Bio-Based Poly(3-hydroxybutyrate) and Polyurethane Blends: Preparation, Properties Evaluation and Structure Analysis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
RID/SP/0032/2024/01
Ministry of Science and Higher Education of the Republic of Poland within the programme "Regional Excellence Initiative"
PubMed
40363419
PubMed Central
PMC12072585
DOI
10.3390/ma18091914
PII: ma18091914
Knihovny.cz E-zdroje
- Klíčová slova
- mechanical properties, polyhydroxyalkanoates, polymer blends, polyurethanes, structure, structure-properties relationship, thermal stability,
- Publikační typ
- časopisecké články MeSH
The present work deals with polymer blends produced from poly(3-hydroxybutyrate), P3HB and polyurethane. Linear polyurethane (PU) was here synthesized by reacting polypropylene glycol with 4,4'-diphenylmethane diisocyanate, and was used in amounts of 5, 10 and 15 wt. %. The polymers were melt-mixed using a twin-screw extruder after prior premixing. The obtained blends were tested by differential scanning calorimetry analysis (DSC), Fourier transformation infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX). Their thermal and mechanical properties, including impact resistance, hardness, tensile and flexural properties, were also determined, and the surface topography and roughness were analyzed. FTIR analysis of the prepared blends confirmed the interactions of PU with the P3HB matrix via hydrogen bonding. Analysis of the surface topography of the samples showed that the higher the PU content, the greater the regularity and homogeneity of the surface structure. The roughness of the P3HB blend containing 5 wt. % PU was the greatest. SEM images of the fracture surfaces of the blend samples explain the mechanism of the improvement of their mechanical properties. The obtained polymer blends were characterized by significantly lower hardness, and better impact strength and relative elongation at break compared to native P3HB. The DSC results confirm a decrease in the glass transition, melting and crystallization temperatures with increasing amounts of PU in the blends. The lower melting temperature and the higher degradation temperature of the resulted blends than native P3HB make the processing conditions easier, and prevent the degradation of the material. The best mechanical and thermal properties were shown by blends containing 10 wt. % of PU.
Faculty of Mechanic Radom University Stasieckiego 54 26 600 Radom Poland
Faculty of Technology Jacob of Paradies University 66 400 Gorzów Wielkopolski Poland
Zobrazit více v PubMed
Riseh R.S., Skorik Y., Thakur V.K., Pour M.M., Tamanadar E., Noghbi S.S. Encapsulation of plant biocontrol bacteria with alginate as a main polymer material. Int. J. Mol. Sci. 2021;22:11165. doi: 10.3390/ijms222011165. PubMed DOI PMC
Wang Q., Xu Y., Xu P., Yang W., Chen M., Dong W., Ma P. Crystallization of microbial polyhydroxyalkanoates: A review. Int. J. Biol. Macromol. 2022;209:330–343. doi: 10.1016/j.ijbiomac.2022.04.018. PubMed DOI
Pour M.M., Riseh R.S., Ranjbar-Karimi R., Hassanisaadi M., Rahdar A., Baino F. Microencapsulation of bacillus velezensis using alginate-gum polymers enriched with TiO2 and SiO2 nanoparticles. Micromachine. 2022;13:1423. doi: 10.3390/mi13091423. PubMed DOI PMC
Vroman I., Tighzert L. Biodegradable Polymers. Materials. 2009;2:307–344. doi: 10.3390/ma2020307. DOI
Sirohi R., Gaur V.K., Pandey A.K., Sim S., Kumar S. Harnessing fruit waste for poly-3-hydroxybutyrate production. Bioresour. Technol. 2021;326:124734. doi: 10.1016/j.biortech.2021.124734. PubMed DOI
