Radio-sensitizing effects of VE-821 and beyond: Distinct phosphoproteomic and metabolomic changes after ATR inhibition in irradiated MOLT-4 cells
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30001349
PubMed Central
PMC6042708
DOI
10.1371/journal.pone.0199349
PII: PONE-D-18-04673
Knihovny.cz E-zdroje
- MeSH
- aminokyselinové motivy MeSH
- ATM protein antagonisté a inhibitory MeSH
- biologické markery MeSH
- fosfoproteiny * chemie metabolismus MeSH
- fosforylace MeSH
- genová ontologie MeSH
- inhibitory proteinkinas farmakologie MeSH
- kontrolní body buněčného cyklu účinky léků účinky záření MeSH
- lidé MeSH
- metabolom * MeSH
- metabolomika metody MeSH
- nádorové buněčné linie MeSH
- proteom * MeSH
- proteomika metody MeSH
- pyraziny farmakologie MeSH
- radiosenzibilizující látky farmakologie MeSH
- signální transdukce MeSH
- sulfony farmakologie MeSH
- tolerance záření účinky léků MeSH
- TOR serin-threoninkinasy metabolismus MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- výpočetní biologie metody MeSH
- záření gama MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 3-amino-6-(4-(methylsulfonyl)phenyl)-N-phenylpyrazine-2-carboxamide MeSH Prohlížeč
- ATM protein MeSH
- ATR protein, human MeSH Prohlížeč
- biologické markery MeSH
- fosfoproteiny * MeSH
- inhibitory proteinkinas MeSH
- MTOR protein, human MeSH Prohlížeč
- proteom * MeSH
- pyraziny MeSH
- radiosenzibilizující látky MeSH
- sulfony MeSH
- TOR serin-threoninkinasy MeSH
Current anti-cancer strategy takes advantage of tumour specific abnormalities in DNA damage response to radio- or chemo-therapy. Inhibition of the ATR/Chk1 pathway has been shown to be synthetically lethal in cells with high levels of oncogene-induced replication stress and in p53- or ATM- deficient cells. In the presented study, we aimed to elucidate molecular mechanisms underlying radiosensitization of T-lymphocyte leukemic MOLT-4 cells by VE-821, a higly potent and specific inhibitor of ATR. We combined multiple approaches: cell biology techniques to reveal the inhibitor-induced phenotypes, and quantitative proteomics, phosphoproteomics, and metabolomics to comprehensively describe drug-induced changes in irradiated cells. VE-821 radiosensitized MOLT-4 cells, and furthermore 10 μM VE-821 significantly affected proliferation of sham-irradiated MOLT-4 cells. We detected 623 differentially regulated phosphorylation sites. We revealed changes not only in DDR-related pathways and kinases, but also in pathways and kinases involved in maintaining cellular metabolism. Notably, we found downregulation of mTOR, the main regulator of cellular metabolism, which was most likely caused by an off-target effect of the inhibitor, and we propose that mTOR inhibition could be one of the factors contributing to the phenotype observed after treating MOLT-4 cells with 10 μM VE-821. In the metabolomic analysis, 206 intermediary metabolites were detected. The data indicated that VE-821 potentiated metabolic disruption induced by irradiation and affected the response to irradiation-induced oxidative stress. Upon irradiation, recovery of damaged deoxynucleotides might be affected by VE-821, hampering DNA repair by their deficiency. Taken together, this is the first study describing a complex scenario of cellular events that might be ATR-dependent or triggered by ATR inhibition in irradiated MOLT-4 cells. Data are available via ProteomeXchange with identifier PXD008925.
