Alkaloids of Dicranostigma franchetianum (Papaveraceae) and Berberine Derivatives as a New Class of Antimycobacterial Agents
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35740968
PubMed Central
PMC9221290
DOI
10.3390/biom12060844
PII: biom12060844
Knihovny.cz E-zdroje
- Klíčová slova
- Dicranostigma franchetianum, Papaveraceae, antimycobacterial activity, berberine, cytotoxicity, isoquinoline alkaloids,
- MeSH
- antibakteriální látky farmakologie MeSH
- berberin * farmakologie MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- Mycobacterium tuberculosis * MeSH
- Papaveraceae * MeSH
- tuberkulóza * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
- berberin * MeSH
Tuberculosis (TB) is a widespread infectious disease caused by Mycobacterium tuberculosis. The increasing incidence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains has created a need for new antiTB agents with new chemical scaffolds to combat the disease. Thus, the key question is: how to search for new antiTB and where to look for them? One of the possibilities is to search among natural products (NPs). In order to search for new antiTB drugs, the detailed phytochemical study of the whole Dicranostigma franchetianum plant was performed isolating wide spectrum of isoquinoline alkaloids (IAs). The chemical structures of the isolated alkaloids were determined by a combination of MS, HRMS, 1D, and 2D NMR techniques, and by comparison with literature data. Alkaloids were screened against Mycobacterium tuberculosis H37Ra and four other mycobacterial strains (M. aurum, M. avium, M. kansasii, and M. smegmatis). Alkaloids 3 and 5 showed moderate antimycobacterial activity against all tested strains (MICs 15.625-31.25 µg/mL). Furthermore, ten semisynthetic berberine (16a-16k) derivatives were developed and tested for antimycobacterial activity. In general, the derivatization of berberine was connected with a significant increase in antimycobacterial activity against all tested strains (MICs 0.39-7.81 μg/mL). Two derivatives (16e, 16k) were identified as compounds with micromolar MICs against M. tuberculosis H37Ra (MIC 2.96 and 2.78 µM). All compounds were also evaluated for their in vitro hepatotoxicity on a hepatocellular carcinoma cell line (HepG2), exerting lower cytotoxicity profile than their MIC values, thereby potentially reaching an effective concentration without revealing toxic side effects.
Zobrazit více v PubMed
Dang Y., Gong H.F., Liu J.X., Yu S.J. Alkaloid from Dicranostigma leptopodum (Maxim) Fedde. Chin. Chem. Lett. 2009;20:1218–1220. doi: 10.1016/j.cclet.2009.05.020. DOI
Liu D.H., Zhang T.C., Liu J.X., Di D.L., Dang Y. Chemical Constituents of Alkaloids from Dicranostigma leptopodum. Chin. Tradit. Herb Drugs. 2011;42:1505–1509.
Qiang Z. Insights into Chemical Constituents of Alkaloids from Wild Medicinal Plant Dicranostigma leptodum (Maxim.) Fedde. J. Phys. Conf. Ser. 2019;1176:042056. doi: 10.1088/1742-6596/1176/4/042056. DOI
Zhang W.-H., Lv M.-H., Jun H., Wang Q.-P., Wang Q. Dicranostigma leptopodum (Maxim.) Fedde induced apoptosis in SMMC-7721 human hepatoma cells and inhibited tumor growth in mice. Nat. Sci. 2010;2:457–463. doi: 10.4236/ns.2010.25056. DOI
Zhong M., Ma Y.-X., Liu J.-X., Di D.-L. A new quaternary protoberberine alkaloid isolated from Dicranostigma leptopodum (Maxim.) Fedde. Nat. Prod. Res. 2014;28:507–510. doi: 10.1080/14786419.2013.879586. PubMed DOI
Chen Y., Li R., Gao R., Yan Q., Zhong M., Liu J., Zhao Q., Di D. Total content determination for the effective fraction of the alkaloids in Dicranostigma leptopodum (Maxim.) Fedde by HPLC and ultraviolet-visible spectrophotometry. Anal. Methods. 2016;8:2645–2652. doi: 10.1039/C5AY03054D. DOI
Chen Y., Liu J., Yan Q., Zhong M., Liu J., Di D., Liu J. Simultaneous determination of the content of isoquinoline alkaloids in Dicranostigma leptopodum (Maxim.) Fedde and the effective fractionation of the alkaloids by high-performance liquid chromatography with diode array detection. J. Sep. Sci. 2015;38:9–17. doi: 10.1002/jssc.201400905. PubMed DOI
Liu Y., Chen X., Liu J., Di D. Three-phase solvent systems for the comprehensive separation of a wide variety of compounds from Dicranostigma leptopodum by high-speed counter-current chromatography: Liquid Chromatography. J. Sep. Sci. 2015;38:2038–2045. doi: 10.1002/jssc.201401466. PubMed DOI
Sun R., Jiang H., Zhang W., Yang K., Wang C., Fan L., He Q., Feng J., Du S., Deng Z., et al. Cytotoxicity of Aporphine, Protoberberine, and Protopine Alkaloids from Dicranostigma leptopodum (Maxim.) Fedde. Evid.-Based Complement. Altern. 2014;2014:580483. doi: 10.1155/2014/580483. PubMed DOI PMC
Zhao Q., Han Y., Du Y.P., Wang T.P., Wang Q. The effect of Dicranostigma leptopodum (Maxim.) Fedde (DLF) extraction on suppressing oxidative hemolysis of erythrocytes and its mechanism. J. Lanzhou Univ. Med. Sci. 2006;32:40–45.