Silva L., Taciro M., Ramos M.M., Carter J., Pradella J., Gomez J. Poly-3-hydroxybutyrate (P3HB) production by bacteria from xylose, glucose and sugarcane bagasse hydrolysate. J. Ind. Microbiol. Biotechnol. 2004;31:245–254. doi: 10.1007/s10295-004-0136-7. PubMed DOI
Junyu Z., Shishatskaya E., Volova T., Silva L.F., Chen G. Polyhydroxyalkanoates (PHAs) for therapeutic applications. Mater. Sci. Eng. C. 2018;86:144–150. doi: 10.1016/j.msec.2017.12.035. PubMed DOI
Dalton B., Bhagabati P., De Micco J., Padamati R.B., O’Connor K. A Review on Biological Synthesis of the Biodegradable Polymers Polyhydroxyalkanoates and the Development of Multiple Applications. Catalysts. 2022;12:319. doi: 10.3390/catal12030319. DOI
Chena L., Wang M. Production and evaluation of biodegradable composites based on PHB–PHV copolymer. Biomaterials. 2002;23:2631–2639. doi: 10.1016/S0142-9612(01)00394-5. PubMed DOI
Lopez-Arenas T. Analysis of the fermentation strategy and its impact on the economics of the production process of PHB (polyhydroxybutyrate) Comput. Chem. Eng. 2017;12:140–150. doi: 10.1016/j.compchemeng.2017.03.009. DOI
McAdam B., Fournet M.B., McDonald P., Mojicevic M. Production of Polyhydroxybutyrate (PHB) and Factors Impacting Its Chemical and Mechanical Characteristics. Polymers. 2020;12:2908. doi: 10.3390/polym12122908. PubMed DOI PMC
Rao U., Ravichandran S., Sehgal P. Biosynthesis and Biocompatibility of P(3HB-Co-4HB) produced by Cupriavidus necator from spent palm oil. Biochem. Eng. J. 2010;49:13–20. doi: 10.1016/j.bej.2009.11.005. DOI
Bharti S., Swetha G. Need for Bioplastics and Role of Biopolymer PHB: A Short Review. J. Pet. Environ. Biotechnol. 2016;7:272. doi: 10.4172/2157-7463.1000272. DOI
Alves M.I., Macagnan K.L., Rodrigues A.A., Assis D.A., Torres M.M., Oliveira P.D., Moreira A. Poly(3-hydroxybutyrate)-P(3HB): Review of Production Process Technology. Ind. Biotechnol. 2017;13:191–208. doi: 10.1089/ind.2017.0013. DOI
Chodak I. Polyhydroxyalkanoates: Origin Properties and Applications. In: Gandini W.M.N., editor. Monomers, Polymers and Composites from Renewable Resources. Elsevier; Amsterdam, The Netherlands: 2008. pp. 451–477. DOI
Tokiwa Y., Ugwu C.U. Biotechnological production of (R)-3-hydroxybutyric acid monomer. J. Biotechnol. 2007;132:264–272. doi: 10.1016/j.jbiotec.2007.03.015. PubMed DOI
Chandani N., Mazumder P., Bhattacharjee A. Production of Polyhydroxybutyrate (Biopolymer) by Bacillus Tequilensis NCS-3 Isolated from Municipal Waste Areas of Silchar. Int. J. Sci. Res. 2014;12:198–203.
Jiang Y., Marang L., Kleerebezem R., Muyzer G., Loosdrecht M. Polyhydroxybutyrate Production from Lactate Using a Mixed Microbial Culture. Biotechnol. Bioeng. 2011;108:2022–2035. doi: 10.1002/bit.23148. PubMed DOI
Sudesh K., Abe H., Doi Y. Synthesis, structure and properties of polyhydroxyalkanoates: Biological polyesters. Prog. Polym. Sci. 2000;25:1503–1555. doi: 10.1016/S0079-6700(00)00035-6. DOI
Liu Q., Zhang H., Deng B., Zhao X. Poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate): Structure, property, and fiber. Int. J. Polym. Sci. 2014;2014:374368. doi: 10.1155/2014/374368. DOI
Ariffin H. Determination of multiple thermal degradation mechanisms of poly(3-hydroxybutyrate) Polym. Degrad. Stab. 2008;93:1433–1439. doi: 10.1016/j.polymdegradstab.2008.05.020. DOI
Lim J., You M., Li J., Li Z. Emerging bone tissue engineering via Polyhydroxyalkanoate (PHA)-based scaffolds. Mater. Sci. Eng. C. 2017;79:917–929. doi: 10.1016/j.msec.2017.05.132. PubMed DOI
Zdiri K., Cayla A., Elamri A., Erard A., Salaun F. Alginate-Based Bio-Composites and Their Potential Applications. J. Funct. Biomater. 2022;13:117. doi: 10.3390/jfb13030117. PubMed DOI PMC
