Pancracine, a Montanine-Type Amaryllidaceae Alkaloid, Inhibits Proliferation of A549 Lung Adenocarcinoma Cells and Induces Apoptotic Cell Death in MOLT-4 Leukemic Cells
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/18_069/0010046
Ministerstvo Školství, Mládeže a Tělovýchovy
Progres/UK Q40/01
Univerzita Karlova v Praze
SVV-260543/2020
Univerzita Karlova v Praze
PubMed
34209868
PubMed Central
PMC8269071
DOI
10.3390/ijms22137014
PII: ijms22137014
Knihovny.cz E-zdroje
- Klíčová slova
- Amaryllidaceae alkaloids, antiproliferative activity, apoptosis, cell cycle arrest, cytotoxicity, pancracine,
- MeSH
- adenokarcinom plic patologie MeSH
- alkaloidy izolace a purifikace farmakologie MeSH
- Amaryllidaceae chemie MeSH
- antitumorózní látky fytogenní izolace a purifikace farmakologie MeSH
- apoptóza účinky léků MeSH
- buňky A549 MeSH
- buňky Hep G2 MeSH
- heterocyklické sloučeniny tetra- a více cyklické izolace a purifikace farmakologie MeSH
- leukemie patologie MeSH
- lidé MeSH
- MFC-7 buňky MeSH
- nádorové buněčné linie MeSH
- nádory plic patologie MeSH
- proliferace buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- alkaloidy MeSH
- antitumorózní látky fytogenní MeSH
- heterocyklické sloučeniny tetra- a více cyklické MeSH
- pancracine MeSH Prohlížeč
Pancracine, a montanine-type Amaryllidaceae alkaloid (AA), is one of the most potent compounds among natural isoquinolines. In previous studies, pancracine exhibited cytotoxic activity against diverse human cancer cell lines in vitro. However, further insight into the molecular mechanisms that underlie the cytotoxic effect of pancracine have not been reported and remain unknown. To fill this void, the cell proliferation and viability of cancer cells was explored using the Trypan Blue assay or by using the xCELLigence system. The impact on the cell cycle was determined by flow cytometry. Apoptosis was evaluated by Annexin V/PI and by quantifying the activity of caspases (-3/7, -8, and -9). Proteins triggering growth arrest or apoptosis were detected by Western blotting. Pancracine has strong antiproliferative activity on A549 cells, lasting up to 96 h, and antiproliferative and cytotoxic effects on MOLT-4 cells. The apoptosis-inducing activity of pancracine in MOLT-4 cells was evidenced by the significantly higher activity of caspases. This was transmitted through the upregulation of p53 phosphorylated on Ser392, p38 MAPK phosphorylated on Thr180/Tyr182, and upregulation of p27. The pancracine treatment negatively altered the proliferation of A549 cells as a consequence of an increase in G1-phase accumulation, associated with the downregulation of Rb phosphorylated on Ser807/811 and with the concomitant upregulation of p27 and downregulation of Akt phosphorylated on Thr308. This was the first study to glean a deeper mechanistic understanding of pancracine activity in vitro. Perturbation of the cell cycle and induction of apoptotic cell death were considered key mechanisms of pancracine action.