Tingpu W., Yixia G., Qiang Z., Yijun Y., Weichao M., Li X., Chenghui L. Antibacterial activity and mechanism of alkaloids from Dicranostigma leptopodum (Maxim.) Fedde on Klebsiella pneumoniae. J. Tianshui Norm. Univ. 2018;38:24–28.
Chelombit’ko V.A. Dicranostigma franchetianum (Prain) Fedde: A plant promising as a source of the alkaloid isocorydine. Pharm. Chem. J. 1979;13:844–845. doi: 10.1007/BF00772226. DOI
Táborská E., Věžník F., Slavíková L., Slavík J. Quaternary alkaloids of three species of Dicranostigma HOOK. f. et THOMS. Collect. Czech. Chem. Commun. 1978;43:1108–1112. doi: 10.1135/cccc19781108. DOI
Slavíková L., Slavik J. Alkaloide der mohngewächse (Papaveraceae) IX. Dicranostigma franchetianum (Prain) Fedde. Collect. Czech. Chem. Commun. 1959;24:559–563. doi: 10.1135/cccc19590559. DOI
Manske R.H.F. The alkaloids of Papaveraceous plants: XXXII. Stylophorum diphyllum (Michx.) Nutt., Dicranostigma franchetianum (Prain) Fedde and Glaucium serpieri Heldr. Can. J. Res. B. 1942;20:53–56. doi: 10.1139/cjr42b-009. DOI
Udwadia Z.F., Amale R.A., Ajbani K.K., Rodrigues C. Totally Drug-Resistant Tuberculosis in India. Clin. Infect. Dis. 2012;54:579–581. doi: 10.1093/cid/cir889. PubMed DOI
Koul A., Arnoult E., Lounis N., Guillemont J., Andries K. The challenge of new drug discovery for tuberculosis. Nature. 2011;469:483–490. doi: 10.1038/nature09657. PubMed DOI
Global Tuberculosis Programme Global Tuberculosis Report 2021. [(accessed on 8 March 2022)]. Available online: https://www.who.int/publications/i/item/9789240037021.
