Biopolymer Compositions Based on Poly(3-hydroxybutyrate) and Linear Polyurethanes with Aromatic Rings-Preparation and Properties Evaluation
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
"Regional Excellence Initiative"
the Minister of Science and Higher Education Republic of Poland
PubMed
38931968
PubMed Central
PMC11207839
DOI
10.3390/polym16121618
PII: polym16121618
Knihovny.cz E-resources
- Keywords
- mechanical properties, polyester, polyurethane, structure–properties relationship, thermal properties,
- Publication type
- Journal Article MeSH
Polymer biocompositions of poly(3-hydroxybutyrate) (P3HB) and linear polyurethanes (PU) with aromatic rings were produced by melt-blending at different P3HB/PU weight ratios (100/0, 95/5, 90/10, and 85/15). Polyurethanes have been prepared with 4,4'-diphenylmethane diisocyanate and polyethylene glycols with molar masses of 400 g/mol (PU400), 1000g/mol (PU1000), and 1500 g/mol (PU1500). The compatibility and morphology of the obtained polymer blends were determined by infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). The effect of the polyurethane content in the biocompositions on their thermal stability and mechanical properties was investigated and compared with those of the native P3HB. It was shown that increasing the PU content in P3HB-PU compositions to 10 wt.% leads to an improvement in the mentioned properties. The obtained results demonstrated that the thermal stability and mechanical properties of P3HB were improved, particularly in terms of increasing the degradation temperature, reducing hardness, and increasing impact strength. The best thermal and mechanical properties were shown by the P3HB-PU polymer compositions containing 10 wt.% of polyurethane modifiers, especially PU1000, which was also confirmed by the morphology analysis of these biocompositions. The presence of polyurethanes in the resulting polymer biocomposites decreases their glass transition temperatures, i.e., makes the materials more flexible. The resulting polymer biocompositions have suitable mechanical properties and thermal properties within the processing conditions for the predicted application as biodegradable, short-lived products for agriculture.
See more in PubMed
Baran B. Resource (in)efficiency in the EU: A case of plastic waste. Ekon. I Prawo. 2022;21:45–62. doi: 10.12775/eip.2022.003. DOI
Saud S., Yang A., Jiang Z., Ning D., Fahad S. New insights in to the environmental behavior and ecological toxicity of microplastics. J. Hazard. Mater. Adv. 2023;10:100298–100305. doi: 10.1016/j.hazadv.2023.100298. DOI
Arif Z.U., Khalid M.Y., Sheikh M.F., Zolfagharian A., Bodaghi M. Biopolymeric sustainable materials and their emerging applications. J. Environ. Chem. Eng. 2022;10:108159–108168. doi: 10.1016/j.jece.2022.108159. DOI
George A., Sanjay M.R., Srisuk R., Parameswaranpillai J., Siengchin S. A comprehensive review on chemical properties and applications of biopolymers and their composites. Int. J. Biol. Macromol. 2020;154:329–338. doi: 10.1016/j.ijbiomac.2020.03.120. PubMed DOI
Riaz S., Rhee K.Y., Park S.J. Polyhydroxyalkanoates (PHAs): Biopolymers for biofuel and biorefineries. Polymers. 2021;13:253. doi: 10.3390/polym13020253. PubMed DOI PMC
Bordes P., Pollet E., Avérous L. Nano-biocomposites: Biodegradable polyester/nanoclay systems. Progress. Polym. Sci. 2009;34:125–155. doi: 10.1016/j.progpolymsci.2008.10.002. DOI
Antipova T.V., Zhelifonova V.P., Zaitsev K.V., Nedorezova P.M., Aladyshev A.M., Klyamkina A.N., Kostyuk S.V., Danilogorskaya A.A., Kozlovsky A.G. Biodegradation of Poly-ε-caprolactones and Poly-l-lactides by Fungi. J. Polym. Environ. 2018;26:4350–4359. doi: 10.1007/s10924-018-1307-3. DOI