Biomedical Research Center University Hospital Hradec Králové Czech Republic
Department of Clinical Biochemistry University Hospital Olomouc Olomouc Czech Republic
Zobrazit více v PubMed
O’Connor MJ. Targeting the DNA Damage Response in Cancer. Molecular Cell. 2015;60: 547–560. 10.1016/j.molcel.2015.10.040 PubMed DOI
Chen T, Stephens PA, Middleton FK, Curtin NJ. Targeting the S and G2 checkpoint to treat cancer. Drug Discovery Today. 2012;17: 194–202. 10.1016/j.drudis.2011.12.009 PubMed DOI
Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, et al. Mutational landscape and significance across 12 major cancer types. Nature. 2013;502: 333–339. 10.1038/nature12634 PubMed DOI PMC
Toledo LI, Murga M, Fernandez-Capetillo O. Targeting ATR and Chk1 kinases for cancer treatment: a new model for new (and old) drugs. Mol Oncol. 2011;5: 368–373. 10.1016/j.molonc.2011.07.002 PubMed DOI PMC
Macheret M, Halazonetis TD. DNA Replication Stress as a Hallmark of Cancer. Annual Review of Pathology: Mechanisms of Disease. 2015;10: 425–448. 10.1146/annurev-pathol-012414-040424 PubMed DOI
Ferrao PT, Bukczynska EP, Johnstone RW, McArthur GA. Efficacy of CHK inhibitors as single agents in MYC-driven lymphoma cells. Oncogene. 2012;31: 1661–1672. 10.1038/onc.2011.358 PubMed DOI
Gilad O, Nabet BY, Ragland RL, Schoppy DW, Smith KD, Durham AC, et al. Combining ATR suppression with oncogenic Ras synergistically increases genomic instability, causing synthetic lethality or tumorigenesis in a dosage-dependent manner. Cancer Res. 2010;70: 9693–9702. 10.1158/0008-5472.CAN-10-2286 PubMed DOI PMC
Höglund A, Nilsson LM, Muralidharan SV, Hasvold LA, Merta P, Rudelius M, et al. Therapeutic Implications for the Induced Levels of Chk1 in Myc-Expressing Cancer Cells. Clin Cancer Res. 2011;17: 7067–7079. 10.1158/1078-0432.CCR-11-1198 PubMed DOI
Murga M, Campaner S, Lopez-Contreras AJ, Toledo LI, Soria R, Montaña MF, et al. Exploiting oncogene-induced replicative stress for the selective killing of Myc-driven tumors. Nat Struct Mol Biol. 2011;18: 1331–1335. 10.1038/nsmb.2189 PubMed DOI PMC
Schoppy DW, Ragland RL, Gilad O, Shastri N, Peters AA, Murga M, et al. Oncogenic stress sensitizes murine cancers to hypomorphic suppression of ATR. J Clin Invest. 2012;122: 241–252. 10.1172/JCI58928 PubMed DOI PMC
Toledo LI, Murga M, Zur R, Soria R, Rodriguez A, Martinez S, et al. A cell-based screen identifies ATR inhibitors with synthetic lethal properties for cancer-associated mutations. Nat Struct Mol Biol. 2011;18: 721–727. 10.1038/nsmb.2076 PubMed DOI PMC
Fokas E, Prevo R, Pollard JR, Reaper PM, Charlton PA, Cornelissen B, et al. Targeting ATR in vivo using the novel inhibitor VE-822 results in selective sensitization of pancreatic tumors to radiation. Cell Death Dis. 2012;3: e441 10.1038/cddis.2012.181 PubMed DOI PMC
Fokas E, Prevo R, Hammond EM, Brunner TB, McKenna WG, Muschel RJ. Targeting ATR in DNA damage response and cancer therapeutics. Cancer Treat Rev. 2014;40: 109–117. 10.1016/j.ctrv.2013.03.002 PubMed DOI
Peasland A, Wang L-Z, Rowling E, Kyle S, Chen T, Hopkins A, et al. Identification and evaluation of a potent novel ATR inhibitor, NU6027, in breast and ovarian cancer cell lines. Br J Cancer. 2011;105: 372–381. 10.1038/bjc.2011.243 PubMed DOI PMC