Han J., Liu X., Zhang L., Quinn R.J., Feng Y. Anti-mycobacterial natural products and mechanisms of action. Nat. Prod. Rep. 2022;39:77–89. doi: 10.1039/D1NP00011J. PubMed DOI
Von Nussbaum F., Brands M., Hinzen B., Weigand S., Häbich D. Antibacterial natural products in medicinal chemistry—Exodus or revival? Angew. Chem. Int. Ed. Engl. 2006;45:5072–5129. doi: 10.1002/anie.200600350. PubMed DOI
Newman D.J., Cragg G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020;83:770–803. doi: 10.1021/acs.jnatprod.9b01285. PubMed DOI
Atanasov A.G., Zotchev S.B., Dirsch V.M., The International Natural Product Sciences Taskforce. Supuran C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021;20:200–216. doi: 10.1038/s41573-020-00114-z. PubMed DOI PMC
Cazzaniga G., Mori M., Chiarelli L.R., Gelain A., Meneghetti F., Villa S. Natural products against key Mycobacterium tuberculosis enzymatic targets: Emerging opportunities for drug discovery. Eur. J. Med. Chem. 2021;224:113732. doi: 10.1016/j.ejmech.2021.113732. PubMed DOI
Maafi N., Mamun A.A., Janďourek O., Maříková J., Breiterová K., Diepoltová A., Konečná K., Hošťálková A., Hulcová D., Kuneš J., et al. Semisynthetic Derivatives of Selected Amaryllidaceae Alkaloids as a New Class of Antimycobacterial Agents. Molecules. 2021;26:6023. doi: 10.3390/molecules26196023. PubMed DOI PMC
Claes P., Cappoen D., Mbala B.M., Jacobs J., Mertens B., Mathys V., Verschaeve L., Huygen K., De Kimpe N. Synthesis and antimycobacterial activity of analogues of the bioactive natural products sampangine and cleistopholine. Eur. J. Med. Chem. 2013;67:98–110. doi: 10.1016/j.ejmech.2013.06.010. PubMed DOI
Li Y.H., Fu H.G., Su F., Gao L.M., Tang S., Bi C.W., Li Y.H., Wang Y.X., Song D.Q. Synthesis and structure-activity relationship of 8-substituted protoberberine derivatives as a novel class of antitubercular agents. Chem. Cent. J. 2013;7:117. doi: 10.1186/1752-153X-7-117. PubMed DOI PMC
Liu Y.X., Xiao C.L., Wang Y.X., Li Y.H., Yang Y.H., Li Y.B., Bi C.W., Gao L.M., Jiang J.D., Song D.Q. Synthesis, structure-activity relationship and in vitro anti-mycobacterial evaluation of 13-n-octylberberine derivatives. Eur. J. Med. Chem. 2012;52:151–158. doi: 10.1016/j.ejmech.2012.03.012. PubMed DOI
Sobolová K., Hrabinová M., Hepnarová V., Kučera T., Kobrlová T., Benková M., Janočková J., Doležal R., Prchal L., Benek O., et al. Discovery of novel berberine derivatives with balanced cholinesterase and prolyl oligopeptidase inhibition profile. Eur. J. Med. Chem. 2020;203:112593. doi: 10.1016/j.ejmech.2020.112593. PubMed DOI
Franzblau S.G., Witzig R.S., McLaughlin J.C., Torres P., Madico G., Hernandez A., Degnan M.T., Cook M.B., Quenzer V.K., Ferguson R.M., et al. Rapid, low-technology MIC determination with clinical Mycobacterium tuberculosis isolates by using the microplate Alamar Blue assay. J. Clin. Microbiol. 1998;36:362–366. doi: 10.1128/JCM.36.2.362-366.1998. PubMed DOI PMC
Schön T., Werngren J., Machado D., Borroni E., Wijkander M., Lina G., Mouton J., Matuschek E., Kahlmeter G., Giske C., et al. Antimicrobial susceptibility testing of Mycobacterium tuberculosis complex isolates—The EUCAST broth microdilution reference method for MIC determination. Clin. Microbiol. Infect. 2020;26:1488–1492. doi: 10.1016/j.cmi.2020.07.036. PubMed DOI
Romo-Pérez A., Miranda L.D., Chávez-Blanco A.D., Dueñas-González A., Camacho-Corona M.d.R., Acosta-Huerta A., García A. Mild C(sp3)–H functionalization of dihydrosanguinarine and dihydrochelerythrine for development of highly cytotoxic derivatives. Eur. J. Med. Chem. 2017;138:1–12. doi: 10.1016/j.ejmech.2017.06.021. PubMed DOI