Baidurah S. Methods of Analyses for Biodegradable Polymers: A Review. Polymers. 2022;14:4928. doi: 10.3390/polym14224928. PubMed DOI PMC
Olkhov A.A., Tyubaeva P.M., Vetcher A.A., Karpova S.G., Kurnosov A.S., Rogovina S.Z., Iordanskii A.L., Berlin A.A. Aggressive Impacts Affecting the Biodegradable Ultrathin Fibers Based on Poly(3-Hydroxybutyrate), Polylactide and Their Blends: Water Sorption, Hydrolysis and Ozonolysis. Polymers. 2021;13:941. doi: 10.3390/polym13060941. PubMed DOI PMC
Tan D., Wang Y., Tong Y., Chen G.Q. Grand Challenges for Industrializing Polyhydroxyalkanoates (PHAs) Trends Biotechnol. 2021;39:953–963. doi: 10.1016/j.tibtech.2020.11.010. PubMed DOI
Sharma A., Thakur M., Bhattacharya M., Mandal T., Goswami S. Commercial application of cellulose nanocomposites—A review. Biotechnol. Rep. 2019;15:e00316. doi: 10.1016/j.btre.2019.e00316. PubMed DOI PMC
Khan A., Wang B., Ni Y. Chitosan-Nanocellulose Composites for Regenerative Medicine Applications. Curr. Med. Chem. 2020;27:4584–4592. doi: 10.2174/0929867327666200127152834. PubMed DOI
Sanyang M.L., Ilyas R.A., Sapuan S.M., Jumaidin R. Sugar Palm Starch-Based Composites for Packaging Applications. In: Jawaid M., Swain S., editors. Bionanocomposites for Packaging Applications. Springer; Cham, Switzerland: 2018. DOI
Meléndez-Rodríguez B., Torres-Giner S., Reis M.A.M., Silva F., Matos M., Cabedo L., Lagarón J.M. Blends of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) with Fruit Pulp Biowaste Derived Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate-co-3-Hydroxyhexanoate) for Organic Recycling Food Packaging. Polymers. 2021;13:1155. doi: 10.3390/polym13071155. PubMed DOI PMC
Sukhanova A.A., Murzova A.E., Boyandin A.N., Kiselev E.G., Sukovatyi A.G., Kuzmin A.P., Shabanov A.V. Poly-3-hydroxybutyrate/chitosan composite films and nonwoven mats. Int. J. Biol. Macromol. 2020;165:2947–2956. doi: 10.1016/j.ijbiomac.2020.10.177. PubMed DOI
Raza Z.A., Khalil S., Abid S. Recent progress in development and chemical modification of poly(hydroxybutyrate)-based blends for potential medical applications. Int. J. Biol. Macromol. 2020;160:77–100. doi: 10.1016/j.ijbiomac.2020.05.114. PubMed DOI
Dalton B., Bhagabati P., De Micco J., Padamati R.B., O’Connor K. A Review on Biological Synthesis of the Biodegradable Polymers Polyhydroxyalkanoates and the Development of Multiple Applications. Catalysts. 2022;12:319. doi: 10.3390/catal12030319. DOI
Kalia V.C., Singh-Patel S.K., Shanmugam R., Lee J.K. Polyhydroxyalkanoates: Trends and advances toward biotechnological applications. Bioresour. Technol. 2021;326:124737. doi: 10.1016/j.biortech.2021.124737. PubMed DOI
Fernandes E.G., Pietrini M., Chiellini E. Thermo-mechanical and morphological characterization of plasticized poly[(R)-3-hydroxybutyric acid] Macromol. Symp. 2004;218:157–164. doi: 10.1002/masy.200451416. DOI
Yeo J.C.C., Muiruri J.K., Thitsartarn W., Li Z., He C. Recent advances in the development of biodegradable PHB-based toughening materials: Approaches, advantages and applications. Mater. Sci. Eng. C. 2018;92:1092–1116. doi: 10.1016/j.msec.2017.11.006. PubMed DOI
Sosa-Hernández J.E., Villalba-Rodríguez A.M., Romero-Castillo K.D., Zavala-Yoe R., Bilal M., Ramirez-Mendoza R.A., Parra-Saldivar R., Iqbal H.M. Poly-3-hydroxybutyrate-based constructs with novel characteristics for drug delivery and tissue engineering applications—A review. Polym. Eng. Sci. 2020;60:1760–1772. doi: 10.1002/pen.25470. DOI
Taylor C.S., Behbehani M., Glen A., Basnett P., Gregory D.A., Lukasiewicz B.B., Nigmatullin R., Claeyssens F., Roy I., Haycock J.W. Aligned Polyhydroxyalkanoate Blend Electrospun Fibers as Intraluminal Guidance Scaffolds for Peripheral Nerve Repair. ACS Biomater. Sci. Eng. 2023;9:1472–1485. doi: 10.1021/acsbiomaterials.2c00964. PubMed DOI PMC
