Semisynthetic Derivatives of Selected Amaryllidaceae Alkaloids as a New Class of Antimycobacterial Agents
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SVV UK 260 548; SVV 260 547
Charles University
CZ.02.1.01/0.0/0.0/18_069/0010046
Ministry of Education Youth and Sports
PubMed
34641567
PubMed Central
PMC8512562
DOI
10.3390/molecules26196023
PII: molecules26196023
Knihovny.cz E-zdroje
- Klíčová slova
- 3-O-methylpancracine, Amaryllidaceae, analogues, antimycobacterial activity, cytotoxicity, galanthamine, tuberculosis,
- MeSH
- alkaloidy amarylkovitých škodlivé účinky chemická syntéza farmakologie MeSH
- antibakteriální látky škodlivé účinky chemická syntéza farmakologie MeSH
- buňky Hep G2 MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- Mycobacterium tuberculosis účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- alkaloidy amarylkovitých MeSH
- antibakteriální látky MeSH
The search for novel antimycobacterial drugs is a matter of urgency, since tuberculosis is still one of the top ten causes of death from a single infectious agent, killing more than 1.4 million people worldwide each year. Nine Amaryllidaceae alkaloids (AAs) of various structural types have been screened for their antimycobacterial activity. Unfortunately, all were considered inactive, and thus a pilot series of aromatic esters of galanthamine, 3-O-methylpancracine, vittatine and maritidine were synthesized to increase biological activity. The semisynthetic derivatives of AAs were screened for their in vitro antimycobacterial activity against Mycobacterium tuberculosis H37Ra and two other mycobacterial strains (M. aurum, M. smegmatis) using a modified Microplate Alamar Blue Assay. The most active compounds were also studied for their in vitro hepatotoxicity on the hepatocellular carcinoma cell line HepG2. In general, the derivatization of the original AAs was associated with a significant increase in antimycobacterial activity. Several pilot derivatives were identified as compounds with micromolar MICs against M. tuberculosis H37Ra. Two derivatives of galanthamine, 1i and 1r, were selected for further structure optimalization to increase the selectivity index.
Zobrazit více v PubMed
Kanabalan R.D., Lee L.J., Lee T.Y., Chong P.P., Hassan L., Ismail R., Chin V.K. Human tuberculosis and Mycobacterium tuberculosis complex: A review on genetic diversity, pathogenesis and omics approaches in host biomarkers discovery. Microbiol. Res. 2021;246:126674. doi: 10.1016/j.micres.2020.126674. PubMed DOI
Tiberi S., Muñoz-Torrico M., Duarte R., Dalcolmo M., D’Ambrosio L., Migliori G.B. New drugs and perspectives for new anti-tuberculosis regimens. Pulmonology. 2018;24:86–98. doi: 10.1016/j.rppnen.2017.10.009. PubMed DOI
Koul A., Arnoult E., Lounis N., Guillemont J., Andries K. The challenge of new drug discovery for tuberculosis. Nature. 2011;469:483–490. doi: 10.1038/nature09657. PubMed DOI
Newman D.J., Cragg G.M. Natural Products as Sources of New Drugs from 1981 to 2014. J. Nat. Prod. 2016;79:629–661. doi: 10.1021/acs.jnatprod.5b01055. PubMed DOI
Patridge E., Gareiss P., Kinch M.S., Hoyer D. An analysis of FDA-approved drugs: Natural products and their derivatives. Drug Discov. Today. 2016;21:204–207. doi: 10.1016/j.drudis.2015.01.009. PubMed DOI
Okunade A.L., Elvin-Lewis M.P., Lewis W.H. Natural antimycobacterial metabolites: Current status. Phytochemistry. 2004;65:1017–1032. doi: 10.1016/j.phytochem.2004.02.013. PubMed DOI
Copp B.R., Pearce A.N. Natural product growth inhibitors of Mycobacterium tuberculosis. Nat. Prod. Rep. 2007;24:278–297. doi: 10.1039/B513520F. PubMed DOI
Kishore N., Mishra B.B., Tripathi V., Tiwari V.K. Alkaloids as potential anti-tubercular agents. Fitoterapia. 2009;80:149–163. doi: 10.1016/j.fitote.2009.01.002. PubMed DOI
Mishra S.K., Tripathi G., Kishore N., Singh R.K., Singh A., Tiwari V.K. Drug development against tuberculosis: Impact of alkaloids. Eur. J. Med. Chem. 2017;137:504–544. doi: 10.1016/j.ejmech.2017.06.005. PubMed DOI
Jin Z., Yao G. Amaryllidaceae and Sceletium alkaloids. Nat. Prod. Rep. 2019;36:1462–1488. doi: 10.1039/C8NP00055G. PubMed DOI
Nair J.J., Wilhelm A., Bonnet S.L., van Staden J. Antibacterial constituents of the plant family Amaryllidaceae. Bioorg. Med. Chem. Lett. 2017;27:4943–4951. doi: 10.1016/j.bmcl.2017.09.052. PubMed DOI
Al Mamun A., Maříková J., Hulcová D., Janoušek J., Šafratová M., Nováková L., Kučera T., Hrabinová M., Kuneš J., Korábečný J., et al. Amaryllidaceae Alkaloids of Belladine-Type from Narcissus pseudonarcissus cv. Carlton as New Selective Inhibitors of Butyrylcholinesterase. Biomolecules. 2020;10:800. doi: 10.3390/biom10050800. PubMed DOI PMC
