• This record comes from PubMed

The Application of 3D Imaging as an Appropriate Method of Wildlife Craniometry: Evaluation of Accuracy and Measurement Efficiency

. 2022 Nov 23 ; 12 (23) : . [epub] 20221123

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
A19_14 Ministry of Education, Youth and Sport

The suitability of CT and 3D scanners for craniometric proposes was tested using digital calipers when determining linear measurements, and a measuring cylinder was used for the accuracy of 3D printing of deer antlers obtained by the CT and 3D scanners. The resolution of digitized objects from a 3D scanner ranged from 0.008 mm to 0.122 mm. For mandibular dimensions, a positive deviation (p < 0.01) from the primary control measurement was recorded. The average antler volume measured with the cylinder was 60.47 cm3 at the first measurement, in the case of the CT scanner 61.62 cm3 and for the 3D scanner 64.76 cm3—both technologies exhibit a positive deviation from the primary measurement. Precise sensing and measurements can be used to evaluate the quality and evolution of wildlife populations, create digital museum collections, or to examine in detail certain traits such as antler and horn development or dentition.

See more in PubMed

Michelinakis G., Apostolakis D., Tsagarakis A., Kourakis G., Pavlakis E. A Comparison of Accuracy of 3 Intraoral Scanners: A Single-Blinded In Vitro Study. J. Prosthet. Dent. 2020;124:581–588. doi: 10.1016/j.prosdent.2019.10.023. PubMed DOI

Sansoni G., Trebeschi M., Docchio F. State-of-the-Art and Applications of 3D Imaging Sensors in Industry, Cultural Heritage, Medicine, and Criminal Investigation. Sensors. 2009;9:568–601. doi: 10.3390/s90100568. PubMed DOI PMC

Nedelcu R., Olsson P., Nyström I., Thor A. Finish Line Distinctness and Accuracy in 7 Intraoral Scanners versus Conventional Impression: An In Vitro Descriptive Comparison. BMC Oral Health. 2018;18:27. doi: 10.1186/s12903-018-0489-3. PubMed DOI PMC

Barbero B.R., Ureta E.S. Comparative Study of Different Digitization Techniques and Their Accuracy. Comput.-Aided Des. 2011;43:188–206. doi: 10.1016/j.cad.2010.11.005. DOI

Ye X., Liu H., Chen L., Chen Z., Pan X., Zhang S. Reverse Innovative Design—An Integrated Product Design Methodology. Comput.-Aided Des. 2008;40:812–827. doi: 10.1016/j.cad.2007.07.006. DOI

Iuliano L., Minetola O. Rapid Manufacturing of Sculptures Replicas: A Comparison between 3D Optical Scanners; Proceedings of the CIPA 2005 XX International Symposium; Torino, Italy. 26 September–1 October 2005.

Telfer S., Woodburn J. The Use of 3D Surface Scanning for the Measurement and Assessment of the Human Foot. J. Foot Ankle Res. 2010;3:1–9. doi: 10.1186/1757-1146-3-19. PubMed DOI PMC

Tikuisis P., Meunier P., Jubenville C.E. Human Body Surface Area: Measurement and Prediction Using Three Dimensional Body Scans. Eur. J. Appl. Physiol. 2001;85:264–271. doi: 10.1007/s004210100484. PubMed DOI

Ong C.S., Yesantharao P., Huang C.Y., Mattson G., Boktor J., Fukunishi T., Zhang H., Hibino N. 3D Bioprinting Using Stem Cells. Pediatr. Res. 2018;83:223–231. doi: 10.1038/pr.2017.252. PubMed DOI

Singer P.M., De Santis V., Vitale D., Jeffcoate W. Multiorgan Failure Is an Adaptive, Endocrine-Mediated, Metabolic Response to Overwhelming Systemic Inaflammation. Lancet. 2004;364:545–548. doi: 10.1016/S0140-6736(04)16815-3. PubMed DOI

Counts D.B., Averett E.W., Garstki K. A Fragmented Past: (Re)Constructing Antiquity through 3D Artefact Modelling and Customised Structured Light Scanning at Athienou-Malloura, Cyprus. Antiquity. 2016;90:206–218. doi: 10.15184/aqy.2015.181. DOI

Haukaas C., Hodgetts L.M. The Untapped Potential of Low-Cost Photogrammetry in Community-Based Archaeology: A Case Study from Banks Island, Arctic Canada. J. Community Archaeol. Herit. 2016;3:40–56. doi: 10.1080/20518196.2015.1123884. DOI