El-Taweel S.H., Höhne G.W.H., Mansour A.A., Stoll B. Glass transition and the rigid amorphous phase in semicrystalline blends of bacterial polyhydroxybutyrate PHB with low molecular mass atactic R, S-PHB-diol. Polymer. 2004;45:983–992. doi: 10.1016/j.polymer.2003.12.007. DOI
Lee S.N., Lee M.Y., Park W.H. Thermal stabilization of poly(3-hydroxybutyrate) by poly(glycidyl methacrylate) J. Appl. Polym. Sci. 2002;83:2945–2952. doi: 10.1002/app.10318. DOI
Bakar M., Kostrzewa M., Pawelec Z. Preparation and properties of epoxy resin modified with polyurethane based on hexamethylene diisocyanate and different polyols. J. Thermoplast. Compos. Mater. 2014;27:620–631. doi: 10.1177/0892705712453155. DOI
Bakar M., Kostrzewa M., Hausnerova B. Effect of diisocyanates on the properties and morphology of epoxy/polyurethane interpenetrating polymer networks. J. Thermoplast. Compos. Mater. 2012;26:1364–1376. doi: 10.1177/0892705712439570. DOI
Kostrzewa M., Hausnerova B., Bakar M., Dalka M. Property evaluation and structure analysis of polyurethane/epoxy graft interpenetrating polymer networks. J. Appl. Polym. Sci. 2011;122:1722–1730. doi: 10.1002/app.34070. DOI
Bakar M., Kostrzewa M., Hausnerova B., Sar K. Preparation and property evaluation of nanocomposites based on polyurethane-modified epoxy/montmorillonite systems. Adv. Polym. Tech. 2010;29:237–248. doi: 10.1002/adv.20192. DOI
Bakar M., Kostrzewa M., Hausnerova B., Pająk K. Preparation and characterization of an epoxy resin modified by a combination of MDI-based polyurethane and montmorillonite. J. Appl. Polym. Sci. 2011;122:3237–3247. doi: 10.1002/app.34347. DOI
Freier T. Biopolyesers in Tissue Engineering Applications. Adv. Polym. Sci. 2006;203:1–61. doi: 10.1007/12_073. DOI
Zarzyka I., Czerniecka-Kubicka A., Hęclik K., Dobrowolski D., Pyda M., Leś K., Walczak M., Białkowska A., Bakar M. Thermally stable biopolymer composites based on poly(3-hydroxybutyrate) modified with linear aliphatic polyurethanes—Preparation and properties. Acta Bioeng. Biomech. 2021;23:1–15. doi: 10.37190/ABB-01782-2021-05. PubMed DOI
Zarzyka I., Czerniecka-Kubicka A., Hęclik K., Dobrowolski L., Krzykowska B., Białkowska A., Bakar M. Biobased poly(3-hydroxybutyrate acid) composites with addition of aliphatic polyurethane based on polypropylene glycols. Acta Bioeng. Biomech. 2022;24:75–89. doi: 10.37190/ABB-01987-2021-02. PubMed DOI
Krzykowska B., Czerniecka-Kubicka A., Białkowska A., Bakar M., Kovarova M., Sedlarik V., Zarzyka I. Polymer/layered clay/polyurethane nanocomposites: P3HB hybride nanobiocomposites—Preparation and properties evaluation. Nanomaterials. 2023;13:225. doi: 10.3390/nano13020225. PubMed DOI PMC
Krzykowska B., Czerniecka-Kubicka A., Białkowska A., Bakar M., Hęclik K., Dobrowolski L., Longosz M., Zarzyka I. Polymer Biocompositions and Nanobiocomposites Based on P3HB with Polyurethane and Montmorillonite. Int. J. Mol. Sci. 2023;24:17405. doi: 10.3390/ijms242417405. PubMed DOI PMC
Adhesives—Determination of the Content of Isocyanate Groups. Polish Committee for Standardization; Warsaw, Poland: 2006.
Determination of Tensile Properties, Part 2: Test Conditions for Moulding and Extrusion Plastics. Polish Committee for Standardization; Warsaw, Poland: 2012.
Plastics—Determination of Charpy Impact Properties, Part 1: Non-Instrumented Impact Test. Polish Committee for Standardization; Warsaw, Poland: 2023.
Plastics and Ebonite—Determination of Indentation Hardness by Means of a Durometer (Shore Hardness) Polish Committee for Standardization; Warsaw, Poland: 2003.
Standard Test Method for Rubber Property—Durometer Hardness. Polish Committee for Standardization; Berlin, Germany: 2017.
