Alkaloids of Dicranostigma franchetianum (Papaveraceae) and Berberine Derivatives as a New Class of Antimycobacterial Agents

. 2022 Jun 17 ; 12 (6) : . [epub] 20220617

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35740968

Tuberculosis (TB) is a widespread infectious disease caused by Mycobacterium tuberculosis. The increasing incidence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains has created a need for new antiTB agents with new chemical scaffolds to combat the disease. Thus, the key question is: how to search for new antiTB and where to look for them? One of the possibilities is to search among natural products (NPs). In order to search for new antiTB drugs, the detailed phytochemical study of the whole Dicranostigma franchetianum plant was performed isolating wide spectrum of isoquinoline alkaloids (IAs). The chemical structures of the isolated alkaloids were determined by a combination of MS, HRMS, 1D, and 2D NMR techniques, and by comparison with literature data. Alkaloids were screened against Mycobacterium tuberculosis H37Ra and four other mycobacterial strains (M. aurum, M. avium, M. kansasii, and M. smegmatis). Alkaloids 3 and 5 showed moderate antimycobacterial activity against all tested strains (MICs 15.625-31.25 µg/mL). Furthermore, ten semisynthetic berberine (16a-16k) derivatives were developed and tested for antimycobacterial activity. In general, the derivatization of berberine was connected with a significant increase in antimycobacterial activity against all tested strains (MICs 0.39-7.81 μg/mL). Two derivatives (16e, 16k) were identified as compounds with micromolar MICs against M. tuberculosis H37Ra (MIC 2.96 and 2.78 µM). All compounds were also evaluated for their in vitro hepatotoxicity on a hepatocellular carcinoma cell line (HepG2), exerting lower cytotoxicity profile than their MIC values, thereby potentially reaching an effective concentration without revealing toxic side effects.

Zobrazit více v PubMed

Dang Y., Gong H.F., Liu J.X., Yu S.J. Alkaloid from Dicranostigma leptopodum (Maxim) Fedde. Chin. Chem. Lett. 2009;20:1218–1220. doi: 10.1016/j.cclet.2009.05.020. DOI

Liu D.H., Zhang T.C., Liu J.X., Di D.L., Dang Y. Chemical Constituents of Alkaloids from Dicranostigma leptopodum. Chin. Tradit. Herb Drugs. 2011;42:1505–1509.

Qiang Z. Insights into Chemical Constituents of Alkaloids from Wild Medicinal Plant Dicranostigma leptodum (Maxim.) Fedde. J. Phys. Conf. Ser. 2019;1176:042056. doi: 10.1088/1742-6596/1176/4/042056. DOI

Zhang W.-H., Lv M.-H., Jun H., Wang Q.-P., Wang Q. Dicranostigma leptopodum (Maxim.) Fedde induced apoptosis in SMMC-7721 human hepatoma cells and inhibited tumor growth in mice. Nat. Sci. 2010;2:457–463. doi: 10.4236/ns.2010.25056. DOI

Zhong M., Ma Y.-X., Liu J.-X., Di D.-L. A new quaternary protoberberine alkaloid isolated from Dicranostigma leptopodum (Maxim.) Fedde. Nat. Prod. Res. 2014;28:507–510. doi: 10.1080/14786419.2013.879586. PubMed DOI

Chen Y., Li R., Gao R., Yan Q., Zhong M., Liu J., Zhao Q., Di D. Total content determination for the effective fraction of the alkaloids in Dicranostigma leptopodum (Maxim.) Fedde by HPLC and ultraviolet-visible spectrophotometry. Anal. Methods. 2016;8:2645–2652. doi: 10.1039/C5AY03054D. DOI

Chen Y., Liu J., Yan Q., Zhong M., Liu J., Di D., Liu J. Simultaneous determination of the content of isoquinoline alkaloids in Dicranostigma leptopodum (Maxim.) Fedde and the effective fractionation of the alkaloids by high-performance liquid chromatography with diode array detection. J. Sep. Sci. 2015;38:9–17. doi: 10.1002/jssc.201400905. PubMed DOI

Liu Y., Chen X., Liu J., Di D. Three-phase solvent systems for the comprehensive separation of a wide variety of compounds from Dicranostigma leptopodum by high-speed counter-current chromatography: Liquid Chromatography. J. Sep. Sci. 2015;38:2038–2045. doi: 10.1002/jssc.201401466. PubMed DOI