Kornienko A., Evidente A. Chemistry, Biology, and Medicinal Potential of Narciclasine and its Congeners. Chem. Rev. 2008;108:1982–2014. doi: 10.1021/cr078198u. PubMed DOI PMC
Heinrich M., Lee Teoh H. Galanthamine from snowdrop--the development of a modern drug against Alzheimer’s disease from local Caucasian knowledge. J. Ethnopharmacol. 2004;92:147–162. doi: 10.1016/j.jep.2004.02.012. PubMed DOI
Cahlíková L., Kawano I., Řezáčová M., Blunden G., Hulcová D., Havelek R. The Amaryllidaceae alkaloids haemanthamine, haemanthidine and their semisynthetic derivatives as potential drugs. Phytochem. Rev. 2021;20:303–323. doi: 10.1007/s11101-020-09675-8. DOI
McLachlan A., Kekre N., McNulty J., Pandey S. Pancratistatin: A natural anti-cancer compound that targets mitochondria specifically in cancer cells to induce apoptosis. Apoptosis. 2005;10:619–630. doi: 10.1007/s10495-005-1896-x. PubMed DOI
Griffin C., Karnik A., McNulty J., Pandey S. Pancratistatin selectively targets cancer cell mitochondria and reduces growth of human colon tumor xenografts. Mol. Cancer Ther. 2011;10:57–68. doi: 10.1158/1535-7163.MCT-10-0735. PubMed DOI
Roy M., Liang L., Xiao X., Feng P., Ye M., Liu J. Lycorine: A prospective natural lead for anticancer drug discovery. Biomed. Pharmacother. 2018;107:615–624. doi: 10.1016/j.biopha.2018.07.147. PubMed DOI PMC
Peřinová R., Maafi N., Korábečný J., Kohelová E., De Simone A., Mamun A.A., Hulcová D., Marková J., Kučera T., Jun D., et al. Functionalized aromatic esters of the Amaryllidaceae alkaloid haemanthamine and their in vitro and in silico biological activity connected to Alzheimer’s disease. Bioorg. Chem. 2020;100:103928. doi: 10.1016/j.bioorg.2020.103928. PubMed DOI
Al Shammari L., Hulcová D., Maříková J., Kučera T., Šafratová M., Nováková L., Schmidt M., Pulkrábková L., Janoušek J., Soukup O., et al. Amaryllidaceae alkaloids from Hippeastrum X hybridum cv. Ferrari, and preparation of vittatine derivatives as potential ligands for Alzheimer´s disease. South Afr. J. Bot. 2021;136:137–146. doi: 10.1016/j.sajb.2020.06.024. DOI
Maříková J., Ritomská A., Korábečný J., Peřinová R., Al Mamun A., Kučera T., Kohelová E., Hulcová D., Kobrlová T., Kuneš J., et al. Aromatic Esters of the Crinane Amaryllidaceae Alkaloid Ambelline as Selective Inhibitors of Butyrylcholinesterase. J. Nat. Prod. 2020;83:1359–1367. doi: 10.1021/acs.jnatprod.9b00561. PubMed DOI
Koutová D., Maafi N., Havelek R., Opletal L., Blunden G., Řezáčová M., Cahlíková L. Chemical and Biological Aspects of Montanine-Type Alkaloids Isolated from Plants of the Amaryllidaceae Family. Molecules. 2020;25:2337. doi: 10.3390/molecules25102337. PubMed DOI PMC
Govindaraju K., Ingels A., Hasan M.N., Sun D., Mathieu V., Masi M., Evidente A., Kornienko A. Synthetic analogues of the montanine-type alkaloids with activity against apoptosis-resistant cancer cells. Bioorg. Med. Chem. Lett. 2018;28:589–593. doi: 10.1016/j.bmcl.2018.01.041. PubMed DOI PMC
Safratova M., Hostalkova A., Hulcova D., Breiterova K., Hrabcova V., Machado M., Fontinha D., Prudencio M., Kunes J., Chlebek J., et al. Alkaloids from Narcissus poeticus cv. Pink Parasol of various structural types and their biological activity. Arch. Pharmacal Res. 2018;41:208–218. doi: 10.1007/s12272-017-1000-4. PubMed DOI
Phelan J., Maitra A., McNerney R., Nair M., Gupta A., Coll F., Pain A., Bhakta S., Clark T.G. The draft genome of Mycobacterium aurum, a potential model organism for investigating drugs against Mycobacterium tuberculosis and Mycobacterium leprae. Int. J. Mycobacteriology. 2015;4:207–216. doi: 10.1016/j.ijmyco.2015.05.001. PubMed DOI
Piccaro G., Poce G., Biava M., Giannoni F., Fattorini L. Activity of lipophilic and hydrophilic drugs against dormant and replicating Mycobacterium tuberculosis. J. Antibiot. 2015;68:711–714. doi: 10.1038/ja.2015.52. PubMed DOI
Senousy B.E., Belal S.I., Draganov P.V. Hepatotoxic effects of therapies for tuberculosis. Nat. Rev. Gastroenterol. Hepatol. 2010;7:543–556. doi: 10.1038/nrgastro.2010.134. PubMed DOI
Kohelová E., Maříková J., Korábečný J., Hulcová D., Kučera T., Jun D., Chlebek J., Jenčo J., Šafratová M., Hrabinová M., et al. Alkaloids of Zephyranthes citrina (Amaryllidaceae) and their implication to Alzheimer’s disease: Isolation, structural elucidation and biological activity. Bioorganic Chem. 2021;107:104567. doi: 10.1016/j.bioorg.2020.104567. PubMed DOI
Kohelová E., Peřinová R., Maafi N., Korábečný J., Hulcová D., Maříková J., Kučera T., Martínez González L., Hrabinova M., Vorčáková K., et al. Derivatives of the β-Crinane Amaryllidaceae Alkaloid Haemanthamine as Multi-Target Directed Ligands for Alzheimer’s Disease. Molecules. 2019;24:1307. doi: 10.3390/molecules24071307. PubMed DOI PMC