Eesaee M., Ghassemi P., Nguyen D.D., Thomas S., Elkoun S., Nguyen-Tri P. Morphology and crystallization behaviour of polyhydroxyalkanoates-based blends and composites: A review. Biochem. Eng. J. 2022;187:108588. doi: 10.1016/j.bej.2022.108588. DOI
Rodríguez-Cendal A.I., Gómez-Seoane I., de Toro-Santos F.J., Fuentes-Boquete I.M., Señarís-Rodríguez J., Díaz-Prado S.M. Biomedical Applications of the Biopolymer Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV): Drug Encapsulation and Scaffold Fabrication. Int. J. Mol. Sci. 2023;24:11674. doi: 10.3390/ijms241411674. PubMed DOI PMC
Alfano S., Pagnanelli F., Martinelli A. Rapid Estimation of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Composition Using ATR-FTIR. Polymers. 2023;15:4127. doi: 10.3390/polym15204127. PubMed DOI PMC
Łukaszewska I., Lalik S., Bukowczan A., Marzec M., Pielichowski K., Raftopoulos K.N. Tailoring the physical properties of non-isocyanate polyurethanes by introducing secondary amino groups along their main chain. J. Mol. Liq. Part A. 2023;391:123263. doi: 10.1016/j.molliq.2023.123263. DOI
Ryszkowska J. Supermolecular structure, morphology and physical properties of urea-urethane elastomers. Polimery. 2012;58:775–785. doi: 10.14314/polimery.2012.777. DOI
Iqbal H.M., Kyazze G., Tron T., Keshavarz T. “One-pot” synthesis and characterisation of novel P(3HB)–ethyl cellulose based graft composites through lipase catalysed esterification. Polym. Chem. 2014;5:7004–7012. doi: 10.1039/C4PY00857J. DOI
Tejada-Oliveros R., Balart R., Ivorra-Martinez J., Gomez-Caturla J., Montanes N., Quiles-Carrillo L. Improvement of Impact Strength of Polylactide Blends with a Thermoplastic Elastomer Compatibilized with Biobased Maleinized Linseed Oil for Applications in Rigid Packaging. Molecules. 2021;26:240. doi: 10.3390/molecules26010240. PubMed DOI PMC
Kowalska M., Broniatowski M., Mach M., Płachta Ł., Wydro P. The effect of the polyethylene glycol chain length of a lipopolymer (DSPE-PEGn) on the properties of DPPC monolayers and bilayers. J. Mol. Liq. 2021;335:116529. doi: 10.1016/j.molliq.2021.116529. DOI
Fernández-Ronco M.P., Gradzik B., Gooneie A., Hufenus R., El Fray M. Tuning poly(3 hydroxybutyrate) (P3HB) properties by tailored segmented bio copolymers. ACS Sustain. Chem. Eng. 2017;5:11060–11068. doi: 10.1021/acssuschemeng.7b03023. DOI
Matumba K.I., Motloung M.P., Ojijo V., Ray S.S., Sadiku E.R. Investigation of the Effects of Chain Extender on Material Properties of PLA/PCL and PLA/PEG Blends: Comparative Study between Polycaprolactone and Polyethylene Glycol. Polymers. 2023;15:2230. doi: 10.3390/polym15092230. PubMed DOI PMC
Garcia-Garcia D., Fenollar O., Fombuena V., Lopez-Martinez J., Balart R. Improvement of Mechanical Ductile Properties of Poly (3-hydroxybutyrate) by Using Vegetable Oil Derivatives. Macromol. Mater. Eng. 2017;302:1600330. doi: 10.1002/mame.201600330. DOI
Mangeon C., Michely L., Rios de Anda A., Thevenieau F., Renard E., Langlois V. Natural terpenes used as plasticizers for poly (3-hydroxybutyrate) ACS Sustain. Chem. Eng. 2018;6:16160–16168. doi: 10.1021/acssuschemeng.8b02896. DOI
Jin P., Pang A., Yang R., Guo X., He J., Zhai J. Study on Mechanical Properties of Polyurethane Cross-Linked P(E-co-T)/PEG Blended Polyether Elastomer. Polymers. 2022;14:5419. doi: 10.3390/polym14245419. PubMed DOI PMC
Abbasi M., Pokhrel D., Coats E.R., Guho N.M., McDonald A.G. Effect of 3-Hydroxyvalerate Content on Thermal, Mechanical, and Rheological Properties of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Biopolymers Produced from Fermented Dairy Manure. Polymers. 2022;14:4140. doi: 10.3390/polym14194140. PubMed DOI PMC
Omura T., Gato T., Maehara A., Kimura S., Abe H., Iwata T. Thermal degradation behavior of poly [(R)-3-hydroxybutyrate-co-4-hydroxybutyrate] Polym. Degrad. Stab. 2021;183:109460. doi: 10.1016/j.polymdegradstab.2020.109460. DOI