Sun R., Jiang H., Zhang W., Yang K., Wang C., Fan L., He Q., Feng J., Du S., Deng Z., et al. Cytotoxicity of Aporphine, Protoberberine, and Protopine Alkaloids from Dicranostigma leptopodum (Maxim.) Fedde. Evid.-Based Complement. Altern. 2014;2014:580483. doi: 10.1155/2014/580483. PubMed DOI PMC

Zhao Q., Han Y., Du Y.P., Wang T.P., Wang Q. The effect of Dicranostigma leptopodum (Maxim.) Fedde (DLF) extraction on suppressing oxidative hemolysis of erythrocytes and its mechanism. J. Lanzhou Univ. Med. Sci. 2006;32:40–45.

Tingpu W., Yixia G., Qiang Z., Yijun Y., Weichao M., Li X., Chenghui L. Antibacterial activity and mechanism of alkaloids from Dicranostigma leptopodum (Maxim.) Fedde on Klebsiella pneumoniae. J. Tianshui Norm. Univ. 2018;38:24–28.

Chelombit’ko V.A. Dicranostigma franchetianum (Prain) Fedde: A plant promising as a source of the alkaloid isocorydine. Pharm. Chem. J. 1979;13:844–845. doi: 10.1007/BF00772226. DOI

Táborská E., Věžník F., Slavíková L., Slavík J. Quaternary alkaloids of three species of Dicranostigma HOOK. f. et THOMS. Collect. Czech. Chem. Commun. 1978;43:1108–1112. doi: 10.1135/cccc19781108. DOI

Slavíková L., Slavik J. Alkaloide der mohngewächse (Papaveraceae) IX. Dicranostigma franchetianum (Prain) Fedde. Collect. Czech. Chem. Commun. 1959;24:559–563. doi: 10.1135/cccc19590559. DOI

Manske R.H.F. The alkaloids of Papaveraceous plants: XXXII. Stylophorum diphyllum (Michx.) Nutt., Dicranostigma franchetianum (Prain) Fedde and Glaucium serpieri Heldr. Can. J. Res. B. 1942;20:53–56. doi: 10.1139/cjr42b-009. DOI

Udwadia Z.F., Amale R.A., Ajbani K.K., Rodrigues C. Totally Drug-Resistant Tuberculosis in India. Clin. Infect. Dis. 2012;54:579–581. doi: 10.1093/cid/cir889. PubMed DOI

Koul A., Arnoult E., Lounis N., Guillemont J., Andries K. The challenge of new drug discovery for tuberculosis. Nature. 2011;469:483–490. doi: 10.1038/nature09657. PubMed DOI

Global Tuberculosis Programme Global Tuberculosis Report 2021. [(accessed on 8 March 2022)]. Available online: https://www.who.int/publications/i/item/9789240037021.

Han J., Liu X., Zhang L., Quinn R.J., Feng Y. Anti-mycobacterial natural products and mechanisms of action. Nat. Prod. Rep. 2022;39:77–89. doi: 10.1039/D1NP00011J. PubMed DOI

Von Nussbaum F., Brands M., Hinzen B., Weigand S., Häbich D. Antibacterial natural products in medicinal chemistry—Exodus or revival? Angew. Chem. Int. Ed. Engl. 2006;45:5072–5129. doi: 10.1002/anie.200600350. PubMed DOI

Newman D.J., Cragg G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020;83:770–803. doi: 10.1021/acs.jnatprod.9b01285. PubMed DOI

Atanasov A.G., Zotchev S.B., Dirsch V.M., The International Natural Product Sciences Taskforce. Supuran C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021;20:200–216. doi: 10.1038/s41573-020-00114-z. PubMed DOI PMC

Cazzaniga G., Mori M., Chiarelli L.R., Gelain A., Meneghetti F., Villa S. Natural products against key Mycobacterium tuberculosis enzymatic targets: Emerging opportunities for drug discovery. Eur. J. Med. Chem. 2021;224:113732. doi: 10.1016/j.ejmech.2021.113732. PubMed DOI