Garcia-Garcia D., Rayón E., Carbonell-Verdu A., Lopez-Martinez J., Balart R. Improvement of the compatibility between poly(3-hydroxybutyrate) and poly(ε-caprolactone) by reactive extrusion with dicumyl peroxide. Eur. Polym. J. 2017;86:41–57. doi: 10.1016/j.eurpolymj.2016.11.018. DOI
Ribeiro P.L.L., Figueiredo T.V.B., Moura L.E., Druzian J.I. Chemical modification of cellulose nanocrystals and their application in thermoplastic starch (TPS) and poly(3-hydroxybutyrate) (P3HB) nanocomposites. Polym. Adv. Technol. 2019;30:573–583. doi: 10.1002/pat.4494. DOI
Sukhanova A.A., Murzova A.E., Boyandin A.N., Kiselev E.G., Sukovatyi A.G., Kuzmin A.P., Shabanov A.V. Poly-3-hydroxybutyrate/chitosan composite films and nonwoven mats. Int. J. Biol. Macromol. 2020;165:2947–2956. doi: 10.1016/j.ijbiomac.2020.10.177. PubMed DOI
Gregory D.A., Taylor C.S., Fricker A.T.R., Santosh E.A., Tetali S.V., Haycock J.W., Roy I. Polyhydroxyalkanoates and their advances for biomedical applications. Trends Mol. Med. 2022;28:331–342. doi: 10.1016/j.molmed.2022.01.007. PubMed DOI
Krzykowska B., Czerniecka-Kubicka A., Białkowska A., Bakar M., Kovářová M., Sedlařík V., Hanusova D., Zarzyka I. Biopolymer Compositions Based on Poly(3-hydroxybutyrate) and Linear Polyurethanes with Aromatic Rings—Preparation and Properties Evaluation. Polymers. 2024;16:1618. doi: 10.3390/polym16121618. PubMed DOI PMC
Olkhov A.A., Markin V.S., Kosenko R.Y., Gol’dshtrakh M.A., Iordanskii A.L. Influence of the film forming procedure on the interaction in polyhydroxybutyrate–polyurethane blends. Russ. J. Appl. Chem. 2015;88:308–313. doi: 10.1134/S1070427215020196. DOI
Wang S., Xiang H., Wang R., Peng C., Zhou Z., Zhu M. Morphology and properties of renewable poly(3-hydroxybutyrateco-3-hydroxyvalerate) blends with thermoplastic polyurethane. Polym. Eng. Sci. 2014;54:1113–1119. doi: 10.1002/pen.23655. DOI
Martínez-Abad A., Gonzalez-Ausejo J., María Lagaron J., Cabedo L. Biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/thermoplastic polyurethane blends with improved mechanical and barrier performance. Polym. Degrad. Stab. 2016;132:52–61. doi: 10.1016/j.polymdegradstab.2016.03.039. DOI
Panaitescu D.M., Melinte V., Frone A.N., Nicolae C.A., Gabor A.R., Capră L. Influence of Biobased Polyurethane Structure on Thermal and Mechanical Properties of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)−Polyurethane Blends. J. Polym. Environ. 2023;31:1584–1597. doi: 10.1007/s10924-022-02710-z. DOI
Frone A.N., Panaitescu D.M., Gabor A.R., Nicolae C.-A., Ghiurea M., Bradu C. Poly(3-hydroxybutyrate) Modified with Thermoplastic Polyurethane and Microfibrillated Cellulose: Hydrolytic Degradation and Thermal and Mechanical Properties. Polymers. 2024;16:3606. doi: 10.3390/polym16243606. PubMed DOI PMC
Saha P., Khomlaem C., Aloui H., Kim B.S. Biodegradable Polyurethanes Based on Castor Oil and Poly (3-hydroxybutyrate) Polymers. 2021;13:1387. doi: 10.3390/polym13091387. PubMed DOI PMC
Plastics—Determination of Mechanical Properties by Static Tension. The Polish Committee for Standardization; Warsaw, Poland: 2020.
Plastics—Determination of Hardness. International Organization for Standardization; Geneva, Switzerland: 2001.
Determination of Impact Strength. International Organization for Standardization; Geneva, Switzerland: 2004.
Surface Texture: Profile Method—Terms, Definitions and Surface Texture Parameters. International Organization for Standardization; Geneva, Switzerland: 2021.
Adhesives—Wettability—Determination by Measurement of Contact Angle and Surface Free Energy of Solid Surface. European Standards; Brussels, Belgium: 2013.
