Twenty known Amaryllidaceae alkaloids of various structural types, and one undescribed alkaloid of narcikachnine-type, named narcieliine (3), have been isolated from fresh bulbs of Zephyranthes citrina. The chemical structures of the isolated alkaloids were elucidated by a combination of MS, HRMS, 1D and 2D NMR, and CD spectroscopic techniques, and by comparison with literature data. The absolute configuration of narcieliine (3) has also been determined. Compounds isolated in a sufficient quantity were evaluated for their in vitro acetylcholinesterase (AChE; E.C. 3.1.1.7), butyrylcholinesterase (BuChE; E.C. 3.1.1.8), and prolyl oligopeptidase (POP; E.C. 3.4.21.26) inhibition activities. Significant human AChE/BuChE (hAChE/hBuChE) inhibitory activity was demonstrated by the newly described alkaloid narcieliine (3), with IC50 values of 18.7 ± 2.3 µM and 1.34 ± 0.31 µM, respectively. This compound is also predicted to cross the blood-brain barrier (BBB) through passive diffusion. The in vitro data were further supported by in silico studies of 3 in the active site of hAChE/hBuChE.
- MeSH
- acetylcholinesterasa chemie metabolismus MeSH
- alkaloidy chemie izolace a purifikace farmakologie terapeutické užití MeSH
- Alzheimerova nemoc farmakoterapie patologie MeSH
- Amaryllidaceae chemie metabolismus MeSH
- butyrylcholinesterasa chemie metabolismus MeSH
- cholinesterasové inhibitory chemie metabolismus farmakologie terapeutické užití MeSH
- hematoencefalická bariéra účinky léků metabolismus MeSH
- katalytická doména MeSH
- kinetika MeSH
- lidé MeSH
- magnetická rezonanční spektroskopie MeSH
- molekulární konformace MeSH
- simulace molekulového dockingu MeSH
- vazebná místa MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Alzheimer's disease (AD) is a progressive age-related neurodegenerative disease recognized as the most common form of dementia among elderly people. Due to the fact that the exact pathogenesis of AD still remains to be fully elucidated, the treatment is only symptomatic and available drugs are not able to modify AD progression. Considering the increase in life expectancy worldwide, AD rates are predicted to increase enormously, and thus the search for new AD drugs is urgently needed. Due to their complex nitrogen-containing structures, alkaloids are considered to be promising candidates for use in the treatment of AD. Since the introduction of galanthamine as an antidementia drug in 2001, Amaryllidaceae alkaloids (AAs) and further isoquinoline alkaloids (IAs) have been one of the most studied groups of alkaloids. In the last few years, several compounds of new structure types have been isolated and evaluated for their biological activity connected with AD. The present review aims to comprehensively summarize recent progress on AAs and IAs since 2010 up to June 2021 as potential drugs for the treatment of AD.
Pancracine, a montanine-type Amaryllidaceae alkaloid (AA), is one of the most potent compounds among natural isoquinolines. In previous studies, pancracine exhibited cytotoxic activity against diverse human cancer cell lines in vitro. However, further insight into the molecular mechanisms that underlie the cytotoxic effect of pancracine have not been reported and remain unknown. To fill this void, the cell proliferation and viability of cancer cells was explored using the Trypan Blue assay or by using the xCELLigence system. The impact on the cell cycle was determined by flow cytometry. Apoptosis was evaluated by Annexin V/PI and by quantifying the activity of caspases (-3/7, -8, and -9). Proteins triggering growth arrest or apoptosis were detected by Western blotting. Pancracine has strong antiproliferative activity on A549 cells, lasting up to 96 h, and antiproliferative and cytotoxic effects on MOLT-4 cells. The apoptosis-inducing activity of pancracine in MOLT-4 cells was evidenced by the significantly higher activity of caspases. This was transmitted through the upregulation of p53 phosphorylated on Ser392, p38 MAPK phosphorylated on Thr180/Tyr182, and upregulation of p27. The pancracine treatment negatively altered the proliferation of A549 cells as a consequence of an increase in G1-phase accumulation, associated with the downregulation of Rb phosphorylated on Ser807/811 and with the concomitant upregulation of p27 and downregulation of Akt phosphorylated on Thr308. This was the first study to glean a deeper mechanistic understanding of pancracine activity in vitro. Perturbation of the cell cycle and induction of apoptotic cell death were considered key mechanisms of pancracine action.