Reaper PM, Griffiths MR, Long JM, Charrier J, Maccormick S, Charlton PA, et al. Selective killing of ATM- or p53-deficient cancer cells through inhibition of ATR. Nature Chemical Biology. 2011;7: 428–30. http://dx.doi.org.ezproxy.is.cuni.cz/10.1038/nchembio.573 10.1038/nchembio.573 PubMed DOI
Vendetti FP, Lau A, Schamus S, Conrads TP, O’Connor MJ, Bakkenist CJ. The orally active and bioavailable ATR kinase inhibitor AZD6738 potentiates the anti-tumor effects of cisplatin to resolve ATM-deficient non-small cell lung cancer in vivo. Oncotarget. 2015; 10.18632/oncotarget.6247 PubMed DOI PMC
Szkanderová S, Vávrová J, Rézacová M, Vokurková D, Pavlová S, Smardová J, et al. Gamma irradiation results in phosphorylation of p53 at serine-392 in human T-lymphocyte leukaemia cell line MOLT-4. Folia Biol (Praha). 2003;49: 191–196. PubMed
Vávrová J, Rezácová M, Vokurková D, Psutka J. Cell cycle alteration, apoptosis and response of leukemic cell lines to gamma radiation with high- and low-dose rate. Physiol Res. 2004;53: 335–342. PubMed
Szkanderová S, Vávrová J, Hernychová L, Neubauerová V, Lenco J, Stulík J. Proteome alterations in gamma-irradiated human T-lymphocyte leukemia cells. Radiat Res. 2005;163: 307–315. PubMed
Záskodová D, Rezácová M, Vávrová J, Vokurková D, Tichy A. Effect of valproic acid, a histone deacetylase inhibitor, on cell death and molecular changes caused by low-dose irradiation. Ann N Y Acad Sci. 2006;1091: 385–398. 10.1196/annals.1378.082 PubMed DOI
Tichý A, Záskodová D, Rezácová M, Vávrová J, Vokurková D, Pejchal J, et al. Gamma-radiation-induced ATM-dependent signalling in human T-lymphocyte leukemic cells, MOLT-4. Acta Biochim Pol. 2007;54: 281–287. PubMed
Rezácová M, Tichý A, Vávrová J, Vokurková D, Lukásová E. Is defect in phosphorylation of Nbs1 responsible for high radiosensitivity of T-lymphocyte leukemia cells MOLT-4? Leuk Res. 2008;32: 1259–1267. 10.1016/j.leukres.2007.12.014 PubMed DOI
Tichý A, Záskodová D, Pejchal J, Rezácová M, Osterreicher J, Vávrová J, et al. Gamma irradiation of human leukaemic cells HL-60 and MOLT-4 induces decrease in Mcl-1 and Bid, release of cytochrome c, and activation of caspase-8 and caspase-9. Int J Radiat Biol. 2008;84: 523–530. 10.1080/09553000802078404 PubMed DOI
Tichý A, Záskodová D, Zoelzer F, Vávrová J, Sinkorová Z, Pejchal J, et al. Gamma-radiation-induced phosphorylation of p53 on serine 15 is dose-dependent in MOLT-4 leukaemia cells. Folia Biol (Praha). 2009;55: 41–44. PubMed
Tichý A, Muthná D, Vávrová J, Pejchal J, Šinkorová Z, Zárybnická L, et al. Caffeine-suppressed ATM pathway leads to decreased p53 phosphorylation and increased programmed cell death in gamma-irradiated leukaemic molt-4 cells. Journal of Applied Biomedicine. 2011;9: 49–56. 10.2478/v10136-009-0031-7 DOI
Tichý A, Novotná E, Durisová K, Salovská B, Sedlaríková R, Pejchal J, et al. Radio-sensitization of human leukaemic molt-4 cells by DNA-dependent protein kinase inhibitor, NU7026. Acta Medica (Hradec Kralove). 2012;55: 66–73. 10.14712/18059694.2015.57 PubMed DOI