Zobrazit více v PubMed
Newman D.J., Cragg G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 2012;75:311–335. doi: 10.1021/np200906s. PubMed DOI PMC
Desgagné-Penix I. Biosynthesis of alkaloids in Amaryllidaceae plants: A review. Phytochem. Rev. 2021;20:409–431. doi: 10.1007/s11101-020-09678-5. DOI
Cahlíková L., Kawano I., Řezáčová M., Blunden G., Hulcová D., Havelek R. The Amaryllidaceae alkaloids haemanthamine, haemanthidine and their semisynthetic derivatives as potential drugs. Phytochem. Rev. 2021;20:303–323. doi: 10.1007/s11101-020-09675-8. DOI
Wildman W.C., Brown C.L. Mass spectra of 5,11-methanomorphanthridine alkaloids. The structure of pancracine. J. Am. Chem. Soc. 1968;90:6439–6446. doi: 10.1021/ja01025a036. PubMed DOI
Govindaraju K., Ingels A., Hasan M.N., Sun D., Mathieu V., Masi M., Evidente A., Kornienko A. Synthetic analogues of the montanine-type alkaloids with activity against apoptosis-resistant cancer cells. Bioorg. Med. Chem. Lett. 2018;28:589–593. doi: 10.1016/j.bmcl.2018.01.041. PubMed DOI PMC
Breiterová K., Koutová D., Maríková J., Havelek R., Kuneš J., Majorošová M., Opletal L., Hošt’álková A., Jenco J., Rezáčová M., et al. Amaryllidaceae alkaloids of different structural types from Narcissus L. cv. Professor Einstein and their cytotoxic activity. Plants. 2020;9:137. doi: 10.3390/plants9020137. PubMed DOI PMC
Wildman W.C., Kaufman C.J. Alkaloids of the Amaryllidaceae. III. Isolation of five new alkaloids from Haemanthus species1. J. Am. Chem. Soc. 1955;77:1248–1252. doi: 10.1021/ja01610a045. DOI
Koutová D., Maafi N., Havelek R., Opletal L., Blunden G., Řezáčová M., Cahlíková L. Chemical and biological aspects of montanine-type alkaloids isolated from plants of the Amaryllidaceae family. Molecules. 2020;25:2337. doi: 10.3390/molecules25102337. PubMed DOI PMC
Cedrón J.C., Ravelo A.G., León L.G., Padrón J.M., Estévez-Braun A. Antiproliferative and structure activity relationships of Amaryllidaceae alkaloids. Molecules. 2015;20:13854–13863. doi: 10.3390/molecules200813854. PubMed DOI PMC
Masi M., van Slambrouck S., Gunawardana S., van Rensburg M.J., James P.C., Mochel J.G., Heliso P.S., Albalawi A.S., Cimmino A., van Otterlo W.A.L., et al. Alkaloids isolated from Haemanthus humilis Jacq., an indigenous South African Amaryllidaceae: Anticancer activity of coccinine and montanine. S. Afr. J. Bot. 2019;126:277–281. doi: 10.1016/j.sajb.2019.01.036. DOI
Evidente A., Andolfi A., Abou-Donia A.H., Touema S.M., Hammoda H.M., Shawky E., Motta A. (−)-Amarbellisine, a lycorine-type alkaloid from Amaryllis belladonna L. growing in Egypt. Phytochemistry. 2004;65:2113–2118. doi: 10.1016/j.phytochem.2004.03.020. PubMed DOI
Labraña J., Machocho A.K., Kricsfalusy V., Brun R., Codina C., Viladomat F., Bastida J. Alkaloids from Narcissus angustifolius subsp. transcarpathicus. Phytochemistry. 2002;60:847–852. doi: 10.1016/S0031-9422(02)00154-1. PubMed DOI
Habartová K., Cahlíková L., Řezáčová M., Havelek R. The biological activity of alkaloids from the Amaryllidaceae: From cholinesterases inhibition to anticancer activity. Nat. Prod. Commun. 2016;11:1587–1594. doi: 10.1177/1934578X1601101038. PubMed DOI
Havelek R., Seifrtová M., Královec K., Bručková L., Cahlíková L., Dalecká M., Vávrová J., Řezáčová M., Opletal L., Bílková Z. The effect of Amaryllidaceae alkaloids Haemanthamine and Haemanthidine on cell cycle progression and apoptosis in p53-negative human leukemic Jurkat cells. Phytomedicine. 2014;21:479–490. doi: 10.1016/j.phymed.2013.09.005. PubMed DOI
Guan Y., Zhang H., Pan C., Wang J., Huang R., Li Q. Flexible synthesis of montanine-like alkaloids: Revisiting the structure of montabuphine. Org. Biomol. Chem. 2012;10:3812–3814. doi: 10.1039/c2ob25374g. PubMed DOI
Matveenko M., Banwell M.G., Willis A.C. A chemoenzymatic total synthesis of the structure assigned to the alkaloid (+)-montabuphine. Org. Lett. 2008;10:4693–4696. doi: 10.1021/ol801815k. PubMed DOI
Ishizaki M., Hoshino O., Iitaka Y. Total synthesis of montanine-type Amaryllidaceae alkaloids, which possess a 5, 11-methanomorphanthridine ring system, through cyclization with sodium bis (2-methoxyethoxy) aluminum hydride (SMEAH): The first stereoselective total syntheses of (±)-montanine, (±)-coccinine, (±)-O-acetylmontanine, (±)-pancracine, and (±)-brunsvigine. J. Org. Chem. 1992;57:7285–7295.