Jin P., Pang A., Yang R., Guo X., He J., Zhai J. Study on Mechanical Properties of Polyurethane Cross-Linked P(E-co-T)/PEG Blended Polyether Elastomer. Polymers. 2022;14:5419. doi: 10.3390/polym14245419. PubMed DOI PMC
Almustafa W., Schubert D.W., Grishchuk S., Sebastian J., Grun G. Chemical Synthesis of Atactic Poly-3-hydroxybutyrate (a-P3HB) by Self-Polycondensation: Catalyst Screening and Characterization. Polymers. 2024;16:1655. doi: 10.3390/polym16121655. PubMed DOI PMC
Huang H., Hu Y., Zhang J., Sato H., Zhang H., Noda I., Ozaki Y. Miscibility and Hydrogen-Bonding Interactions in Biodegradable Polymer Blends of Poly(3-hydroxybutyrate) and a Partially Hydrolyzed Poly(vinyl alcohol) J. Phys. Chem. B. 2005;109:19175–19183. doi: 10.1021/jp0532162. PubMed DOI
Naureen B., Haseeb A.S.M.A., Basirun W.J., Muhamad F. Synthesis and degradation of 3D biodegradable polyurethane foam scaffolds based on poly (propylene fumarate) and poly[(R)-3-hydroxybutyrate] Mater. Today Commun. 2021;28:102536. doi: 10.1016/j.mtcomm.2021.102536. DOI
Lejardi A., Etxeberria A., Meaurio E., Sarasua J.-R. Novel poly(vinyl alcohol)-g-poly(hydroxy acid) copolymers: Synthesis and characterization. Polymer. 2012;53:50–59. doi: 10.1016/j.polymer.2011.11.029. DOI
Yeo J.C.C., Muiruri J.K., Thitsartarn W., Li Z., He C. Recent advances in the development of biodegradable PHB-based toughening materials: Approaches, advantages and applications. Mater. Sci. Eng. C. 2018;92:1092–1116. doi: 10.1016/j.msec.2017.11.006. PubMed DOI
Abbasi M., Pokhrel D., Coats E.R., Guho N.M., McDonald A.G. Effect of 3-Hydroxyvalerate Content on Thermal, Mechanical, and Rheological Properties of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Biopolymers Produced from Fermented Dairy Manure. Polymers. 2022;14:4140. doi: 10.3390/polym14194140. PubMed DOI PMC
Garcia-Garcia D., Fenollar O., Fombuena V., Lopez-Martinez J., Balart R. Improvement of Mechanical Ductile Properties of Poly (3-hydroxybutyrate) by Using Vegetable Oil Derivatives. Macromol. Mater. Eng. 2017;302:1600330. doi: 10.1002/mame.201600330. DOI
Krzykowska B., Czerniecka-Kubicka A., Białkowska A., Bakar M., Hęclik K., Dobrowolski L., Longosz M., Zarzyka I. Polymer Biocompositions and Nanobiocomposites Based on P3HB with Polyurethane and Montmorillonite. Int. J. Mol. Sci. 2023;24:17405. doi: 10.3390/ijms242417405. PubMed DOI PMC
Feng F., Zhao X., Ye L. Structure and Properties of Ultradrawn Polylactide/Thermoplastic Polyurethane Elastomer Blends. J. Macromol. Sci. Part B. 2011;50:1500–1507. doi: 10.1080/00222348.2010.518889. DOI
Wang F., Ji Y., Chen C., Zhang G., Chen G. Tensile properties of 3D printed structures of polylactide with thermoplastic polyurethane. J. Polym. Res. 2022;29:320. doi: 10.1007/s10965-022-03172-6. DOI
Sun X.M., Zhong L.H., Lan X.P., Tan G.Y. The compatibility of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) and thermoplastic polyurethane blends. Adv. Mater. Res. 2013;815:552–557. doi: 10.4028/www.scientific.net/AMR.815.552. DOI
Ivorra-Martinez J., Verdu I., Fenollar O., Sanchez-Nacher L., Balart R., Quiles-Carrillo L. Manufacturing and properties of binary blend from bacterial polyester poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) and poly (caprolactone) with improved toughness. Polymers. 2020;12:1118. doi: 10.3390/polym12051118. PubMed DOI PMC
Zhu C., Chen Q. Advanced Healthcare Materials. Wiley; Hoboken, NJ, USA: 2014. Polyhydroxyalkanoate-based biomaterials for applications in biomedical engineering; pp. 439–464. Chapter 12.
Lai J.-Y., Li Y.-T., Cho C.-H., Yu T.-C. Nanoscale modification of porous gelatin scaffolds with chondroitin sulfate for corneal stromal tissue engineering. Int. J. Nanomed. 2012;7:1101–1114. doi: 10.2147/IJN.S28753. PubMed DOI PMC
Olkhov A.A., Pankova Y.N., Goldshtrakh M.A., Kosenko R.Y., Markin V.S., Ischenko A.A., Iordanskiy A.L. Structure and properties of films based on blends of polyamide–polyhydroxybutyrate. Inorg. Mater. Appl. Res. 2016;7:471–477. doi: 10.1134/S2075113316040249. DOI
Tidjani A., Wald O., Pohl M.-M., Hentschel M.-P., Schartel B. Polypropylene–graft–maleic anhydride-nanocomposites: I—Characterization and thermal stability of nanocomposites produced under nitrogen and in air. Polym. Degrad. Stab. 2003;82:82133–82140. doi: 10.1016/S0141-3910(03)00174-5. DOI
Perepelkin K.E., Malan’ina O.B., Basko M.O., Makarova M.A., Oprits Z.G. Thermal degradation of thermostable aromatic fibers in air and nitrogen medium. Fibre Chem. 2005;37:196–198. doi: 10.1007/s10692-005-0079-4. DOI
Wang L., Zhu W., Wang X., Chen X., Chen G.-Q., Xu K. Processability modifications of poly(3-hydroxybutyrate) by plasticizing, blending, and stabilizing. J. Appl. Polym. Sci. 2008;107:166–173. doi: 10.1002/app.27004. DOI