Muthna D, Vavrova J, Lukasova E, Tichy A, Knizek J, Kohlerova R, et al. Valproic acid decreases the reparation capacity of irradiated MOLT-4 cells. Mol Biol (Mosk). 2012;46: 122–128. PubMed
Tichy A, Durisova K, Salovska B, Pejchal J, Zarybnicka L, Vavrova J, et al. Radio-sensitization of human leukaemic MOLT-4 cells by DNA-dependent protein kinase inhibitor, NU7441. Radiat Environ Biophys. 2013;53: 83–92. 10.1007/s00411-013-0494-5 PubMed DOI
Shinohara K, Nakano H. Interphase death and reproductive death in X-irradiated MOLT-4 cells. Radiat Res. 1993;135: 197–205. PubMed
Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H, et al. COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucl Acids Res. 2015;43: D805–D811. 10.1093/nar/gku1075 PubMed DOI PMC
Mendes RD, Canté-Barrett K, Pieters R, Meijerink JPP. The relevance of PTEN-AKT in relation to NOTCH1-directed treatment strategies in T-cell acute lymphoblastic leukemia. Haematologica. 2016;101: 1010–1017. 10.3324/haematol.2016.146381 PubMed DOI PMC
Bendall SC, Hughes C, Stewart MH, Doble B, Bhatia M, Lajoie GA. Prevention of Amino Acid Conversion in SILAC Experiments with Embryonic Stem Cells. Mol Cell Proteomics. 2008;7: 1587–1597. 10.1074/mcp.M800113-MCP200 PubMed DOI PMC
Ong S- E, Mann M. Identifying and quantifying sites of protein methylation by heavy methyl SILAC. Curr Protoc Protein Sci. 2006;Chapter 14: Unit 14.9. 10.1002/0471140864.ps1409s46 PubMed DOI
Tichý A, Záškodová D, Pejchal J, ŘezáČová M, Österreicher J, Vávrová J, et al. Gamma irradiation of human leukaemic cells HL-60 and MOLT-4 induces decrease in Mcl-1 and Bid, release of cytochrome c, and activation of caspase-8 and caspase-9. Int J Radiat Biol. 2008;84: 523–530. 10.1080/09553000802078404 PubMed DOI
Tichý A, Záskodová D, Zoelzer F, Vávrová J, Sinkorová Z, Pejchal J, et al. Gamma-radiation-induced phosphorylation of p53 on serine 15 is dose-dependent in MOLT-4 leukaemia cells. Folia Biol (Praha). 2009;55: 41–44. PubMed
Vávrová J, Rezácová M, Vokurková D, Psutka J. Cell cycle alteration, apoptosis and response of leukemic cell lines to gamma radiation with high- and low-dose rate. Physiol Res. 2004;53: 335–342. PubMed
Ong S, Mann M. A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nature Protocols. 2006;1: 2650–60. 10.1038/nprot.2006.427 PubMed DOI
Rogers LD, Fang Y, Foster LJ. An integrated global strategy for cell lysis, fractionation, enrichment and mass spectrometric analysis of phosphorylated peptides. Mol BioSyst. 2010;6: 822–829. 10.1039/b915986j PubMed DOI
Yeung Y- G, Stanley ER. Rapid Detergent Removal From Peptide Samples With Ethyl Acetate For Mass Spectrometry Analysis. Curr Protoc Protein Sci. 2010;CHAPTER: Unit-16.12. 10.1002/0471140864.ps1612s59 PubMed DOI PMC
McNulty DE, Annan RS. Hydrophilic interaction chromatography reduces the complexity of the phosphoproteome and improves global phosphopeptide isolation and detection. Mol Cell Proteomics. 2008;7: 971–980. 10.1074/mcp.M700543-MCP200 PubMed DOI
Larsen MR, Thingholm TE, Jensen ON, Roepstorff P, Jørgensen TJD. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics. 2005;4: 873–886. 10.1074/mcp.T500007-MCP200 PubMed DOI
