Automatic caries detection in bitewing radiographs-Part II: experimental comparison
Jazyk angličtina Země Německo Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GIP-21-SL-01-232
Všeobecná Fakultní Nemocnice v Pranewize
CZ.02.1.01/0.0/0.0/16 019/0000765
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
38315246
PubMed Central
PMC10844156
DOI
10.1007/s00784-024-05528-2
PII: 10.1007/s00784-024-05528-2
Knihovny.cz E-zdroje
- Klíčová slova
- Bitewing, Convolutional neural networks, Dental caries detection, Ground truth, X-ray images,
- MeSH
- interproximální technika MeSH
- lidé MeSH
- náchylnost k zubnímu kazu * MeSH
- zubní kaz * diagnostické zobrazování MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
OBJECTIVE: The objective of this study was to compare the detection of caries in bitewing radiographs by multiple dentists with an automatic method and to evaluate the detection performance in the absence of a reliable ground truth. MATERIALS AND METHODS: Four experts and three novices marked caries using bounding boxes in 100 bitewing radiographs. The same dataset was processed by an automatic object detection deep learning method. All annotators were compared in terms of the number of errors and intersection over union (IoU) using pairwise comparisons, with respect to the consensus standard, and with respect to the annotator of the training dataset of the automatic method. RESULTS: The number of lesions marked by experts in 100 images varied between 241 and 425. Pairwise comparisons showed that the automatic method outperformed all dentists except the original annotator in the mean number of errors, while being among the best in terms of IoU. With respect to a consensus standard, the performance of the automatic method was best in terms of the number of errors and slightly below average in terms of IoU. Compared with the original annotator, the automatic method had the highest IoU and only one expert made fewer errors. CONCLUSIONS: The automatic method consistently outperformed novices and performed as well as highly experienced dentists. CLINICAL SIGNIFICANCE: The consensus in caries detection between experts is low. An automatic method based on deep learning can improve both the accuracy and repeatability of caries detection, providing a useful second opinion even for very experienced dentists.
Zobrazit více v PubMed
Kassebaum NJ, Bernabé E, Dahiya M, Bhandari B, Murray CJL, Marcenes W. Global burden of untreated caries: a systematic review and metaregression. J Dent Res. 2015;94(5):650–658. doi: 10.1177/0022034515573272. PubMed DOI
James SL, Abate D, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the global burden of disease study 2017. The Lancet. 2018;392(10159):1789–18580. doi: 10.1016/s0140-6736(18)32279-7. PubMed DOI PMC
Rindal DB, Gordan VV, Litaker MS, Bader JD, Fellows JL, Qvist V, Wallace-Dawson MC, Anderson ML, Gilbert GH. Methods dentists use to diagnose primary caries lesions prior to restorative treatment: findings from the dental pbrn. J Dent. 2010;38(12):1027–1032. doi: 10.1016/j.jdent.2010.09.003. PubMed DOI PMC
Karlsson L (2010) Caries detection methods based on changes in optical properties between healthy and carious tissue. Int J Dent 270729. 10.1155/2010/270729 PubMed PMC
Bader JD, Shugars DA, Bonito AJ. Systematic reviews of selected dental caries diagnostic and management methods. J Dent Educ. 2001;65(10):960–968. doi: 10.1002/j.0022-0337.2001.65.10.tb03470.x. PubMed DOI
Gomez J (2015) Detection and diagnosis of the early caries lesion. BMC Oral health 15(S3). 10.1186/1472-6831-15-S1-S3 PubMed PMC