- MeSH
- adenokarcinom plic patologie MeSH
- alkaloidy izolace a purifikace farmakologie MeSH
- Amaryllidaceae chemie MeSH
- antitumorózní látky fytogenní izolace a purifikace farmakologie MeSH
- apoptóza účinky léků MeSH
- buňky A549 MeSH
- buňky Hep G2 MeSH
- heterocyklické sloučeniny tetra- a více cyklické izolace a purifikace farmakologie MeSH
- leukemie patologie MeSH
- lidé MeSH
- MFC-7 buňky MeSH
- nádorové buněčné linie MeSH
- nádory plic patologie MeSH
- proliferace buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Lycoris Herbert, family Amaryllidaceae, is a small genus of about 20 species that are native to the warm temperate woodlands of eastern Asia, as in China, Korea, Japan, Taiwan, and the Himalayas. For many years, species of Lycoris have been subjected to extensive phytochemical and pharmacological investigations, resulting in either the isolation or identification of more than 110 Amaryllidaceae alkaloids belonging to different structural types. Amaryllidaceae alkaloids are frequently studied for their interesting biological properties, including antiviral, antibacterial, antitumor, antifungal, antimalarial, analgesic, cytotoxic, and cholinesterase inhibition activities. The present review aims to summarize comprehensively the research that has been reported on the phytochemistry and pharmacology of the genus Lycoris.
- MeSH
- alkaloidy amarylkovitých chemie terapeutické užití MeSH
- Amaryllidaceae chemie MeSH
- antimalarika chemie terapeutické užití MeSH
- fytonutrienty terapeutické užití MeSH
- kořeny rostlin chemie MeSH
- lidé MeSH
- Lycoris chemie MeSH
- rostlinné extrakty chemie terapeutické užití MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Geografické názvy
- Čína MeSH
A novel series of aromatic esters (1a-1m) related to the Amaryllidaceae alkaloid (AA) haemanthamine were designed, synthesized and tested in vitro with particular emphasis on the treatment of neurodegenerative diseases. Some of the synthesized compounds revealed promising acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory profile. Significant human AChE (hAChE) inhibition was demonstrated by 11-O-(3-nitrobenzoyl)haemanthamine (1j) with IC50value of 4.0 ± 0.3 µM. The strongest human BuChE (hBuChE) inhibition generated 1-O-(2-methoxybenzoyl)haemanthamine (1g) with IC50 value 3.3 ± 0.4 µM. Moreover, 11-O-(2-chlorbenzoyl)haemanthamine (1m) was able to inhibit both enzymes in dose-dependent manner. The mode of hAChE and hBuChE inhibition was minutely inspected using enzyme kinetic analysis in tandem with in silico experiments, the latter elucidating crucial interaction in 1j-, 1m-hAChE and 1g-, 1m-hBuChE complexes. The blood-brain barrier (BBB) permeability was investigated applying the parallel artificial membrane permeation assay (PAMPA) to predict the CNS availability of the compounds.