Salovska B, Tichy A, Fabrik I, Rezacova M, Vavrova J. Comparison of Resins for Metal Oxide Affinity Chromatography with Mass Spectrometry Detection for the Determination of Phosphopeptides. Analytical Letters. 2013;46: 1505–1524. 10.1080/00032719.2013.773437 DOI
Salovská B, Fabrik I, Durišová K, Link M, Vávrová J, Rezáčová M, et al. Radiosensitization of Human Leukemic HL-60 Cells by ATR Kinase Inhibitor (VE-821): Phosphoproteomic Analysis. Int J Mol Sci. 2014;15: 12007–12026. 10.3390/ijms150712007 PubMed DOI PMC
Fabrik I, Link M, Putzova D, Plzakova L, Lubovska Z, Philimonenko V, et al. The early dendritic cell signaling induced by virulent Francisella tularensis strain occurs in phases and involves the activation of ERKs and p38 in the later stage. Mol Cell Proteomics. 2017; mcp.RA117.000160. 10.1074/mcp.RA117.000160 PubMed DOI PMC
Vizcaíno JA, Csordas A, del-Toro N, Dianes JA, Griss J, Lavidas I, et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 2016;44: D447–456. 10.1093/nar/gkv1145 PubMed DOI PMC
Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nature Biotechnology. 2008;26: 1367–1372. 10.1038/nbt.1511 PubMed DOI
Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M. Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res. 2011;10: 1794–1805. 10.1021/pr101065j PubMed DOI
Zhou Y, Cras-Méneur C, Ohsugi M, Stormo GD, Permutt MA. A global approach to identify differentially expressed genes in cDNA (two-color) microarray experiments. Bioinformatics. 2007;23: 2073–2079. 10.1093/bioinformatics/btm292 PubMed DOI
Kamburov A, Wierling C, Lehrach H, Herwig R. ConsensusPathDB—a database for integrating human functional interaction networks. Nucl Acids Res. 2009;37: D623–D628. 10.1093/nar/gkn698 PubMed DOI PMC
Kamburov A, Pentchev K, Galicka H, Wierling C, Lehrach H, Herwig R. ConsensusPathDB: toward a more complete picture of cell biology. Nucl Acids Res. 2011;39: D712–D717. 10.1093/nar/gkq1156 PubMed DOI PMC
Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44: D457–462. 10.1093/nar/gkv1070 PubMed DOI PMC
Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28: 27–30. PubMed PMC
Croft D. Building models using Reactome pathways as templates. Methods Mol Biol. 2013;1021: 273–283. 10.1007/978-1-62703-450-0_14 PubMed DOI PMC
Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, et al. PID: the Pathway Interaction Database. Nucleic Acids Res. 2009;37: D674–679. 10.1093/nar/gkn653 PubMed DOI PMC
Klammer M, Godl K, Tebbe A, Schaab C. Identifying differentially regulated subnetworks from phosphoproteomic data. BMC Bioinformatics. 2010;11: 351 10.1186/1471-2105-11-351 PubMed DOI PMC
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003;13: 2498–2504. 10.1101/gr.1239303 PubMed DOI PMC
Colaert N, Helsens K, Martens L, Vandekerckhove J, Gevaert K. Improved visualization of protein consensus sequences by iceLogo. Nat Methods. 2009;6: 786–787. 10.1038/nmeth1109-786 PubMed DOI
Chou MF, Schwartz D. Biological sequence motif discovery using motif-x. Curr Protoc Bioinformatics. 2011;Chapter 13: Unit 13.15–24. 10.1002/0471250953.bi1315s35 PubMed DOI
Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, et al. Global, In Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks. Cell. 2006;127: 635–648. 10.1016/j.cell.2006.09.026 PubMed DOI