Maafi N., Mamun A.A., Janďourek O., Maříková J., Breiterová K., Diepoltová A., Konečná K., Hošťálková A., Hulcová D., Kuneš J., et al. Semisynthetic Derivatives of Selected Amaryllidaceae Alkaloids as a New Class of Antimycobacterial Agents. Molecules. 2021;26:6023. doi: 10.3390/molecules26196023. PubMed DOI PMC

Claes P., Cappoen D., Mbala B.M., Jacobs J., Mertens B., Mathys V., Verschaeve L., Huygen K., De Kimpe N. Synthesis and antimycobacterial activity of analogues of the bioactive natural products sampangine and cleistopholine. Eur. J. Med. Chem. 2013;67:98–110. doi: 10.1016/j.ejmech.2013.06.010. PubMed DOI

Li Y.H., Fu H.G., Su F., Gao L.M., Tang S., Bi C.W., Li Y.H., Wang Y.X., Song D.Q. Synthesis and structure-activity relationship of 8-substituted protoberberine derivatives as a novel class of antitubercular agents. Chem. Cent. J. 2013;7:117. doi: 10.1186/1752-153X-7-117. PubMed DOI PMC

Liu Y.X., Xiao C.L., Wang Y.X., Li Y.H., Yang Y.H., Li Y.B., Bi C.W., Gao L.M., Jiang J.D., Song D.Q. Synthesis, structure-activity relationship and in vitro anti-mycobacterial evaluation of 13-n-octylberberine derivatives. Eur. J. Med. Chem. 2012;52:151–158. doi: 10.1016/j.ejmech.2012.03.012. PubMed DOI

Sobolová K., Hrabinová M., Hepnarová V., Kučera T., Kobrlová T., Benková M., Janočková J., Doležal R., Prchal L., Benek O., et al. Discovery of novel berberine derivatives with balanced cholinesterase and prolyl oligopeptidase inhibition profile. Eur. J. Med. Chem. 2020;203:112593. doi: 10.1016/j.ejmech.2020.112593. PubMed DOI

Franzblau S.G., Witzig R.S., McLaughlin J.C., Torres P., Madico G., Hernandez A., Degnan M.T., Cook M.B., Quenzer V.K., Ferguson R.M., et al. Rapid, low-technology MIC determination with clinical Mycobacterium tuberculosis isolates by using the microplate Alamar Blue assay. J. Clin. Microbiol. 1998;36:362–366. doi: 10.1128/JCM.36.2.362-366.1998. PubMed DOI PMC

Schön T., Werngren J., Machado D., Borroni E., Wijkander M., Lina G., Mouton J., Matuschek E., Kahlmeter G., Giske C., et al. Antimicrobial susceptibility testing of Mycobacterium tuberculosis complex isolates—The EUCAST broth microdilution reference method for MIC determination. Clin. Microbiol. Infect. 2020;26:1488–1492. doi: 10.1016/j.cmi.2020.07.036. PubMed DOI

Romo-Pérez A., Miranda L.D., Chávez-Blanco A.D., Dueñas-González A., Camacho-Corona M.d.R., Acosta-Huerta A., García A. Mild C(sp3)–H functionalization of dihydrosanguinarine and dihydrochelerythrine for development of highly cytotoxic derivatives. Eur. J. Med. Chem. 2017;138:1–12. doi: 10.1016/j.ejmech.2017.06.021. PubMed DOI

Miao F., Yang X.-J., Zhou L., Hu H.-J., Zheng F., Ding X.-D., Sun D.-M., Zhou C.-D., Sun W. Structural modification of sanguinarine and chelerythrine and their antibacterial activity. Nat. Prod. Res. 2011;25:863–875. doi: 10.1080/14786419.2010.482055. PubMed DOI

Kiryakov H.G., Iskrenova E., Daskalova E., Kuzmanov B., Evstatieva L. Alkaloids of Corydalis slivenensis. Planta Med. 1982;44:168–170. doi: 10.1055/s-2007-971432. PubMed DOI

Dostál J., Táborská E., Slavík J., Potáček M., de Hoffmann E. Structure of Chelerythrine Base. J. Nat. Prod. 1995;58:723–729. doi: 10.1021/np50119a010. DOI