Porter S.T., Roussel M., Soressi M. A Simple Photogrammetry Rig for the Reliable Creation of 3D Artifact Models in the Field. Adv. Archaeol. Pract. 2016;4:71–86. doi: 10.7183/2326-3768.4.1.71. DOI

Núñez M.A., Buill F., Edo M. 3D Model of the Can Sadurní Cave. J. Archaeol. Sci. 2013;40:4420–4428. doi: 10.1016/j.jas.2013.07.006. DOI

Sapirstein P. Accurate Measurement with Photogrammetry at Large Sites. J. Archaeol. Sci. 2016;66:137–145. doi: 10.1016/j.jas.2016.01.002. DOI

Verhoeven G., Doneus M., Briese C., Vermeulen F. Mapping by Matching: A Computer Vision-Based Approach to Fast and Accurate Georeferencing of Archaeological Aerial Photographs. J. Archaeol. Sci. 2012;39:2060–2070. doi: 10.1016/j.jas.2012.02.022. DOI

Yamafune K., Torres R., Castro F. Multi-Image Photogrammetry to Record and Reconstruct Underwater Shipwreck Sites. J. Archaeol. Method Theory. 2017;24:703–725. doi: 10.1007/s10816-016-9283-1. DOI

Bouby L., Figueiral I., Bouchette A., Rovira N., Ivorra S., Lacombe T., Pastor T., Picq S., Marinval P., Terral J.F. Bioarchaeological Insights into the Process of Domestication of Grapevine (Vitis vinifera L.) during Roman Times in Southern France. PLoS ONE. 2013;8:e63195. doi: 10.1371/journal.pone.0063195. PubMed DOI PMC

Evin A., Cucchi T., Cardini A., Strand Vidarsdottir U., Larson G., Dobney K. The Long and Winding Road: Identifying Pig Domestication through Molar Size and Shape. J. Archaeol. Sci. 2013;40:735–743. doi: 10.1016/j.jas.2012.08.005. DOI

Ros J.Ô., Evin A., Bouby L., Ruas M.P. Geometric Morphometric Analysis of Grain Shape and the Identification of Two-Rowed Barley (Hordeum vulgare Subsp. Distichum L.) in Southern France. J. Archaeol. Sci. 2014;41:568–575. doi: 10.1016/j.jas.2013.09.015. DOI

Neaux D., Blanc B., Ortiz K., Locatelli Y., Laurens F., Baly I., Callou C., Lecompte F., Cornette R., Sansalone G., et al. How Changes in Functional Demands Associated with Captivity Affect the Skull Shape of a Wild Boar (Sus scrofa) Evol. Biol. 2021;48:27–40. doi: 10.1007/s11692-020-09521-x. DOI

Neaux D., Blanc B., Ortiz K., Locatelli Y., Schafberg R., Herrel A., Debat V., Cucchi T. Constraints Associated with Captivity Alter Craniomandibular Integration in Wild Boar. J. Anat. 2021;239:489–497. doi: 10.1111/joa.13425. PubMed DOI PMC

Waltenberger L., Rebay-Salisbury K., Mitteroecker P. Three-Dimensional Surface Scanning Methods in Osteology: A Topographical and Geometric Morphometric Comparison. Am. J. Phys. Anthropol. 2021;174:846–858. doi: 10.1002/ajpa.24204. PubMed DOI PMC

Singh G. About the Cover CultLab3D. IEEE Comput. Graph. Appl. 2014;34:4–5. PubMed

Karaszewski M., Sitnik R., Bunsch E. On-Line, Collision-Free Positioning of a Scanner during Fully Automated Three-Dimensional Measurement of Cultural Heritage Objects. Rob. Auton. Syst. 2012;60:1205–1219. doi: 10.1016/j.robot.2012.05.005. DOI

Ferda J., Novák M., Kreuzberg B. Výpočetní Tomografie. Galén; Prague, Czech Republic: 2002.

Ferda J., Baxa J., Ferdová E., Kreuzberg B. CT s Duální Energií Záření: Zobrazení Muskuloskeletálního Systému. Česká Radiol. 2010;64:37–43.