- MeSH
- acetylcholinesterasa chemie metabolismus MeSH
- alkaloidy amarylkovitých chemie metabolismus terapeutické užití MeSH
- Alzheimerova nemoc farmakoterapie patologie MeSH
- Amaryllidaceae chemie metabolismus MeSH
- butyrylcholinesterasa chemie metabolismus MeSH
- cholinesterasové inhibitory chemická syntéza metabolismus terapeutické užití MeSH
- estery chemie MeSH
- fenantridiny chemie metabolismus terapeutické užití MeSH
- hematoencefalická bariéra účinky léků metabolismus MeSH
- kinetika MeSH
- lidé MeSH
- simulace molekulového dockingu MeSH
- vazebná místa MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Plants of the Amaryllidaceae family are promising therapeutic tools for human diseases and have been used as alternative medicines. The specific secondary metabolites of this plant family, called Amaryllidaceae alkaloids (AA), have attracted considerable attention due to their interesting pharmacological activities. One of them, galantamine, is already used in the therapy of Alzheimer's disease as a long acting, selective, reversible inhibitor of acetylcholinesterase. One group of AA is the montanine-type, such as montanine, pancracine and others, which share a 5,11-methanomorphanthridine core. So far, only 14 montanine-type alkaloids have been isolated. Compared with other structural-types of AA, montanine-type alkaloids are predominantly present in plants in low concentrations, but some of them display promising biological properties, especially in vitro cytotoxic activity against different cancerous cell lines. The present review aims to summarize comprehensively the research that has been published on the Amaryllidaceae alkaloids of montanine-type.
- MeSH
- alkaloidy amarylkovitých chemie izolace a purifikace farmakologie MeSH
- Amaryllidaceae chemie metabolismus MeSH
- antiprotozoální látky chemie izolace a purifikace farmakologie MeSH
- antitumorózní látky fytogenní chemie izolace a purifikace farmakologie MeSH
- cholinesterasové inhibitory chemie izolace a purifikace farmakologie MeSH
- fenantridiny chemie izolace a purifikace farmakologie MeSH
- galantamin chemie izolace a purifikace farmakologie MeSH
- heterocyklické sloučeniny tetra- a více cyklické chemie izolace a purifikace farmakologie MeSH
- inhibiční koncentrace 50 MeSH
- isochinoliny chemie izolace a purifikace farmakologie MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nootropní látky chemie izolace a purifikace farmakologie MeSH
- rostlinné extrakty chemie MeSH
- sekundární metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Nerine Herbert, family Amaryllidaceae, is a genus of about 30 species that are native to South Africa, Botswana, Lesotho, Namibia, and Swatini (formerly known as Swaziland). Species of Nerine are autumn-flowering, perennial, bulbous plants, which inhabit areas with summer rainfall and cool, dry winters. Most Nerine species have been cultivated for their elegant flowers, presenting a source of innumerable horticultural hybrids. For many years, species of Nerine have been subjected to extensive phytochemical and pharmacological investigations, which resulted in either the isolation or identification of more than fifty Amaryllidaceae alkaloids belonging to different structural types. Amaryllidaceae alkaloids are frequently studied for their interesting biological properties, including antiviral, antibacterial, antitumor, antifungal, antimalarial, analgesic, cytotoxic, and cholinesterase inhibition activities. The present review aims to summarize comprehensively the research that has been reported on the phytochemistry and pharmacology of the genus Nerine.
Twelve derivatives 1a-1m of the β-crinane-type alkaloid haemanthamine were developed. All the semisynthetic derivatives were studied for their inhibitory potential against both acetylcholinesterase and butyrylcholinesterase. In addition, glycogen synthase kinase 3β (GSK-3β) inhibition potency was evaluated in the active derivatives. In order to reveal the availability of the drugs to the CNS, we elucidated the potential of selected derivatives to penetrate through the blood-brain barrier (BBB). Two compounds, namely 11-O-(2-methylbenzoyl)-haemanthamine (1j) and 11-O-(4-nitrobenzoyl)-haemanthamine (1m), revealed the most intriguing profile, both being acetylcholinesterase (hAChE) inhibitors on a micromolar scale, with GSK-3β inhibition properties, and predicted permeation through the BBB. In vitro data were further corroborated by detailed inspection of the compounds' plausible binding modes in the active sites of hAChE and hBuChE, which led us to provide the structural determinants responsible for the activity towards these enzymes.