Bao X., Cao Y.X., Chu W.D., Qu H., Du J.Y., Zhao X.H., Ma X.Y., Wang C.T., Fan C.A. Bioinspired total synthesis of montanine-type Amaryllidaceae alkaloids. Angew. Chem. Int. Edit. 2013;52:14167–14172. doi: 10.1002/anie.201307324. PubMed DOI
Hong A.W., Cheng T.H., Raghukumar V., Sha C.K. An expedient route to montanine-type Amaryllidaceae alkaloids: Total syntheses of (−)-brunsvigine and (−)-manthine. J. Org. Chem. 2008;73:7580–7585. doi: 10.1021/jo801089y. PubMed DOI
Pandey G., Gadre S.R. Stereoselective construction of 5,11-methanomorphanthridine and 5,10b-phenanthridine structural frameworks: Total syntheses of (±)-pancracine, (±)-brunsvigine, (±)-maritidine, and (±)-crinine. Pure Appl. Chem. 2012;84:1597–1619. doi: 10.1351/PAC-CON-11-10-12. DOI
Inubushi Y., Fales H.M., Warnhoff E.W., Wildman W.C. Structures of montanine, coccinine, and manthine. J. Org. Chem. 1960;25:2153–2164. doi: 10.1021/jo01082a019. DOI
Cedrón J.C., Estévez-Braun A., Ravelo A., Gutiérrez D., Flores N., Bucio M.A., Pérez-Hernández N., Joseph-Nathan P. Bioactive montanine derivatives from halide-induced rearrangements of haemanthamine-type alkaloids. Absolute configuration by VCD. Org. Lett. 2009;11:1491–1494. doi: 10.1021/ol900065x. PubMed DOI
Al Shammari L., Al Mamun A., Koutová D., Majorošová M., Hulcová D., Šafratová M., Breiterová K., Maříková J., Havelek R., Cahlíková L. Alkaloid profiling of Hippeastrum cultivars by GC-MS, isolation of Amaryllidaceae alkaloids and evaluation of their cytotoxicity. Rec. Nat. Prod. 2020;14:154–159. doi: 10.25135/rnp.147.19.06.1302. DOI
Ambrosino C., Nebreda A.R. Cell cycle regulation by p38 MAP kinases. Biol. Cell. 2001;93:47–51. doi: 10.1016/S0248-4900(01)01124-8. PubMed DOI
Abbastabar M., Kheyrollah M., Azizian K., Bagherlou N., Tehrani S.S., Maniati M., Karimian A. Multiple functions of p27 in cell cycle, apoptosis, epigenetic modification and transcriptional regulation for the control of cell growth: A double-edged sword protein. DNA Repair. 2018;69:63–72. doi: 10.1016/j.dnarep.2018.07.008. PubMed DOI
Šalovská B., Janečková H., Fabrik I., Karlíková R., Čecháková L., Ondrej M., Link M., Friedecký D., Tichý A. Radio-sensitizing effects of VE-821 and beyond: Distinct phosphoproteomic and metabolomic changes after ATR inhibition in irradiated MOLT-4 cells. PLoS ONE. 2018;13:e0199349. doi: 10.1371/journal.pone.0199349. PubMed DOI PMC
Tichý A., Záškodová D., Pejchal J., Řezáčová M., Österreicher J., Vávrová J., Cerman J. Gamma irradiation of human leukaemic cells HL-60 and MOLT-4 induces decrease in Mcl-1 and Bid, release of cytochrome c, and activation of caspase-8 and caspase-9. Int. J. Radiat. Biol. 2008;84:523–530. doi: 10.1080/09553000802078404. PubMed DOI
Muthna D., Vavrova J., Lukasova E., Tichy A., Knizek J., Kohlerova R., Mazankova N., Rezacova M. Valproic acid decreases the reparation capacity of irradiated MOLT-4 cells. Mol. Biol. 2012;46:110–116. doi: 10.1134/S0026893312010141. PubMed DOI
Řezáčová M., Tichý A., Vávrová J., Vokurková D., Lukášová E. Is defect in phosphorylation of Nbs1 responsible for high radiosensitivity of T-lymphocyte leukemia cells MOLT-4? Leuk. Res. 2008;32:1259–1267. doi: 10.1016/j.leukres.2007.12.014. PubMed DOI
Pellegrino S., Meyer M., Zorbas C., Bouchta S.A., Saraf K., Pelly S.C., Yusupova G., Evidente A., Mathieu V., Kornienko A., et al. The Amaryllidaceae alkaloid haemanthamine binds the eukaryotic ribosome to repress cancer cell growth. Structure. 2018;26:416–425. doi: 10.1016/j.str.2018.01.009. PubMed DOI