., Rønsted N. Serotonin transporter protein (SERT) and P-glycoprotein (P-gp) binding activity of montanine and coccinine from three species of Haemanthus L.(Amaryllidaceae) S. Afr. J. Bot. 2013;88:101–106. doi: 10.1016/j.sajb.2013.06.002. DOI

Silva A.F.S., de Andrade J.P., Machado K.R.B., Rocha A.B., Apel M.A., Sobral M.E.G., Henriques A.T., Zuanazzi J.A. Screening for cytotoxic activity of extracts and isolated alkaloids from bulbs of Hippeastrum vittatum. Phytomedicine. 2008;15:882–885. doi: 10.1016/j.phymed.2007.12.001. PubMed DOI

Ortiz J.E., Pigni N.B., Andujar S.A., Roitman G., Suvire F.D., Enriz R.D., Tapia A., Bastida J., Feresin G.E. Alkaloids from Hippeastrum argentinum and their cholinesterase-inhibitory activities: An in vitro and in silico study. J. Nat. Prod. 2016;79:1241–1248. doi: 10.1021/acs.jnatprod.5b00785. PubMed DOI

Cahlíková L., Benešová N., Macáková K., Urbanová K., Opletal L. GC/MS analysis of three Amaryllidaceae species and their cholinesterase activity. Nat. Prod. Commun. 2011;6:1255–1258. doi: 10.1177/1934578X1100600912. PubMed DOI

Duffield A.M., Aplin R.T., Budzikiewicz H., Djerassi C., Murphy C.F., Wildman W.C. Mass spectrometry in structural and stereochemical problems. LXXXII. 1 A study of the fragmentation of some Amaryllidaceae alkaloids2. J. Am. Chem. Soc. 1965;87:4902–4912. doi: 10.1021/ja00949a038. PubMed DOI

Ishizaki M., Hoshino O., Iitaka Y. Total synthesis of montanine-type Amaryllidaceae alkaloids, which possess a 5, 11-methanomorphanthridine ring system, through cyclization with sodium bis (2-methoxyethoxy) aluminum hydride (SMEAH): The first stereoselective total syntheses of (±)-montanine, (±)-coccinine, (±)-O-acetylmontanine, (±)-pancracine, and (±)-brunsvigine. J. Org. Chem. 1992;57:7285–7295.

Bao X., Cao Y.X., Chu W.D., Qu H., Du J.Y., Zhao X.H., Ma X.Y., Wang C.T., Fan C.A. Bioinspired total synthesis of montanine-type Amaryllidaceae alkaloids. Angew. Chem. Int. Edit. 2013;52:14167–14172. doi: 10.1002/anie.201307324. PubMed DOI

Crouch N.R., Pohl T.L., Mulholland D.A., Ndlovu E., Van staden J. Alkaloids from three ethnomedicinal Haemanthus species: H. albiflos, H. deformis and H. pauculifolius (Amaryllidaceae) S. Afr. J. Bot. 2005;71:49–52. doi: 10.1016/S0254-6299(15)30148-4. DOI

da Silva A.F.S., de Andrade J.P., Bevilaqua L.R.M., de Souza M.M., Izquierdo I., Henriques A.T., Zuanazzi J.A.S. Anxiolytic-, antidepressant- and anticonvulsant-like effects of the alkaloid montanine isolated from Hippeastrum vittatum. Pharmacol. Biochem. Behav. 2006;85:148–154. doi: 10.1016/j.pbb.2006.07.027. PubMed DOI

Al Shammari L., Al Mamun A., Koutová D., Majorošová M., Hulcová D., Šafratová M., Breiterová K., Maříková J., Havelek R., Cahlíková L. Alkaloid profiling of Hippeastrum cultivars by GC-MS, isolation of Amaryllidaceae alkaloids and evaluation of their cytotoxicity. Rec. Nat. Prod. 2020;14:154–159. doi: 10.25135/rnp.147.19.06.1302. DOI

Berkov S., Evstatieva L., Popov S. Alkaloids in Bulgarian Pancratium maritimum L. Zeitschrift für Naturforschung C. 2004;59:65–69. doi: 10.1515/znc-2004-1-214. PubMed DOI