- MeSH
- alkaloidy amarylkovitých chemie metabolismus MeSH
- Alzheimerova nemoc metabolismus MeSH
- Amaryllidaceae chemie metabolismus MeSH
- fenantridiny chemie metabolismus MeSH
- GSK3B metabolismus MeSH
- hematoencefalická bariéra metabolismus MeSH
- lidé MeSH
- ligandy MeSH
- molekulární konformace MeSH
- molekulární modely MeSH
- molekulární struktura MeSH
- permeabilita MeSH
- simulace molekulového dockingu MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
In this study, an extract from the bulbs of Cyrtanthus contractus showed strong anti-inflammatory activity in vitro. The extract was partially separated into 14 fractions and analyzed by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry metabolomics, and the correlation coefficients were calculated between biological activities and metabolite levels. As a result, the top-scoring metabolite narciclasine (1) is proposed as the active principle of C. contractus. This was confirmed by comparing the biological effect of crude extract with that of an authentic standard.
- MeSH
- alkaloidy amarylkovitých chemie farmakologie MeSH
- Amaryllidaceae chemie MeSH
- antiflogistika nesteroidní chemie farmakologie MeSH
- buněčná adheze účinky léků MeSH
- buněčné linie MeSH
- endoteliální buňky pupečníkové žíly (lidské) účinky léků MeSH
- fenantridiny chemie farmakologie MeSH
- hmotnostní spektrometrie MeSH
- kořeny rostlin chemie MeSH
- lidé MeSH
- metabolomika * MeSH
- mezibuněčná adhezivní molekula-1 účinky léků metabolismus MeSH
- rostlinné extrakty chemie farmakologie MeSH
- viabilita buněk účinky léků MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Scadoxus puniceus (Amaryllidaceae), a medicinal plant of high value in South Africa, is used as a component of a traditional herbal tonic prescribed to treat several ailments. Ultra-high performance liquid chromatography-tandem mass spectrometry quantified the phenolic compounds in different organs of S. puniceus. Gravity column chromatography was used to separate fractions and active compounds. The structure of these compounds was determined using 1D and 2D nuclear magnetic resonance and mass spectroscopic techniques. A microplate technique was used to determine the acetylcholinesterase inhibitory activity of the pure compounds. Metabolite profiling revealed a greater profusion of hydroxycinnamic acids (69.5%), as opposed to hydroxybenzoic acids (30.5%). Chlorogenic acid was the most abundant (49.6% of hydroxycinnamic acids) compound. In addition to chlorogenic acid, the study is the first to report the presence of sinapic, gallic, and m-hydroxybenzoic acids in the Amaryllidaceae. Chromatographic separation of S. puniceus led to the isolation of haemanthamine (1), haemanthidine (2), and a rare chlorinated amide, metolachlor (3), the natural occurrence of which is described for the first time. Haemanthamine, haemanthidine, and metolachlor displayed strong acetylcholinesterase inhibitory activity (IC50 ; 23.1, 23.7, and 11.5 μM, respectively). These results substantiate the frequent use of S. puniceus as a medicinal plant and hold much promise for further pharmaceutical development.
- MeSH
- acetamidy chemie izolace a purifikace metabolismus farmakologie MeSH
- alkaloidy amarylkovitých chemie izolace a purifikace metabolismus farmakologie MeSH
- Amaryllidaceae chemie metabolismus MeSH
- cholinesterasové inhibitory chemie izolace a purifikace farmakologie MeSH
- fenantridiny chemie izolace a purifikace metabolismus farmakologie MeSH
- kyseliny kumarové chemie izolace a purifikace metabolismus farmakologie MeSH
- léčivé rostliny chemie MeSH
- rostlinné extrakty chemie izolace a purifikace metabolismus farmakologie MeSH
- tandemová hmotnostní spektrometrie MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Jihoafrická republika MeSH