Prokop M. General Principles of MDCT. Eur. J. Radiol. 2003;45:S4. doi: 10.1016/S0720-048X(02)00358-3. PubMed DOI

Hagag U., Tawfiek M., Brehm W., Gerlach K. Computed Tomography of the Normal Bovine Tarsus. J. Vet. Med. Ser. C Anat. Histol. Embryol. 2016;45:469–478. doi: 10.1111/ahe.12233. PubMed DOI

Dennison S.E., Schwarz T. Computed Tomographic Imaging of the Normal Immature California Sea Lion Head (Zalophus californianus) Vet. Radiol. Ultrasound. 2008;49:557–563. doi: 10.1111/j.1740-8261.2008.00421.x. PubMed DOI

Fraga-Manteiga E., Shaw D.J., Dennison S., Brownlow A., Schwarz T. an optimized computed tomography protocol for metallic gunshot head trauma in a seal model. Vet. Radiol. Ultrasound. 2014;55:393–398. doi: 10.1111/vru.12146. PubMed DOI

Esmans M.C., Soukup J.W., Schwarz T. Optimized Canine Dental Computed Tomographic Protocol in Medium-Sized Mesaticepahlic Dogs. Vet. Radiol. Ultrasound. 2014;55:506–510. doi: 10.1111/vru.12158. PubMed DOI

Uehata A., Matsuguchi T., Bittl J.A., Orav J., Meredith I.T., Anderson T.J., Selwyn A.P., Ganz P., Yeung A.C. Accuracy of Electronic Digital Calipers Compared with Quantitative Angiography in Measuring Coronary Arterial Diameter. Circulation. 1993;88:1724–1729. doi: 10.1161/01.CIR.88.4.1724. PubMed DOI

Anděra M., Horáček I. Určujeme Savce Podle Lebek. Pozn. Naše Savce. 2005;2:328.

Hell P., Cimbal D., Herz J. Vzťah Medzi Niektorými Kraniologickými Mierami a Trofejovou Kvalitou Srncov na Slovensku. Folia Venat. 1978;8:29–36.

Fandos P., Reig S. Craniometric Variability in Two Populations of Roe Deer (Capreolus capreolus) from Spain. J. Zool. 1993;231:39–49. doi: 10.1111/j.1469-7998.1993.tb05351.x. DOI

Hell P. Srnčia Zver. 1st ed. Príroda; Bratislava, Slovakia: 1979.

Hell P., Herz J. Existujú Dva Rozne Typy Liebek v Slovenských Populáciách Srnca Horneho Európského (Capreolus c. Capreolus, Linné 1758) Lesn. Čas. 1971;17:59–71.

Zejda J., Koubek P. On the Geographical Variability of Roebucks (Capreolus capreolus) Folia Zool. Brno. 1988;37:219–229.

Bertouille S.B., De Crombrugghe S.A. Body mass and lower jaw development of the Female red Deer as indices of Habitat Quality in the Ardennes. Acta Theriol. 1995;40:145–162. doi: 10.4098/AT.arch.95-16. DOI

Markov G. Morphometric Variations in the Skull of the Red Deer (Cervus elaphus L.) in Bulgaria. Acta Zool. Bulg. 2014;66:453–460.

Markov G., Ninov N., Andreev R. Craniological Variation of the Balkan Chamois, Rupicapra Rupicapra Balcanica from Bulgaria. Folia Zool. Brno. 2013;62:200–206. doi: 10.25225/fozo.v62.i3.a5.2013. DOI

Nicolay W.C., Vaders J.M. Cranial Suture Complexity in White-Tailed Deer (Odocoileus virginianus) J. Morphol. 2006;267:841–849. doi: 10.1002/jmor.10445. PubMed DOI

GENOV P.V. A Review of the Cranial Characteristics of the Wild Boar (Susscrofa linnaeus 1758), with Systematic Conclusions. Mamm. Rev. 1999;29:205–234. doi: 10.1046/j.1365-2907.1999.2940205.x. DOI

Randi E., Apollonio M., Toso S. The Systematics of Some Italian Populations of Wild Boar (Sus scrofa L)—A Craniometric and Electrophoretic Analysis. Z. Saugetierkd.-Int. J. Mamm. Biol. 1989;54:40–56.

Šprem N., Piria M., Florijančić T., Antunović B., Dumić T., Gutzmirtl H., Treer T., Curik I. Morphometrical Analysis of Reproduction Traits for the Wild Boar (Sus scrofa L.) in Croatia. Agric. Conspec. Sci. 2011;76:263–265.