Bozkurt B., Kaya G.I., Somer N.U. Chemical composition and enzyme inhibitory activities of Turkish Pancratium maritimum bulbs. Nat. Prod. Commun. 2019;14:1–14. doi: 10.1177/1934578X19872905. DOI

Labraña J., Machocho A.K., Kricsfalusy V., Brun R., Codina C., Viladomat F., Bastida J. Alkaloids from Narcissus angustifolius subsp. transcarpathicus. Phytochemistry. 2002;60:847–852. doi: 10.1016/S0031-9422(02)00154-1. PubMed DOI

Cedrón J.C., Ravelo A.G., León L.G., Padrón J.M., Estévez-Braun A. Antiproliferative and structure activity relationships of Amaryllidaceae alkaloids. Molecules. 2015;20:13854–13863. doi: 10.3390/molecules200813854. PubMed DOI PMC

Li X., Yu H.Y., Wang Z.Y., Pi H.F., Zhang P., Ruan H.L. Neuroprotective compounds from the bulbs of Lycoris radiata. Fitoterapia. 2013;88:82–90. doi: 10.1016/j.fitote.2013.05.006. PubMed DOI

Hong A.W., Cheng T.H., Raghukumar V., Sha C.K. An expedient route to montanine-type Amaryllidaceae alkaloids: Total syntheses of (−)-brunsvigine and (−)-manthine. J. Org. Chem. 2008;73:7580–7585. doi: 10.1021/jo801089y. PubMed DOI

Inubushi Y., Fales H.M., Warnhoff E.W., Wildman W.C. Structures of montanine, coccinine, and manthine. J. Org. Chem. 1960;25:2153–2164. doi: 10.1021/jo01082a019. DOI

Clark R.C., Warren F.L., Pachler K.G.R. Alkaloids of the Amaryllidaceae: Brunsvigine: NMR, ORD/CD and mass spectrometry, degradation and interconversion studies. Tetrahedron. 1975;31:1855–1859. doi: 10.1016/0040-4020(75)87041-4. DOI

Dry L.J., Poynton M., Thompson M.E., Warren F.L. The alkaloids of the Amaryllidaceae. Part IV. The alkaloids of Brunsvigia cooperi Baker. J. Chem. Soc. 1958:4701–4704. doi: 10.1039/jr9580004701. DOI

Wildman W.C., Brown C.L., Michel K.H., Bailey D.T., Heimer N.E., Shaffer R., Murphy C.F. Alkaloids from Rhodophiala bifida, Crinum erubescens and Sprekelia formisissima. Pharmazie. 1967;22:725.

Nair J.J., Bastida J., Viladomat F., van Staden J. Cytotoxic agents of the crinane series of Amaryllidaceae alkaloids. Nat. Prod. Comm. 2012;7:1677–1688. doi: 10.1177/1934578X1200701234. PubMed DOI

He M., Qu C., Gao O., Hu X., Hong X. Biological and pharmacological activities of Amaryllidaceae alkaloids. RSC Adv. 2015;5:16562–16574. doi: 10.1039/C4RA14666B. DOI

Sener B., Orhan I., Satayavivad J. Antimalarial activity screening of some alkaloids and the plant extracts from Amaryllidaceae. Phytother. Res. 2003;17:1220–1223. doi: 10.1002/ptr.1346. PubMed DOI

Osorio E.J., Berkov S., Brun R., Codina C., Viladomat F., Cabezas F., Bastida J. In vitro antiprotozoal activity of alkaloids from Phaedranassa dubia (Amaryllidaceae) Phytochem. Lett. 2010;3:161–163. doi: 10.1016/j.phytol.2010.06.004. DOI

Kulhánková A., Cahlíková L., Novák Z., Macáková K., Kuneš J., Opletal L. Alkaloids from Zephyranthes robusta Baker and their acetylcholinesterase and butyrylcholinesterase inhibition activity. Chem. Biodivers. 2013;10:1120–1127. doi: 10.1002/cbdv.201200144. PubMed DOI