Hornbeck PV, Kornhauser JM, Tkachev S, Zhang B, Skrzypek E, Murray B, et al. PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res. 2012;40: D261–D270. 10.1093/nar/gkr1122 PubMed DOI PMC
Horn H, Schoof EM, Kim J, Robin X, Miller ML, Diella F, et al. KinomeXplorer: an integrated platform for kinome biology studies. Nat Meth. 2014;11: 603–604. 10.1038/nmeth.2968 PubMed DOI
Song C, Ye M, Liu Z, Cheng H, Jiang X, Han G, et al. Systematic analysis of protein phosphorylation networks from phosphoproteomic data. Mol Cell Proteomics. 2012; mcp.M111.012625. 10.1074/mcp.M111.012625 PubMed DOI PMC
Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 2013;41: D808–815. 10.1093/nar/gks1094 PubMed DOI PMC
Cox J, Mann M. 1D and 2D annotation enrichment: a statistical method integrating quantitative proteomics with complementary high-throughput data. BMC Bioinformatics. 2012;13 Suppl 16: S12 10.1186/1471-2105-13-S16-S12 PubMed DOI PMC
Sellick CA, Hansen R, Stephens GM, Goodacre R, Dickson AJ. Metabolite extraction from suspension-cultured mammalian cells for global metabolite profiling. Nat Protocols. 2011;6: 1241–1249. 10.1038/nprot.2011.366 PubMed DOI
Yuan M, Breitkopf SB, Yang X, Asara JM. A positive/negative ion–switching, targeted mass spectrometry–based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nature protocols. 7: 872 10.1038/nprot.2012.024 PubMed DOI PMC
Karlíková R, Mičová K, Najdekr L, Gardlo A, Adam T, Majerová P, et al. Metabolic status of CSF distinguishes rats with tauopathy from controls. Alzheimers Res Ther. 2017;9 10.1186/s13195-017-0303-5 PubMed DOI PMC
Tichý A, Novotná E, Durisová K, Salovská B, Sedlaríková R, Pejchal J, et al. Radio-sensitization of human leukaemic molt-4 cells by DNA-dependent protein kinase inhibitor, NU7026. Acta Medica (Hradec Kralove). 2012;55: 66–73. PubMed
Kozlov SV, Graham ME, Jakob B, Tobias F, Kijas AW, Tanuji M, et al. Autophosphorylation and ATM activation: additional sites add to the complexity. J Biol Chem. 2011;286: 9107–9119. 10.1074/jbc.M110.204065 PubMed DOI PMC
Gabant G, Lorphelin A, Nozerand N, Marchetti C, Bellanger L, Dedieu A, et al. Autophosphorylated Residues Involved in the Regulation of Human Chk2 In Vitro. Journal of Molecular Biology. 2008;380: 489–503. 10.1016/j.jmb.2008.04.053 PubMed DOI
Guo X, Ward MD, Tiedebohl JB, Oden YM, Nyalwidhe JO, Semmes OJ. Interdependent Phosphorylation within the Kinase Domain T-loop Regulates CHK2 Activity. J Biol Chem. 2010;285: 33348–33357. 10.1074/jbc.M110.149609 PubMed DOI PMC
Mareková M, Vávrová J, Vokurková D. Monitoring of premitotic and postmitotic apoptosis in gamma-irradiated HL-60 cells by the mitochondrial membrane protein-specific monoclonal antibody APO2.7. Gen Physiol Biophys. 2003;22: 191–200. PubMed
Vávrová J, Zárybnická L, Lukášová E, Řezáčová M, Novotná E, Sinkorová Z, et al. Inhibition of ATR kinase with the selective inhibitor VE-821 results in radiosensitization of cells of promyelocytic leukaemia (HL-60). Radiat Environ Biophys. 2013;52: 471–479. 10.1007/s00411-013-0486-5 PubMed DOI
Wu J, Feng Y, Xie D, Li X, Xiao W, Tao D, et al. Unscheduled CDK1 activity in G1 phase of the cell cycle triggers apoptosis in X-irradiated lymphocytic leukemia cells. Cell Mol Life Sci. 2006;63: 2538–2545. 10.1007/s00018-006-6138-z PubMed DOI PMC