Seger C., Sturm S., Strasser E.-M., Ellmerer E., Stuppner H. 1H and 13C NMR signal assignment of benzylisoquinoline alkaloids from Fumaria officinalis L. (Papaveraceae) Magn. Reson. Chem. 2004;42:882–886. doi: 10.1002/mrc.1417. PubMed DOI

Takao N., Kamigauchi M., Iwasa K., Morita N., Kuriyama K. Stereochemie von Hydrobenzo[c]phenanthridin-Alkaloiden. Chiroptische Eigenschaften und absolute Konfiguration von (+)-14-Epicorynolin, (+)-Corynolin, (+)-Chelidonin und verwandten Verbindungen. Arch. Pharm. 1984;317:223–237. doi: 10.1002/ardp.19843170308. DOI

Ferreira M.L.R., de Pascoli I.C., Nascimento I.R., Zukerman-Schpector J., Lopes L.M.X. Aporphine and bisaporphine alkaloids from Aristolochia lagesiana var. intermedia. Phytochemistry. 2010;71:469–478. doi: 10.1016/j.phytochem.2009.11.010. PubMed DOI

Arafa A., Mohamed M., Eldahmy S.I. The aerial parts of yellow horn poppy (Glaucium flavum Cr.) growing in Egypt: Isoquinoline alkaloids and biological activities. J. Pharm. Sci. Res. 2016;8:323–332.

Gadhiya S., Ponnala S., Harding W.W. A divergent route to 9,10-oxygenated tetrahydroprotoberberine and 8-oxoprotoberberine alkaloids: Synthesis of (±)-isocorypalmine and oxypalmatine. Tetrahedron. 2015;71:1227–1231. doi: 10.1016/j.tet.2015.01.004. PubMed DOI PMC

Pacheco J.C.O., Lahm G., Opatz T. Synthesis of Alkaloids by Stevens Rearrangement of Nitrile-Stabilized Ammonium Ylides: (±)-Laudanosine, (±)-Laudanidine, (±)-Armepavine, (±)-7-Methoxycryptopleurine, and (±)-Xylopinine. J. Org. Chem. 2013;78:4985–4992. doi: 10.1021/jo400659n. PubMed DOI

Schrittwieser J.H., Resch V., Wallner S., Lienhart W.-D., Sattler J.H., Resch J., Macheroux P., Kroutil W. Biocatalytic Organic Synthesis of Optically Pure (S)-Scoulerine and Berbine and Benzylisoquinoline Alkaloids. J. Org. Chem. 2011;76:6703–6714. doi: 10.1021/jo201056f. PubMed DOI PMC

Min Y.D., Yang M.C., Lee K.H., Kim K.R., Choi S.U., Lee K.R. Protoberberine alkaloids and their reversal activity of P-gp expressed multidrug resistance (MDR) from the rhizome of Coptis japonica Makino. Arch. Pharm. Res. 2006;29:757–761. doi: 10.1007/BF02974076. PubMed DOI

Mishra S.K., Tripathi G., Kishore N., Singh R.K., Singh A., Tiwari V.K. Drug development against tuberculosis: Impact of alkaloids. Eur. J. Med. Chem. 2017;137:504–544. doi: 10.1016/j.ejmech.2017.06.005. PubMed DOI

Omosa L.K., Nchiozem-Ngnitedem V.-A., Mukavi J., Atieno Okoko B., Nyaboke H.O., Hashim I., Matundura J.O., Efferth T., Spiteller M. Cytotoxic alkaloids from the root of Zanthoxylum paracanthum (Mildbr.) Kokwaro. Nat. Prod. Res. 2021;36:2518–2525. doi: 10.1080/14786419.2021.1913586. PubMed DOI

Rodríguez-Guzmán R., Fulks L.C., Radwan M.M., Burandt C.L., Ross S.A. Chemical constituents, antimicrobial and antimalarial activities of Zanthoxylum monophyllum. Planta Med. 2011;77:1542–1544. doi: 10.1055/s-0030-1270782. PubMed DOI

Dostál J., Slavík J., Potáček M., Marek R., Humpa O., Sklenář V., Toušek J., Hoffmann E., Rozenberg R. Structural Studies of Chelirubine and Chelilutine Free Bases. Collect. Czech. Chem. Commun. 1998;63:1045–1055. doi: 10.1135/cccc19981045. DOI