Markov N., Academy R. Morphological Traits of Wild Boar in Germany and Russia: Comparison of Autochthonous and Artificial Populations. Beitr. Jagd Wildforsch. 2017;41:379–386.

Carpio A.J., Apollonio M., Acevedo P. Wild Ungulate Overabundance in Europe: Contexts, Causes, Monitoring and Management Recommendations. Mamm. Rev. 2021;51:95–108. doi: 10.1111/mam.12221. DOI

Iacolina L., Corlatti L., Buzan E., Safner T., Šprem N. Hybridisation in European Ungulates: An Overview of the Current Status, Causes, and Consequences. Mamm. Rev. 2018;49:45–59. doi: 10.1111/mam.12140. DOI

Valente A.M., Acevedo P., Figueiredo A.M., Fonseca C., Torres R.T. Overabundant Wild Ungulate Populations in Europe: Management with Consideration of Socio-Ecological Consequences. Mamm. Rev. 2020;50:353–366. doi: 10.1111/mam.12202. DOI

CIC . The Game-Trophies of the World. International Council for Game and Wildlife Conservation; Paris, France: 2010.

McKey D., Elias M., Pujol M.E., Duputié A. The Evolutionary Ecology of Clonally Propagated Domesticated Plants. New Phytol. 2010;186:318–332. doi: 10.1111/j.1469-8137.2010.03210.x. PubMed DOI

Sholts S.B., Walker P.L., Kuzminsky S.C., Miller K.W.P., Wärmländer S.K.T.S. Identification of Group Affinity from Cross-Sectional Contours of the Human Midfacial Skeleton Using Digital Morphometrics and 3D Laser Scanning Technology. J. Forensic Sci. 2011;56:333. doi: 10.1111/j.1556-4029.2011.01701.x. PubMed DOI

Bradley C., Currie B. Advances in the Field of Reverse Engineering. Comput.-Aided Des. Appl. 2005;2:697–706. doi: 10.1080/16864360.2005.10739029. DOI

Klusák K. Hodnocení Loveckých Trofejí Zvěře. 5th ed. SUCZESS; Velké Meziříčí, Czech Republic: 2002.

R Core Team . R: A Language and Environment for Statistical Computing. R Core Team; Vienna, Austria: 2020.

Van Dessel J., Huang Y., Depypere M., Rubira-Bullen I., Maes F., Jacobs R. A Comparative Evaluation of Cone Beam CT and Micro-CT on Trabecular Bone Structures in the Human Mandible. Dentomaxillofac. Radiol. 2013;42:20130145. doi: 10.1259/dmfr.20130145. PubMed DOI PMC

Belo M., Melo A., Delgado A., Costa A., Anísio V., Lemos A. The Digital Caliper’s Interrater Reliability in Measuring the Interrecti Distance and Its Accuracy in Diagnosing the Diastasis of Rectus Abdominis Muscle in the Third Trimester of Pregnancy. J. Chiropr. Med. 2020;19:136–144. doi: 10.1016/j.jcm.2020.02.002. PubMed DOI PMC

Korablev N.P., Korablev M.P., Korablev A.P., Korablev P.N., Zinoviev A.V., Zhagarayte V.A., Tumanov I.L. Factors of Polymorphism of Craniometric Characters in the Red Fox (Vulpes vulpes, Carnivora, Canidae) from the Center of European Russia. Biol. Bull. 2019;46:946–959. doi: 10.1134/S1062359019080053. DOI

Mattioli S., Ferretti F. Morphometric Characterization of Mesola Red Deer Cervus Elaphus Italicus (Mammalia: Cervidae) Ital. J. Zool. 2014;81:144–154. doi: 10.1080/11250003.2014.895432. DOI

Morata C., Pizarro A., Gonzalez H., Frugone-Zambra R. A Craniometry-Based Predictive Model to Determine Occlusal Vertical Dimension. J. Prosthet. Dent. 2020;123:611–617. doi: 10.1016/j.prosdent.2019.05.009. PubMed DOI

Özen A.S. Sexual Dimorphism and Variability in the Skull of Martes Foina. Anim. Biol. 2020;70:373–383. doi: 10.1163/15707563-bja10020. DOI

Barba S., Fiorillo F., De Feo E. 3D-Antlers: Virtual Reconstruction and Three-Dimensional Measurement. ISPRS—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013;XL-5/W1:15–20. doi: 10.5194/isprsarchives-XL-5-W1-15-2013. DOI