Shimobayashi M, Hall MN. Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol. 2014;15: 155–162. 10.1038/nrm3757 PubMed DOI
Ondrej M, Cechakova L, Durisova K, Pejchal J, Tichy A. To live or let die: Unclear task of autophagy in the radiosensitization battle. Radiotherapy and Oncology. 2016; 10.1016/j.radonc.2016.02.028 PubMed DOI
Fingar DC, Blenis J. Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene. 2004;23: 3151–3171. 10.1038/sj.onc.1207542 PubMed DOI
Dillon LM, Miller TW. Therapeutic targeting of cancers with loss of PTEN function. Current drug targets. 2014;15: 65 PubMed PMC
Meric-Bernstam F, Akcakanat A, Chen H, Do K-A, Sangai T, Adkins F, et al. PIK3CA/PTEN Mutations and Akt Activation As Markers of Sensitivity to Allosteric mTOR Inhibitors. Clin Cancer Res. 2012;18: 1777–1789. 10.1158/1078-0432.CCR-11-2123 PubMed DOI PMC
Fingar DC, Richardson CJ, Tee AR, Cheatham L, Tsou C, Blenis J. mTOR Controls Cell Cycle Progression through Its Cell Growth Effectors S6K1 and 4E-BP1/Eukaryotic Translation Initiation Factor 4E. Molecular and Cellular Biology. 2004;24: 200 10.1128/MCB.24.1.200-216.2004 PubMed DOI PMC
Holz MK, Ballif BA, Gygi SP, Blenis J. mTOR and S6K1 Mediate Assembly of the Translation Preinitiation Complex through Dynamic Protein Interchange and Ordered Phosphorylation Events. Cell. 2005;123: 569–580. 10.1016/j.cell.2005.10.024 PubMed DOI
Roux PP, Shahbazian D, Vu H, Holz MK, Cohen MS, Taunton J, et al. RAS/ERK Signaling Promotes Site-specific Ribosomal Protein S6 Phosphorylation via RSK and Stimulates Cap-dependent Translation. J Biol Chem. 2007;282: 14056–14064. 10.1074/jbc.M700906200 PubMed DOI PMC
Ben-Sahra I, Howell JJ, Asara JM, Manning BD. Stimulation of de Novo Pyrimidine Synthesis by Growth Signaling Through mTOR and S6K1. Science. 2013;339: 1323–1328. 10.1126/science.1228792 PubMed DOI PMC
Blethrow JD, Glavy JS, Morgan DO, Shokat KM. Covalent capture of kinase-specific phosphopeptides reveals Cdk1-cyclin B substrates. Proc Natl Acad Sci U S A. 2008;105: 1442–1447. 10.1073/pnas.0708966105 PubMed DOI PMC
Chi Y, Welcker M, Hizli AA, Posakony JJ, Aebersold R, Clurman BE. Identification of CDK2 substrates in human cell lysates. Genome Biol. 2008;9: R149 10.1186/gb-2008-9-10-r149 PubMed DOI PMC
Kwon Y-K, Ha IJ, Bae H-W, Jang WG, Yun HJ, Kim SR, et al. Dose-Dependent Metabolic Alterations in Human Cells Exposed to Gamma Irradiation. PLoS One. 2014;9 10.1371/journal.pone.0113573 PubMed DOI PMC
Patterson AD, Li H, Eichler GS, Krausz KW, Weinstein JN, Fornace AJ, et al. UPLC-ESI-TOFMS-Based Metabolomics and Gene Expression Dynamics Inspector Self-Organizing Metabolomic Maps as Tools for Understanding the Cellular Response to Ionizing Radiation. Anal Chem. 2008;80: 665–674. 10.1021/ac701807v PubMed DOI PMC
Tsuyama N, Mizuno H, Katafuchi A, Abe Y, Kurosu Y, Yoshida M, et al. Identification of low-dose responsive metabolites in X-irradiated human B lymphoblastoid cells and fibroblasts. J Radiat Res. 2015;56: 46–58. 10.1093/jrr/rru078 PubMed DOI PMC
Azzam EI, Jay-Gerin J-P, Pain D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 2012;327: 48–60. 10.1016/j.canlet.2011.12.012 PubMed DOI PMC