Havelek R., Seifrtová M., Královec K., Bručková L., Cahlíková L., Dalecká M., Vávrová J., Řezáčová M., Opletal L., Bílková Z. The effect of Amaryllidaceae alkaloids Haemanthamine and Haemanthidine on cell cycle progression and apoptosis in p53-negative human leukemic Jurkat cells. Phytomedicine. 2014;21:479–490. doi: 10.1016/j.phymed.2013.09.005. PubMed DOI

Nair J.J., Van Staden J., Bastida J. Cytotoxic alkaloids constituents of the Amaryllidaceae. In: Rahman A.U., editor. Studies in Natural Products Chemistry. 1st ed. Volume 49. Elsevier; Amsterdam, The Netherlands: 2016. pp. 107–156.

Fuchs S., Hsieh L.T., Saarberg W., Erdelmeier C.A.J., Wichelhaus T.A., Schaefer L., Koch E., Fürst R. Haemanthus coccineus extract and its main bioactive component narciclasine display profound anti-inflammatory activities in vitro and in vivo. J. Cell Mol. Med. 2015;19:1021–1032. doi: 10.1111/jcmm.12493. PubMed DOI PMC

Breiterová K., Koutová D., Maříková J., Havelek R., Kuneš J., Majorošová M., Opletal L., Hošťálková A., Jenčo J., Řezáčová M., et al. Amaryllidaceae alkaloids of different structural types from Narcissus L. cv. Professor Einstein and their cytotoxic activity. Plants. 2020;9:137. doi: 10.3390/plants9020137. PubMed DOI PMC

Govindaraju K., Ingels A., Hasan M.N., Sun D., Mathieu V., Masi M., Evidente A., Kornienko A. Synthetic analogues of the montanine-type alkaloids with activity against apoptosis-resistant cancer cells. Bioorg. Med. Chem. Lett. 2018;28:589–593. doi: 10.1016/j.bmcl.2018.01.041. PubMed DOI PMC

Pagliosa L.B., Monteiro S.C., Silva K.B., De Andrade J.P., Dutilh J., Bastida J., Cammarota M., Zuanazzi J.A.S. Effect of isoquinoline alkaloids from two Hippeastrum species on in vitro acetylcholinesterase activity. Phytomedicine. 2010;17:698–701. doi: 10.1016/j.phymed.2009.10.003. PubMed DOI

Evidente A., Andolfi A., Abou-Donia A.H., Touema S.M., Hammoda H.M., Shawky E., Motta A. (−)-Amarbellisine, a lycorine-type alkaloid from Amaryllis belladonna L. growing in Egypt. Phytochemistry. 2004;65:2113–2118. doi: 10.1016/j.phytochem.2004.03.020. PubMed DOI

Mathew S., Faheem M., Al-Malki A.L., Kumosani T.A., Qadri I. In silico inhibition of GABARAP activity using antiepileptic medicinal derived compounds. Bioinformation. 2015;11:189–195. doi: 10.6026/97320630011189. PubMed DOI PMC

Castilhos T.S., Giordani R.B., Henriques A.T., Menezes F.S., Zuanazzi J.A.S. Availacao in vitro das atividades antiinflamatoria, antioxidante e antimicrobiana do alcaloide montanina. Rev. Bras. Pharmacogn. 2007;17:209–214. doi: 10.1590/S0102-695X2007000200013. DOI

De Oliveira P.G., Pedrazza G.P.R., Farinon M., Machado X.R., Zuanazzi J.A.S., Spies F. Process for Extracting the Alkaloid Fraction of Rhodophiala bifida (Herb.) Traub and Uses Threof. 2020/0000798 A1. US Patent. 2020 Jan 2;

Kohelová E., Peřinová R., Maafi N., Korábečný J., Hulcová D., Maříková J., Kučera T., Martínez González L., Hrabinova M., Vorčáková K., et al. Derivatives of the β-crinane Amaryllidaceae alkaloid haemanthamine as multi-target directed ligands for Alzheimer’s Disease. Molecules. 2019;24:1307. doi: 10.3390/molecules24071307. PubMed DOI PMC