Miao F., Yang X.-J., Zhou L., Hu H.-J., Zheng F., Ding X.-D., Sun D.-M., Zhou C.-D., Sun W. Structural modification of sanguinarine and chelerythrine and their antibacterial activity. Nat. Prod. Res. 2011;25:863–875. doi: 10.1080/14786419.2010.482055. PubMed DOI
Kiryakov H.G., Iskrenova E., Daskalova E., Kuzmanov B., Evstatieva L. Alkaloids of Corydalis slivenensis. Planta Med. 1982;44:168–170. doi: 10.1055/s-2007-971432. PubMed DOI
Dostál J., Táborská E., Slavík J., Potáček M., de Hoffmann E. Structure of Chelerythrine Base. J. Nat. Prod. 1995;58:723–729. doi: 10.1021/np50119a010. DOI
Seger C., Sturm S., Strasser E.-M., Ellmerer E., Stuppner H. 1H and 13C NMR signal assignment of benzylisoquinoline alkaloids from Fumaria officinalis L. (Papaveraceae) Magn. Reson. Chem. 2004;42:882–886. doi: 10.1002/mrc.1417. PubMed DOI
Takao N., Kamigauchi M., Iwasa K., Morita N., Kuriyama K. Stereochemie von Hydrobenzo[c]phenanthridin-Alkaloiden. Chiroptische Eigenschaften und absolute Konfiguration von (+)-14-Epicorynolin, (+)-Corynolin, (+)-Chelidonin und verwandten Verbindungen. Arch. Pharm. 1984;317:223–237. doi: 10.1002/ardp.19843170308. DOI
Ferreira M.L.R., de Pascoli I.C., Nascimento I.R., Zukerman-Schpector J., Lopes L.M.X. Aporphine and bisaporphine alkaloids from Aristolochia lagesiana var. intermedia. Phytochemistry. 2010;71:469–478. doi: 10.1016/j.phytochem.2009.11.010. PubMed DOI
Arafa A., Mohamed M., Eldahmy S.I. The aerial parts of yellow horn poppy (Glaucium flavum Cr.) growing in Egypt: Isoquinoline alkaloids and biological activities. J. Pharm. Sci. Res. 2016;8:323–332.
Gadhiya S., Ponnala S., Harding W.W. A divergent route to 9,10-oxygenated tetrahydroprotoberberine and 8-oxoprotoberberine alkaloids: Synthesis of (±)-isocorypalmine and oxypalmatine. Tetrahedron. 2015;71:1227–1231. doi: 10.1016/j.tet.2015.01.004. PubMed DOI PMC
Pacheco J.C.O., Lahm G., Opatz T. Synthesis of Alkaloids by Stevens Rearrangement of Nitrile-Stabilized Ammonium Ylides: (±)-Laudanosine, (±)-Laudanidine, (±)-Armepavine, (±)-7-Methoxycryptopleurine, and (±)-Xylopinine. J. Org. Chem. 2013;78:4985–4992. doi: 10.1021/jo400659n. PubMed DOI
Schrittwieser J.H., Resch V., Wallner S., Lienhart W.-D., Sattler J.H., Resch J., Macheroux P., Kroutil W. Biocatalytic Organic Synthesis of Optically Pure (S)-Scoulerine and Berbine and Benzylisoquinoline Alkaloids. J. Org. Chem. 2011;76:6703–6714. doi: 10.1021/jo201056f. PubMed DOI PMC
Min Y.D., Yang M.C., Lee K.H., Kim K.R., Choi S.U., Lee K.R. Protoberberine alkaloids and their reversal activity of P-gp expressed multidrug resistance (MDR) from the rhizome of Coptis japonica Makino. Arch. Pharm. Res. 2006;29:757–761. doi: 10.1007/BF02974076. PubMed DOI
Mishra S.K., Tripathi G., Kishore N., Singh R.K., Singh A., Tiwari V.K. Drug development against tuberculosis: Impact of alkaloids. Eur. J. Med. Chem. 2017;137:504–544. doi: 10.1016/j.ejmech.2017.06.005. PubMed DOI
Omosa L.K., Nchiozem-Ngnitedem V.-A., Mukavi J., Atieno Okoko B., Nyaboke H.O., Hashim I., Matundura J.O., Efferth T., Spiteller M. Cytotoxic alkaloids from the root of Zanthoxylum paracanthum (Mildbr.) Kokwaro. Nat. Prod. Res. 2021;36:2518–2525. doi: 10.1080/14786419.2021.1913586. PubMed DOI