Park H.K., Chung J.W., Kho H.S. Use of Hand-Held Laser Scanning in the Assessment of Craniometry. Forensic Sci. Int. 2006;160:200–206. doi: 10.1016/j.forsciint.2005.10.007. PubMed DOI

Plomp K.A., Dobney K., Weston D.A., Strand Viarsdóttir U., Collard M. 3D Shape Analyses of Extant Primate and Fossil Hominin Vertebrae Support the Ancestral Shape Hypothesis for Intervertebral Disc Herniation. BMC Evol. Biol. 2019;19:226. doi: 10.1186/s12862-019-1550-9. PubMed DOI PMC

Kim M., Huh K.H., YI W.J., Heo M.S., Lee S.S., Choi S.C. Evaluation of Accuracy of 3D Reconstruction Images Using Multi-Detector CT and Cone-Beam CT. Imaging Sci. Dent. 2012;42:25–33. doi: 10.5624/isd.2012.42.1.25. PubMed DOI PMC

Ueguchi T., Ogihara R., Yamada S. Accuracy of Dual-Energy Virtual Monochromatic CT Numbers: Comparison between the Single-Source Projection-Based and Dual-Source Image-Based Methods. Acad. Radiol. 2018;25:1632–1639. doi: 10.1016/j.acra.2018.02.022. PubMed DOI

Lalone E.A., Willing R.T., Shannon H.L., King G.J.W., Johnson J.A. Accuracy Assessment of 3D Bone Reconstructions Using CT: An Intro Comparison. Med. Eng. Phys. 2015;37:729–738. doi: 10.1016/j.medengphy.2015.04.010. PubMed DOI

Baca D.B., Deutsch C.K., D’Agostino R.B. Correspondence between Direct Anthropometry and Structured Light Digital Measurement. Raven Press; New York, NY, USA: 1994.

Bhat S.S., Smith J.D. Laser and Sound Scanner for Non-Contact 3D Volume Measurement and Surface Texture Analysis. Physiol. Meas. 1994;15:79–88. doi: 10.1088/0967-3334/15/1/007. PubMed DOI

Moss J.P., Linney A.D., Grindrod S.R., Mosse C.A. A Laser Scanning System for the Measurement of Facial Surface Morphology. Opt. Lasers Eng. 1989;10:179–190. doi: 10.1016/0143-8166(89)90036-5. DOI

Wilson I., Snape L., Fright R., Nixon M. An Investigation of Laser Scanning Techniques for Quantifying Changes in Facial Soft-Tissue Volume. N. Z. Dent. J. 1997;93:110–113. PubMed

Yang W., Liu X., Wang K., Hu J., Geng G., Feng J. Sex Determination of Three-Dimensional Skull Based on Improved Backpropagation Neural Network. Comput. Math. Methods Med. 2019;2019:9163547. doi: 10.1155/2019/9163547. PubMed DOI PMC

Gribel B.F., Gribel M.N., Frazão D.C., McNamara J.A., Manzi F.R. Accuracy and Reliability of Craniometric Measurements on Lateral Cephalometry and 3D Measurements on CBCT Scans. Angle Orthod. 2011;81:28–37. doi: 10.2319/032210-166.1. PubMed DOI PMC

Schaaf H., Pons-Kuehnemann J., Malik C.Y., Streckbein P., Preuss M., Howaldt H.P., Wilbrand J.F. Accuracy of Three-Dimensional Photogrammetric Images in Non-Synostotic Cranial Deformities. Neuropediatrics. 2010;41:24–29. doi: 10.1055/s-0030-1255060. PubMed DOI

Hohl L.S.L., Sicuro F.L., Azorit C., Carrasco R., Rocha-Barbosa O. Variaciones Geométricas Del Ramus Mandibulae En Mandíbulas de Sus scrofa (Mammalia: Artiodactyla) Según Edad y Sexo. Int. J. Morphol. 2014;32:1282–1288. doi: 10.4067/S0717-95022014000400026. DOI

Milenković M., Šipetić V.J., Blagojević J., Tatović S., Vujošević M. Skull Variation in DinaricBalkan and Carpathian Gray Wolf Populations Revealed by Geometric Morphometric Approaches. J. Mamm. 2010;91:376–386. doi: 10.1644/09-MAMM-A-265.1. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...