Tallini L.R., Bastida J., Cortes N., Osorio E.H., Theoduloz C., Schmeda-Hirschmann G. Cholinesterase inhibition activity, alkaloid profiling and molecular docking of Chilean Rhodophiala (Amaryllidaceae) Molecules. 2018;23:1532. doi: 10.3390/molecules23071532. PubMed DOI PMC

Masondo N.A., Stafford G.I., Aremu A.O., Makunga N.P. Acetylcholinesterase inhibitors from southern African plants: An overview of ethnobotanical, pharmacological potential and phytochemical research including and beyond Alzheimer’s disease treatment. S. Afr. J. Bot. 2019;120:39–64. doi: 10.1016/j.sajb.2018.09.011. DOI

Cahlíková L., Pérez D.I., Štěpánková S., Chlebek J., Šafratová M., Hošt’álková A., Opletal L. In vitro inhibitory effects of 8-O-demethylmaritidine and undulatine on acetylcholinesterase and their predicted penetration across the blood–brain barrier. J. Nat. Prod. 2015;78:1189–1192. doi: 10.1021/acs.jnatprod.5b00191. PubMed DOI

Hulcová D., Maříková J., Korábečný J., Hošťálková A., Jun D., Kuneš J., Chlebek J., Opletal L., De Simone A., Nováková L., et al. Amaryllidaceae alkaloids from Narcissus pseudonarcissus L. cv. Dutch Master as potential drugs in treatment of Alzheimer’s disease. Phytochemistry. 2019;165:112055. doi: 10.1016/j.phytochem.2019.112055. PubMed DOI

Ishizaki M., Hoshino O., Iitaka Y. A first total synthesis of montanine-type Amaryllidaceae alkaloids, (±)-coccinine, (±)-montanine, and (±)-pancracine. Tetrahedron Lett. 1991;32:7079–7082. doi: 10.1016/0040-4039(91)85045-7. DOI

Overman L.E., Shim J. Synthesis applications of cationic aza-Cope rearrangements. 23. First total synthesis of Amaryllidaceae alkaloids of the 5,11-methano morphanthridine type. An efficient total synthesis of (±)-pancracine. J. Org. Chem. 1991;56:5005–5007. doi: 10.1021/jo00017a002. DOI

Ishizaki M., Kurihara K.I., Tanazawa E., Hoshino O. Radical-mediated synthesis of the 5,11-methanomorphanthridine ring system: Formal total synthesis of montanine-type Amaryllidaceae alkaloids, (±)-montanine, (±)-coccinine and (±)-pancracine. J. Chem. Soc. Perkin Trans. 1. 1993;1:101–110. doi: 10.1039/P19930000101. DOI

Overman L.E., Shim J. Total synthesis of Amaryllidaceae alkaloids of the 5,11-methanomorphanthridine type. Efficient total synthesis of (-)-pancracine and (±)-pancracine. J. Org. Chem. 1993;58:4662–4672. doi: 10.1021/jo00069a032. DOI

Jin J., Weinreb S.M. Application of a stereospecific intramolecular allenylsilane imino ene reaction to enantioselective total synthesis of the 5,11-methanomorphanthridine class of Amaryllidaceae alkaloids. J. Am. Chem. Soc. 1997;119:5773–5784. doi: 10.1021/ja970839n. DOI

Pearson W.H., Lian B.W. Application of the 2-azaallyl anion cycloaddition method to an enantioselective total synthesis of (+)-coccinine. Angew. Chem. Int. Ed. Engl. 1998;37:1724–1726. doi: 10.1002/(SICI)1521-3773(19980703)37:12<1724::AID-ANIE1724>3.0.CO;2-8. PubMed DOI

Ikeda M., Hamada M., Yamashita T., Matsui K., Sato T., Ishibashi H. Stereoselective synthesis of (3R*, 3aS*, 7aS*)-3-aryloctahydroindol-2-ones using radical cyclisation: A formal synthesis of (±)-pancracine. J. Chem. Soc. Perkin Trans. 1. 1999;14:1949–1956. doi: 10.1039/a900467j. DOI