Rodríguez-Guzmán R., Fulks L.C., Radwan M.M., Burandt C.L., Ross S.A. Chemical constituents, antimicrobial and antimalarial activities of Zanthoxylum monophyllum. Planta Med. 2011;77:1542–1544. doi: 10.1055/s-0030-1270782. PubMed DOI
Dostál J., Slavík J., Potáček M., Marek R., Humpa O., Sklenář V., Toušek J., Hoffmann E., Rozenberg R. Structural Studies of Chelirubine and Chelilutine Free Bases. Collect. Czech. Chem. Commun. 1998;63:1045–1055. doi: 10.1135/cccc19981045. DOI
Okunade A.L., Hufford C.D., Richardson M.D., Peterson J.R., Clark A.M. Antimicrobial properties of alkaloids from Xanthorhiza simplicissima. J. Pharm. Sci. 1994;83:404–406. doi: 10.1002/jps.2600830327. PubMed DOI
Gentry E.J., Jampani H.B., Keshavarz-Shokri A., Morton M.D., Vander Velde D., Telikepalli H., Mitscher L.A., Shawar R., Humble D., Baker W. Antitubercular Natural Products: Berberine from the Roots of Commercial Hydrastis canadensis Powder. Isolation of Inactive 8-Oxotetrahydrothalifendine, Canadine, β-Hydrastine, and Two New Quinic Acid Esters, Hycandinic Acid Esters-1 and -2. J. Nat. Prod. 1998;61:1187–1193. doi: 10.1021/np9701889. PubMed DOI
Affuso F., Mercurio V., Fazio V., Fazio S. Cardiovascular and metabolic effects of Berberine. World J. Cardiol. 2010;2:71–77. doi: 10.4330/wjc.v2.i4.71. PubMed DOI PMC
Yao L., Wu L.L., Li Q., Hu Q.M., Zhang S.Y., Liu K., Jiang J.Q. Novel berberine derivatives: Design, synthesis, antimicrobial effects, and molecular docking studies. Chin. J. Nat. Med. 2018;16:774–781. doi: 10.1016/S1875-5364(18)30117-1. PubMed DOI
Abd El-Salam M., Mekky H., El-Naggar E.M.B., Ghareeb D., El-Demellawy M., El-Fiky F. Hepatoprotective properties and biotransformation of berberine and berberrubine by cell suspension cultures of Dodonaea viscosa and Ocimum basilicum. S. Afr. J. Bot. 2015;97:191–195. doi: 10.1016/j.sajb.2015.01.005. DOI
Caliceti C., Franco P., Spinozzi S., Roda A., Cicero A.F. Berberine: New Insights from Pharmacological Aspects to Clinical Evidences in the Management of Metabolic Disorders. Curr. Med. Chem. 2016;23:1460–1476. doi: 10.2174/0929867323666160411143314. PubMed DOI
Hošťálková A., Maříková J., Opletal L., Korábečný J., Hulcová D., Kuneš J., Nováková L., Perez D.I., Jun D., Kučera T., et al. Isoquinoline Alkaloids from Berberis vulgaris as Potential Lead Compounds for the Treatment of Alzheimer’s Disease. J. Nat. Prod. 2019;82:239–248. doi: 10.1021/acs.jnatprod.8b00592. PubMed DOI
Chu M., Zhang M.-B., Liu Y.-C., Kang J.-R., Chu Z.-Y., Yin K.-L., Ding L.-Y., Ding R., Xiao R.-X., Yin Y.-N., et al. Role of Berberine in the Treatment of Methicillin-Resistant Staphylococcus aureus Infections. Sci. Rep. 2016;6:24748. doi: 10.1038/srep24748. PubMed DOI PMC
Ozturk M., Chia J.E., Hazra R., Saqib M., Maine R.A., Guler R., Suzuki H., Mishra B.B., Brombacher F., Parihar S.P. Evaluation of Berberine as an Adjunct to TB Treatment. Front. Immunol. 2021;12:656419. doi: 10.3389/fimmu.2021.656419. PubMed DOI PMC
Kim S.H., Lee S.J., Lee J.H., Sun W.S., Kim J.H. Antimicrobial activity of 9-O-acyl- and 9-O-alkylberberrubine derivatives. Planta Med. 2002;68:277–281. doi: 10.1055/s-2002-23128. PubMed DOI
Piccaro G., Poce G., Biava M., Giannoni F., Fattorini L. Activity of lipophilic and hydrophilic drugs against dormant and replicating Mycobacterium tuberculosis. J. Antibiot. 2015;68:711–714. doi: 10.1038/ja.2015.52. PubMed DOI
Senousy B.E., Belal S.I., Draganov P.V. Hepatotoxic effects of therapies for tuberculosis. Nat. Rev. Gastroenterol. Hepatol. 2010;7:543–556. doi: 10.1038/nrgastro.2010.134. PubMed DOI