Lee R, Britz-McKibbin P. Differential rates of glutathione oxidation for assessment of cellular redox status and antioxidant capacity by capillary electrophoresis-mass spectrometry: an elusive biomarker of oxidative stress. Anal Chem. 2009;81: 7047–7056. 10.1021/ac901174g PubMed DOI
Yardim-Akaydin S, Sepici A, Özkan Y, Torun M, Şimşek B, Sepici V. Oxidation of Uric Acid in Rheumatoid Arthritis: Is Allantoin a Marker of Oxidative Stress? Free Radical Research. 2004;38: 623–628. 10.1080/10715760410001694044 PubMed DOI
Paglin S, Lee N-Y, Nakar C, Fitzgerald M, Plotkin J, Deuel B, et al. Rapamycin-Sensitive Pathway Regulates Mitochondrial Membrane Potential, Autophagy, and Survival in Irradiated MCF-7 Cells. Cancer Res. 2005;65: 11061–11070. 10.1158/0008-5472.CAN-05-1083 PubMed DOI
Park JM, Tougeron D, Huang S, Okamoto K, Sinicrope FA. Beclin 1 and UVRAG confer protection from radiation-induced DNA damage and maintain centrosome stability in colorectal cancer cells. PLoS ONE. 2014;9: e100819 10.1371/journal.pone.0100819 PubMed DOI PMC
Cheema AK, Pathak R, Zandkarimi F, Kaur P, Alkhalil L, Singh R, et al. Liver Metabolomics Reveals Increased Oxidative Stress and Fibrogenic Potential in Gfrp Transgenic Mice in Response to Ionizing Radiation. J Proteome Res. 2014;13: 3065–3074. 10.1021/pr500278t PubMed DOI PMC
Dokmeci D, Akpolat M, Aydogdu N, Uzal C, Doganay L, Turan FN. The Protective Effect of L-carnitine on Ionizing Radiation-induced Free Oxygen Radicals. Scandinavian Journal of Laboratory Animal Sciences. 2006;33: 75–83.
Najdekr L, Gardlo A, Mádrová L, Friedecký D, Janečková H, Correa ES, et al. Oxidized phosphatidylcholines suggest oxidative stress in patients with medium-chain acyl-CoA dehydrogenase deficiency. Talanta. 2015;139: 62–66. 10.1016/j.talanta.2015.02.041 PubMed DOI
Goodwin PM, Lewis PJ, Davies MI, Skidmore CJ, Shall S. The effect of gamma radiation and neocarzinostatin on NAD and ATP levels in mouse leukaemia cells. Biochim Biophys Acta. 1978;543: 576–582. PubMed
Khan AR, Rana P, Devi MM, Chaturvedi S, Javed S, Tripathi RP, et al. Nuclear magnetic resonance spectroscopy-based metabonomic investigation of biochemical effects in serum of γ-irradiated mice. Int J Radiat Biol. 2011;87: 91–97. 10.3109/09553002.2010.518211 PubMed DOI
Yugi K, Kubota H, Toyoshima Y, Noguchi R, Kawata K, Komori Y, et al. Reconstruction of Insulin Signal Flow from Phosphoproteome and Metabolome Data. Cell Reports. 2014;8: 1171–1183. 10.1016/j.celrep.2014.07.021 PubMed DOI
Mathews CK. Deoxyribonucleotide metabolism, mutagenesis and cancer. Nat Rev Cancer. 2015;15: 528–539. 10.1038/nrc3981 PubMed DOI
Beyaert M, Starczewska E, Van Den Neste E, Bontemps F. A crucial role for ATR in the regulation of deoxycytidine kinase activity. Biochem Pharmacol. 2016;100: 40–50. 10.1016/j.bcp.2015.11.022 PubMed DOI
Arnér ES, Eriksson S. Mammalian deoxyribonucleoside kinases. Pharmacol Ther. 1995;67: 155–186. PubMed
Staub M, Eriksson S. The Role of Deoxycytidine Kinase in DNA Synthesis and Nucleoside Analog Activation In: Peters GJ, editor. Deoxynucleoside Analogs In Cancer Therapy. Humana Press; 2006. pp. 29–52. 10.1007/978-1-59745-148-2_2 DOI