Schwendicke F, Tzschoppe M, Paris S. Radiographic caries detection: a systematic review and meta-analysis. J Dent. 2015;43(8):924–933. doi: 10.1016/j.jdent.2015.02.009. PubMed DOI
Pretty IA. Caries detection and diagnosis: novel technologies. J Dent. 2006;34(10):727–739. doi: 10.1016/j.jdent.2006.06.001. PubMed DOI
Mohammad-Rahimi H, Motamedian SR, Rohban MH, Krois J, Uribe SE, Mahmoudinia E, Rokhshad R, Nadimi M, Schwendicke F. Deep learning for caries detection: a systematic review. J Dent. 2022;122:104115. doi: 10.1016/j.jdent.2022.104115. PubMed DOI
Kamburoǧlu K, Kolsuz E, Murat S, Yüksel S, Özen T. Proximal caries detection accuracy using intraoral bitewing radiography, extraoral bitewing radiography and panoramic radiography. Dentomaxillofacial Radiol. 2012;41:450–459. doi: 10.1259/dmfr/30526171. PubMed DOI PMC
Abdinian M, Razavi SM, Faghihian R, Samety AA, Faghihian E. Accuracy of digital bitewing radiography versus different views of digital panoramic radiography for detection of proximal caries. J Dent (Tehran) 2015;12(4):290–297. PubMed PMC
Prados-Privado M, Villalón JG, Martínez-Martínez CH, Ivorra C, Prados-Frutos JC. Dental caries diagnosis and detection using neural networks: a systematic review. J Clin Med. 2020;9(11):3579. doi: 10.3390/jcm9113579. PubMed DOI PMC
Srivastava MM, Kumar P, Pradhan L, Varadarajan S (2017) Detection of tooth caries in bitewing radiographs using deep learning. In: NIPS workshop on machine learning for health, vol abs/1711.07312. 10.48550/arXiv.1711.07312
Kumar P, Srivastava MM (2018) Example mining for incremental learning in medical imaging. In: IEEE symposium series on computational intelligence (SSCI). arXiv, ???. 10.1109/SSCI.2018.8628895
García-Cañas A, Bonfanti-Gris M, Paraíso-Medina S, Martínez-Rus F, Pradíes G. Diagnosis of interproximal caries lesions in bitewing radiographs using a deep convolutional neural network-based software. Caries Res. 2022;56(5–6):503–511. doi: 10.1159/000527491. PubMed DOI
Natto ZS, Olwi A, Abduljawad F. A comparison of the horizontal and vertical bitewing images in detecting approximal caries and interdental bone loss in posterior teeth: a diagnostic accuracy randomized cross over clinical trial. J Dent Sci. 2023;18:645–651. doi: 10.1016/j.jds.2022.08.006. PubMed DOI PMC
Kunt L, Kybic J, Nagyová V, Tichý A (2023) Automatic caries detection in bitewing radiographs. part I: deep learning. Clinical Oral Investigation (27):7463–7471. 10.1007/s00784-023-05335-1 PubMed
Tichý A, Kunt L, Kybic J (2023) Dental caries in bitewing radiographs. Mendeley Data. 10.17632/4fbdxs7s7w.1
Estai M, Tennant M, Gebauer D, Vignarajan J, Mehdizadeh M, Saha S. Evaluation of a deep learning system for automatic detection of proximal surface dental caries on bitewing radiographs. Oral Surg Oral Med Oral Pathol Oral Radiol. 2023;134(2):262–270. doi: 10.1016/j.oooo.2022.03.008. PubMed DOI
Chen X, Guo J, Ye J, Zhang M, Liang Y (2023) Detection of proximal caries lesions on bitewing radiographs using deep learning method. Caries Res 56(5–6):455–463. 10.1159/000527418 PubMed PMC
Cantu AG, Gehrung S, Krois J, Chaurasia A, Rossi JG, Gaudin R, Elhennawy K, Schwendicke F. Detecting caries lesions of different radiographic extension on bitewings using deep learning. J Dent. 2020;100:103425. doi: 10.1016/j.jdent.2020.103425. PubMed DOI
Bayrakdar IS, Orhan K, Akarsu S, Çelik O, Atasoy S, Pekince A, Yasa Y, Bilgir E, Sağlam H, Aslan AF, Odabaş A (2021) Deep-learning approach for caries detection and segmentation on dental bitewing radiographs. Oral Radiology 38(4). 10.1007/s11282-021-00577-9 PubMed