Banwell M.G., Edwards A.J., Jolliffe K.A., Kemmler M. An operationally simple and fully regiocontrolled formal total synthesis of the montanine-type Amaryllidaceae alkaloid (±)-pancracine. J. Chem. Soc. Perkin Trans. 1. 2001;12:1345–1348. doi: 10.1039/b102252k. DOI

Sha C.K., Hong A.W., Huang C.M. Synthesis of aza bicyclic enones via anionic cyclization: Application to the total synthesis of (−)-Brunsvigine. Org. Lett. 2001;3:2177–2179. doi: 10.1021/ol016022n. PubMed DOI

Pandey G., Banerjee P., Kumar R., Puranik V.G. Stereospecific route to 5,11-methanomorphanthridine alkaloids via intramolecular 1,3-dipolar cycloaddition of nonstabilized azomethine ylide: Formal total synthesis of (±)-pancracine. Org. Lett. 2005;7:3713–3716. doi: 10.1021/ol051321o. PubMed DOI

Banwell M.G., Kokas O.J., Willis A.C. Chemoenzymatic approaches to the montanine alkaloids: A total synthesis of (+)-brunsvigine. Org. Lett. 2007;9:3503–3506. doi: 10.1021/ol071344y. PubMed DOI

Kokas O.J., Banwell M.G., Willis A.C. Chemoenzymatic approaches to the montanine alkaloids: A total synthesis of (+)-nangustine. Tetrahedron. 2008;64:6444–6451. doi: 10.1016/j.tet.2008.04.070. PubMed DOI

Anada M., Tanaka M., Shimada N., Nambu H., Yamawaki M., Hashimoto S. Asymmetric formal synthesis of (−)-pancracine via catalytic enantioselective C–H amination process. Tetrahedron. 2009;65:3069–3077. doi: 10.1016/j.tet.2008.10.091. DOI

Pansare S.V., Lingampally R., Kirby R.L. Stereoselective synthesis of 3-aryloctahydroindoles and application in a formal synthesis of (−)-pancracine. Org. Lett. 2010;12:556–559. doi: 10.1021/ol902761a. PubMed DOI

Pandey G., Kumar R., Banerjee P., Puranik V.G. One-step stereospecific strategy for the construction of the core structure of the 5,11-methanomorphanthridine alkaloids in racemic as well as in optically pure form: Synthesis of (±)-pancracine and (±)-brunsvigine. Eur. J. Org. Chem. 2011;2011:4571–4587. doi: 10.1002/ejoc.201100601. DOI

Pandey G., Gadre S.R. Stereoselective construction of 5,11-methanomorphanthridine and 5,10b-phenanthridine structural frameworks: Total syntheses of (±)-pancracine, (±)-brunsvigine, (±)-maritidine, and (±)-crinine. Pure Appl. Chem. 2012;84:1597–1619. doi: 10.1351/PAC-CON-11-10-12. DOI

Yang H., Hou S., Tao C., Liu Z., Wang C., Cheng B., Li Y., Zhai H. Rhodium-catalyzed denitrogenative [3 + 2] cycloaddition: Access to functionalized hydroindolones and the framework of montanine-type Amaryllidaceae alkaloids. Chem. Eur. J. 2017;23:12930–12936. doi: 10.1002/chem.201702893. PubMed DOI

Pandey G., Dey D., Tiwari S.K. Synthesis of biologically active natural products by [3 + 2] cycloaddition of non-stabilized azomethine ylides (AMY): Concepts and realizations. Tetrahedron Lett. 2017;58:699–705. doi: 10.1016/j.tetlet.2017.01.036. DOI

Cedrón J.C., Estévez-Braun A., Ravelo A., Gutiérrez D., Flores N., Bucio M.A., Pérez-Hernández N., Joseph-Nathan P. Bioactive montanine derivatives from halide-induced rearrangements of haemanthamine-type alkaloids. Absolute configuration by VCD. Org. Lett. 2009;11:1491–1494. doi: 10.1021/ol900065x. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace