The Application of 3D Imaging as an Appropriate Method of Wildlife Craniometry: Evaluation of Accuracy and Measurement Efficiency
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
A19_14
Ministry of Education, Youth and Sport
PubMed
36496776
PubMed Central
PMC9739653
DOI
10.3390/ani12233256
PII: ani12233256
Knihovny.cz E-resources
- Keywords
- 3D scanner, CT, antlers, geometric morphometric, mandible, reproducibility of results,
- Publication type
- Journal Article MeSH
The suitability of CT and 3D scanners for craniometric proposes was tested using digital calipers when determining linear measurements, and a measuring cylinder was used for the accuracy of 3D printing of deer antlers obtained by the CT and 3D scanners. The resolution of digitized objects from a 3D scanner ranged from 0.008 mm to 0.122 mm. For mandibular dimensions, a positive deviation (p < 0.01) from the primary control measurement was recorded. The average antler volume measured with the cylinder was 60.47 cm3 at the first measurement, in the case of the CT scanner 61.62 cm3 and for the 3D scanner 64.76 cm3—both technologies exhibit a positive deviation from the primary measurement. Precise sensing and measurements can be used to evaluate the quality and evolution of wildlife populations, create digital museum collections, or to examine in detail certain traits such as antler and horn development or dentition.
See more in PubMed
Michelinakis G., Apostolakis D., Tsagarakis A., Kourakis G., Pavlakis E. A Comparison of Accuracy of 3 Intraoral Scanners: A Single-Blinded In Vitro Study. J. Prosthet. Dent. 2020;124:581–588. doi: 10.1016/j.prosdent.2019.10.023. PubMed DOI
Sansoni G., Trebeschi M., Docchio F. State-of-the-Art and Applications of 3D Imaging Sensors in Industry, Cultural Heritage, Medicine, and Criminal Investigation. Sensors. 2009;9:568–601. doi: 10.3390/s90100568. PubMed DOI PMC
Nedelcu R., Olsson P., Nyström I., Thor A. Finish Line Distinctness and Accuracy in 7 Intraoral Scanners versus Conventional Impression: An In Vitro Descriptive Comparison. BMC Oral Health. 2018;18:27. doi: 10.1186/s12903-018-0489-3. PubMed DOI PMC
Barbero B.R., Ureta E.S. Comparative Study of Different Digitization Techniques and Their Accuracy. Comput.-Aided Des. 2011;43:188–206. doi: 10.1016/j.cad.2010.11.005. DOI
Ye X., Liu H., Chen L., Chen Z., Pan X., Zhang S. Reverse Innovative Design—An Integrated Product Design Methodology. Comput.-Aided Des. 2008;40:812–827. doi: 10.1016/j.cad.2007.07.006. DOI
Iuliano L., Minetola O. Rapid Manufacturing of Sculptures Replicas: A Comparison between 3D Optical Scanners; Proceedings of the CIPA 2005 XX International Symposium; Torino, Italy. 26 September–1 October 2005.
Telfer S., Woodburn J. The Use of 3D Surface Scanning for the Measurement and Assessment of the Human Foot. J. Foot Ankle Res. 2010;3:1–9. doi: 10.1186/1757-1146-3-19. PubMed DOI PMC
Tikuisis P., Meunier P., Jubenville C.E. Human Body Surface Area: Measurement and Prediction Using Three Dimensional Body Scans. Eur. J. Appl. Physiol. 2001;85:264–271. doi: 10.1007/s004210100484. PubMed DOI
Ong C.S., Yesantharao P., Huang C.Y., Mattson G., Boktor J., Fukunishi T., Zhang H., Hibino N. 3D Bioprinting Using Stem Cells. Pediatr. Res. 2018;83:223–231. doi: 10.1038/pr.2017.252. PubMed DOI
Singer P.M., De Santis V., Vitale D., Jeffcoate W. Multiorgan Failure Is an Adaptive, Endocrine-Mediated, Metabolic Response to Overwhelming Systemic Inaflammation. Lancet. 2004;364:545–548. doi: 10.1016/S0140-6736(04)16815-3. PubMed DOI
Counts D.B., Averett E.W., Garstki K. A Fragmented Past: (Re)Constructing Antiquity through 3D Artefact Modelling and Customised Structured Light Scanning at Athienou-Malloura, Cyprus. Antiquity. 2016;90:206–218. doi: 10.15184/aqy.2015.181. DOI
Haukaas C., Hodgetts L.M. The Untapped Potential of Low-Cost Photogrammetry in Community-Based Archaeology: A Case Study from Banks Island, Arctic Canada. J. Community Archaeol. Herit. 2016;3:40–56. doi: 10.1080/20518196.2015.1123884. DOI
Porter S.T., Roussel M., Soressi M. A Simple Photogrammetry Rig for the Reliable Creation of 3D Artifact Models in the Field. Adv. Archaeol. Pract. 2016;4:71–86. doi: 10.7183/2326-3768.4.1.71. DOI
Núñez M.A., Buill F., Edo M. 3D Model of the Can Sadurní Cave. J. Archaeol. Sci. 2013;40:4420–4428. doi: 10.1016/j.jas.2013.07.006. DOI
Sapirstein P. Accurate Measurement with Photogrammetry at Large Sites. J. Archaeol. Sci. 2016;66:137–145. doi: 10.1016/j.jas.2016.01.002. DOI
Verhoeven G., Doneus M., Briese C., Vermeulen F. Mapping by Matching: A Computer Vision-Based Approach to Fast and Accurate Georeferencing of Archaeological Aerial Photographs. J. Archaeol. Sci. 2012;39:2060–2070. doi: 10.1016/j.jas.2012.02.022. DOI
Yamafune K., Torres R., Castro F. Multi-Image Photogrammetry to Record and Reconstruct Underwater Shipwreck Sites. J. Archaeol. Method Theory. 2017;24:703–725. doi: 10.1007/s10816-016-9283-1. DOI
Bouby L., Figueiral I., Bouchette A., Rovira N., Ivorra S., Lacombe T., Pastor T., Picq S., Marinval P., Terral J.F. Bioarchaeological Insights into the Process of Domestication of Grapevine (Vitis vinifera L.) during Roman Times in Southern France. PLoS ONE. 2013;8:e63195. doi: 10.1371/journal.pone.0063195. PubMed DOI PMC
Evin A., Cucchi T., Cardini A., Strand Vidarsdottir U., Larson G., Dobney K. The Long and Winding Road: Identifying Pig Domestication through Molar Size and Shape. J. Archaeol. Sci. 2013;40:735–743. doi: 10.1016/j.jas.2012.08.005. DOI
Ros J.Ô., Evin A., Bouby L., Ruas M.P. Geometric Morphometric Analysis of Grain Shape and the Identification of Two-Rowed Barley (Hordeum vulgare Subsp. Distichum L.) in Southern France. J. Archaeol. Sci. 2014;41:568–575. doi: 10.1016/j.jas.2013.09.015. DOI
Neaux D., Blanc B., Ortiz K., Locatelli Y., Laurens F., Baly I., Callou C., Lecompte F., Cornette R., Sansalone G., et al. How Changes in Functional Demands Associated with Captivity Affect the Skull Shape of a Wild Boar (Sus scrofa) Evol. Biol. 2021;48:27–40. doi: 10.1007/s11692-020-09521-x. DOI
Neaux D., Blanc B., Ortiz K., Locatelli Y., Schafberg R., Herrel A., Debat V., Cucchi T. Constraints Associated with Captivity Alter Craniomandibular Integration in Wild Boar. J. Anat. 2021;239:489–497. doi: 10.1111/joa.13425. PubMed DOI PMC
Waltenberger L., Rebay-Salisbury K., Mitteroecker P. Three-Dimensional Surface Scanning Methods in Osteology: A Topographical and Geometric Morphometric Comparison. Am. J. Phys. Anthropol. 2021;174:846–858. doi: 10.1002/ajpa.24204. PubMed DOI PMC
Singh G. About the Cover CultLab3D. IEEE Comput. Graph. Appl. 2014;34:4–5. PubMed
Karaszewski M., Sitnik R., Bunsch E. On-Line, Collision-Free Positioning of a Scanner during Fully Automated Three-Dimensional Measurement of Cultural Heritage Objects. Rob. Auton. Syst. 2012;60:1205–1219. doi: 10.1016/j.robot.2012.05.005. DOI
Ferda J., Novák M., Kreuzberg B. Výpočetní Tomografie. Galén; Prague, Czech Republic: 2002.
Ferda J., Baxa J., Ferdová E., Kreuzberg B. CT s Duální Energií Záření: Zobrazení Muskuloskeletálního Systému. Česká Radiol. 2010;64:37–43.
Prokop M. General Principles of MDCT. Eur. J. Radiol. 2003;45:S4. doi: 10.1016/S0720-048X(02)00358-3. PubMed DOI
Hagag U., Tawfiek M., Brehm W., Gerlach K. Computed Tomography of the Normal Bovine Tarsus. J. Vet. Med. Ser. C Anat. Histol. Embryol. 2016;45:469–478. doi: 10.1111/ahe.12233. PubMed DOI
Dennison S.E., Schwarz T. Computed Tomographic Imaging of the Normal Immature California Sea Lion Head (Zalophus californianus) Vet. Radiol. Ultrasound. 2008;49:557–563. doi: 10.1111/j.1740-8261.2008.00421.x. PubMed DOI
Fraga-Manteiga E., Shaw D.J., Dennison S., Brownlow A., Schwarz T. an optimized computed tomography protocol for metallic gunshot head trauma in a seal model. Vet. Radiol. Ultrasound. 2014;55:393–398. doi: 10.1111/vru.12146. PubMed DOI
Esmans M.C., Soukup J.W., Schwarz T. Optimized Canine Dental Computed Tomographic Protocol in Medium-Sized Mesaticepahlic Dogs. Vet. Radiol. Ultrasound. 2014;55:506–510. doi: 10.1111/vru.12158. PubMed DOI
Uehata A., Matsuguchi T., Bittl J.A., Orav J., Meredith I.T., Anderson T.J., Selwyn A.P., Ganz P., Yeung A.C. Accuracy of Electronic Digital Calipers Compared with Quantitative Angiography in Measuring Coronary Arterial Diameter. Circulation. 1993;88:1724–1729. doi: 10.1161/01.CIR.88.4.1724. PubMed DOI
Anděra M., Horáček I. Určujeme Savce Podle Lebek. Pozn. Naše Savce. 2005;2:328.
Hell P., Cimbal D., Herz J. Vzťah Medzi Niektorými Kraniologickými Mierami a Trofejovou Kvalitou Srncov na Slovensku. Folia Venat. 1978;8:29–36.
Fandos P., Reig S. Craniometric Variability in Two Populations of Roe Deer (Capreolus capreolus) from Spain. J. Zool. 1993;231:39–49. doi: 10.1111/j.1469-7998.1993.tb05351.x. DOI
Hell P. Srnčia Zver. 1st ed. Príroda; Bratislava, Slovakia: 1979.
Hell P., Herz J. Existujú Dva Rozne Typy Liebek v Slovenských Populáciách Srnca Horneho Európského (Capreolus c. Capreolus, Linné 1758) Lesn. Čas. 1971;17:59–71.
Zejda J., Koubek P. On the Geographical Variability of Roebucks (Capreolus capreolus) Folia Zool. Brno. 1988;37:219–229.
Bertouille S.B., De Crombrugghe S.A. Body mass and lower jaw development of the Female red Deer as indices of Habitat Quality in the Ardennes. Acta Theriol. 1995;40:145–162. doi: 10.4098/AT.arch.95-16. DOI
Markov G. Morphometric Variations in the Skull of the Red Deer (Cervus elaphus L.) in Bulgaria. Acta Zool. Bulg. 2014;66:453–460.
Markov G., Ninov N., Andreev R. Craniological Variation of the Balkan Chamois, Rupicapra Rupicapra Balcanica from Bulgaria. Folia Zool. Brno. 2013;62:200–206. doi: 10.25225/fozo.v62.i3.a5.2013. DOI
Nicolay W.C., Vaders J.M. Cranial Suture Complexity in White-Tailed Deer (Odocoileus virginianus) J. Morphol. 2006;267:841–849. doi: 10.1002/jmor.10445. PubMed DOI
GENOV P.V. A Review of the Cranial Characteristics of the Wild Boar (Susscrofa linnaeus 1758), with Systematic Conclusions. Mamm. Rev. 1999;29:205–234. doi: 10.1046/j.1365-2907.1999.2940205.x. DOI
Randi E., Apollonio M., Toso S. The Systematics of Some Italian Populations of Wild Boar (Sus scrofa L)—A Craniometric and Electrophoretic Analysis. Z. Saugetierkd.-Int. J. Mamm. Biol. 1989;54:40–56.
Šprem N., Piria M., Florijančić T., Antunović B., Dumić T., Gutzmirtl H., Treer T., Curik I. Morphometrical Analysis of Reproduction Traits for the Wild Boar (Sus scrofa L.) in Croatia. Agric. Conspec. Sci. 2011;76:263–265.
Markov N., Academy R. Morphological Traits of Wild Boar in Germany and Russia: Comparison of Autochthonous and Artificial Populations. Beitr. Jagd Wildforsch. 2017;41:379–386.
Carpio A.J., Apollonio M., Acevedo P. Wild Ungulate Overabundance in Europe: Contexts, Causes, Monitoring and Management Recommendations. Mamm. Rev. 2021;51:95–108. doi: 10.1111/mam.12221. DOI
Iacolina L., Corlatti L., Buzan E., Safner T., Šprem N. Hybridisation in European Ungulates: An Overview of the Current Status, Causes, and Consequences. Mamm. Rev. 2018;49:45–59. doi: 10.1111/mam.12140. DOI
Valente A.M., Acevedo P., Figueiredo A.M., Fonseca C., Torres R.T. Overabundant Wild Ungulate Populations in Europe: Management with Consideration of Socio-Ecological Consequences. Mamm. Rev. 2020;50:353–366. doi: 10.1111/mam.12202. DOI
CIC . The Game-Trophies of the World. International Council for Game and Wildlife Conservation; Paris, France: 2010.
McKey D., Elias M., Pujol M.E., Duputié A. The Evolutionary Ecology of Clonally Propagated Domesticated Plants. New Phytol. 2010;186:318–332. doi: 10.1111/j.1469-8137.2010.03210.x. PubMed DOI
Sholts S.B., Walker P.L., Kuzminsky S.C., Miller K.W.P., Wärmländer S.K.T.S. Identification of Group Affinity from Cross-Sectional Contours of the Human Midfacial Skeleton Using Digital Morphometrics and 3D Laser Scanning Technology. J. Forensic Sci. 2011;56:333. doi: 10.1111/j.1556-4029.2011.01701.x. PubMed DOI
Bradley C., Currie B. Advances in the Field of Reverse Engineering. Comput.-Aided Des. Appl. 2005;2:697–706. doi: 10.1080/16864360.2005.10739029. DOI
Klusák K. Hodnocení Loveckých Trofejí Zvěře. 5th ed. SUCZESS; Velké Meziříčí, Czech Republic: 2002.
R Core Team . R: A Language and Environment for Statistical Computing. R Core Team; Vienna, Austria: 2020.
Van Dessel J., Huang Y., Depypere M., Rubira-Bullen I., Maes F., Jacobs R. A Comparative Evaluation of Cone Beam CT and Micro-CT on Trabecular Bone Structures in the Human Mandible. Dentomaxillofac. Radiol. 2013;42:20130145. doi: 10.1259/dmfr.20130145. PubMed DOI PMC
Belo M., Melo A., Delgado A., Costa A., Anísio V., Lemos A. The Digital Caliper’s Interrater Reliability in Measuring the Interrecti Distance and Its Accuracy in Diagnosing the Diastasis of Rectus Abdominis Muscle in the Third Trimester of Pregnancy. J. Chiropr. Med. 2020;19:136–144. doi: 10.1016/j.jcm.2020.02.002. PubMed DOI PMC
Korablev N.P., Korablev M.P., Korablev A.P., Korablev P.N., Zinoviev A.V., Zhagarayte V.A., Tumanov I.L. Factors of Polymorphism of Craniometric Characters in the Red Fox (Vulpes vulpes, Carnivora, Canidae) from the Center of European Russia. Biol. Bull. 2019;46:946–959. doi: 10.1134/S1062359019080053. DOI
Mattioli S., Ferretti F. Morphometric Characterization of Mesola Red Deer Cervus Elaphus Italicus (Mammalia: Cervidae) Ital. J. Zool. 2014;81:144–154. doi: 10.1080/11250003.2014.895432. DOI
Morata C., Pizarro A., Gonzalez H., Frugone-Zambra R. A Craniometry-Based Predictive Model to Determine Occlusal Vertical Dimension. J. Prosthet. Dent. 2020;123:611–617. doi: 10.1016/j.prosdent.2019.05.009. PubMed DOI
Özen A.S. Sexual Dimorphism and Variability in the Skull of Martes Foina. Anim. Biol. 2020;70:373–383. doi: 10.1163/15707563-bja10020. DOI
Barba S., Fiorillo F., De Feo E. 3D-Antlers: Virtual Reconstruction and Three-Dimensional Measurement. ISPRS—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013;XL-5/W1:15–20. doi: 10.5194/isprsarchives-XL-5-W1-15-2013. DOI
Park H.K., Chung J.W., Kho H.S. Use of Hand-Held Laser Scanning in the Assessment of Craniometry. Forensic Sci. Int. 2006;160:200–206. doi: 10.1016/j.forsciint.2005.10.007. PubMed DOI
Plomp K.A., Dobney K., Weston D.A., Strand Viarsdóttir U., Collard M. 3D Shape Analyses of Extant Primate and Fossil Hominin Vertebrae Support the Ancestral Shape Hypothesis for Intervertebral Disc Herniation. BMC Evol. Biol. 2019;19:226. doi: 10.1186/s12862-019-1550-9. PubMed DOI PMC
Kim M., Huh K.H., YI W.J., Heo M.S., Lee S.S., Choi S.C. Evaluation of Accuracy of 3D Reconstruction Images Using Multi-Detector CT and Cone-Beam CT. Imaging Sci. Dent. 2012;42:25–33. doi: 10.5624/isd.2012.42.1.25. PubMed DOI PMC
Ueguchi T., Ogihara R., Yamada S. Accuracy of Dual-Energy Virtual Monochromatic CT Numbers: Comparison between the Single-Source Projection-Based and Dual-Source Image-Based Methods. Acad. Radiol. 2018;25:1632–1639. doi: 10.1016/j.acra.2018.02.022. PubMed DOI
Lalone E.A., Willing R.T., Shannon H.L., King G.J.W., Johnson J.A. Accuracy Assessment of 3D Bone Reconstructions Using CT: An Intro Comparison. Med. Eng. Phys. 2015;37:729–738. doi: 10.1016/j.medengphy.2015.04.010. PubMed DOI
Baca D.B., Deutsch C.K., D’Agostino R.B. Correspondence between Direct Anthropometry and Structured Light Digital Measurement. Raven Press; New York, NY, USA: 1994.
Bhat S.S., Smith J.D. Laser and Sound Scanner for Non-Contact 3D Volume Measurement and Surface Texture Analysis. Physiol. Meas. 1994;15:79–88. doi: 10.1088/0967-3334/15/1/007. PubMed DOI
Moss J.P., Linney A.D., Grindrod S.R., Mosse C.A. A Laser Scanning System for the Measurement of Facial Surface Morphology. Opt. Lasers Eng. 1989;10:179–190. doi: 10.1016/0143-8166(89)90036-5. DOI
Wilson I., Snape L., Fright R., Nixon M. An Investigation of Laser Scanning Techniques for Quantifying Changes in Facial Soft-Tissue Volume. N. Z. Dent. J. 1997;93:110–113. PubMed
Yang W., Liu X., Wang K., Hu J., Geng G., Feng J. Sex Determination of Three-Dimensional Skull Based on Improved Backpropagation Neural Network. Comput. Math. Methods Med. 2019;2019:9163547. doi: 10.1155/2019/9163547. PubMed DOI PMC
Gribel B.F., Gribel M.N., Frazão D.C., McNamara J.A., Manzi F.R. Accuracy and Reliability of Craniometric Measurements on Lateral Cephalometry and 3D Measurements on CBCT Scans. Angle Orthod. 2011;81:28–37. doi: 10.2319/032210-166.1. PubMed DOI PMC
Schaaf H., Pons-Kuehnemann J., Malik C.Y., Streckbein P., Preuss M., Howaldt H.P., Wilbrand J.F. Accuracy of Three-Dimensional Photogrammetric Images in Non-Synostotic Cranial Deformities. Neuropediatrics. 2010;41:24–29. doi: 10.1055/s-0030-1255060. PubMed DOI
Hohl L.S.L., Sicuro F.L., Azorit C., Carrasco R., Rocha-Barbosa O. Variaciones Geométricas Del Ramus Mandibulae En Mandíbulas de Sus scrofa (Mammalia: Artiodactyla) Según Edad y Sexo. Int. J. Morphol. 2014;32:1282–1288. doi: 10.4067/S0717-95022014000400026. DOI
Milenković M., Šipetić V.J., Blagojević J., Tatović S., Vujošević M. Skull Variation in DinaricBalkan and Carpathian Gray Wolf Populations Revealed by Geometric Morphometric Approaches. J. Mamm. 2010;91:376–386. doi: 10.1644/09-MAMM-A-265.1. DOI