Okunade A.L., Hufford C.D., Richardson M.D., Peterson J.R., Clark A.M. Antimicrobial properties of alkaloids from Xanthorhiza simplicissima. J. Pharm. Sci. 1994;83:404–406. doi: 10.1002/jps.2600830327. PubMed DOI

Gentry E.J., Jampani H.B., Keshavarz-Shokri A., Morton M.D., Vander Velde D., Telikepalli H., Mitscher L.A., Shawar R., Humble D., Baker W. Antitubercular Natural Products:  Berberine from the Roots of Commercial Hydrastis canadensis Powder. Isolation of Inactive 8-Oxotetrahydrothalifendine, Canadine, β-Hydrastine, and Two New Quinic Acid Esters, Hycandinic Acid Esters-1 and -2. J. Nat. Prod. 1998;61:1187–1193. doi: 10.1021/np9701889. PubMed DOI

Affuso F., Mercurio V., Fazio V., Fazio S. Cardiovascular and metabolic effects of Berberine. World J. Cardiol. 2010;2:71–77. doi: 10.4330/wjc.v2.i4.71. PubMed DOI PMC

Yao L., Wu L.L., Li Q., Hu Q.M., Zhang S.Y., Liu K., Jiang J.Q. Novel berberine derivatives: Design, synthesis, antimicrobial effects, and molecular docking studies. Chin. J. Nat. Med. 2018;16:774–781. doi: 10.1016/S1875-5364(18)30117-1. PubMed DOI

Abd El-Salam M., Mekky H., El-Naggar E.M.B., Ghareeb D., El-Demellawy M., El-Fiky F. Hepatoprotective properties and biotransformation of berberine and berberrubine by cell suspension cultures of Dodonaea viscosa and Ocimum basilicum. S. Afr. J. Bot. 2015;97:191–195. doi: 10.1016/j.sajb.2015.01.005. DOI

Caliceti C., Franco P., Spinozzi S., Roda A., Cicero A.F. Berberine: New Insights from Pharmacological Aspects to Clinical Evidences in the Management of Metabolic Disorders. Curr. Med. Chem. 2016;23:1460–1476. doi: 10.2174/0929867323666160411143314. PubMed DOI

Hošťálková A., Maříková J., Opletal L., Korábečný J., Hulcová D., Kuneš J., Nováková L., Perez D.I., Jun D., Kučera T., et al. Isoquinoline Alkaloids from Berberis vulgaris as Potential Lead Compounds for the Treatment of Alzheimer’s Disease. J. Nat. Prod. 2019;82:239–248. doi: 10.1021/acs.jnatprod.8b00592. PubMed DOI

Chu M., Zhang M.-B., Liu Y.-C., Kang J.-R., Chu Z.-Y., Yin K.-L., Ding L.-Y., Ding R., Xiao R.-X., Yin Y.-N., et al. Role of Berberine in the Treatment of Methicillin-Resistant Staphylococcus aureus Infections. Sci. Rep. 2016;6:24748. doi: 10.1038/srep24748. PubMed DOI PMC

Ozturk M., Chia J.E., Hazra R., Saqib M., Maine R.A., Guler R., Suzuki H., Mishra B.B., Brombacher F., Parihar S.P. Evaluation of Berberine as an Adjunct to TB Treatment. Front. Immunol. 2021;12:656419. doi: 10.3389/fimmu.2021.656419. PubMed DOI PMC

Kim S.H., Lee S.J., Lee J.H., Sun W.S., Kim J.H. Antimicrobial activity of 9-O-acyl- and 9-O-alkylberberrubine derivatives. Planta Med. 2002;68:277–281. doi: 10.1055/s-2002-23128. PubMed DOI

Piccaro G., Poce G., Biava M., Giannoni F., Fattorini L. Activity of lipophilic and hydrophilic drugs against dormant and replicating Mycobacterium tuberculosis. J. Antibiot. 2015;68:711–714. doi: 10.1038/ja.2015.52. PubMed DOI

Senousy B.E., Belal S.I., Draganov P.V. Hepatotoxic effects of therapies for tuberculosis. Nat. Rev. Gastroenterol. Hepatol. 2010;7:543–556. doi: 10.1038/nrgastro.2010.134. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...