No significant retinal damage induced by major orthopedic surgery - a pilot study
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články, pozorovací studie
PubMed
33885047
DOI
10.5507/bp.2021.022
Knihovny.cz E-zdroje
- Klíčová slova
- anesthesia, optical coherence tomography, orthopedic surgery,
- MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- nemoci retiny * MeSH
- optická koherentní tomografie metody MeSH
- ortopedické výkony * škodlivé účinky MeSH
- pilotní projekty MeSH
- poruchy zraku MeSH
- retina MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- pozorovací studie MeSH
BACKGROUND: Perioperative visual loss is one of the rare but devastating complications of anesthesia and surgery. The incidence of less severe or even subclinical postoperative visual dysfunction is unknown. Therefore, we decided to perform a pilot prospective observational clinical study to evaluate whether structural changes of the retina can be detected in patients undergoing elective orthopaedic surgery by optical coherence tomography (OCT). METHODS: Adult patients indicated for elective knee replacement surgery with the absence of known retinal or optic nerve disease were included. Each patient underwent baseline OCT examination of the eyes one day before surgery and it was repeated 4-7 days after the surgery. The surgery was done under general and epidural anesthesia. RESULTS: A total of 18 patients (6 men and 12 women) at the age of 70.8±7.1 years were enrolled. We found statistically significant changes in the Macular central thickness and in a few areas of the Retinal Nerve Fiber Layer between the baseline and postoperative measurements. CONCLUSIONS: Even though we found significant changes in some parameters, we did not confirm that general anesthesia and/or surgical damage causes significant damage of the retina using OCT measurement. TRIAL REGISTRATION: ClinicalTrials.gov (NCT04311801).
Emergency Medical Service of the Central Bohemian Region Vancurova 1544 Kladno 272 01 Czech Republic
Zobrazit více v PubMed
Roth S. Perioperative visual loss: what do we know, what can we do? Br J Anaesth 2009;103(1):31-40. DOI
Fujimoto J, Swanson E. The Development, Commercialization, and Impact of Optical Coherence Tomography. Invest Ophthalmol Vis Sci 2016; 1/57(9):OCT1-OCT13. PubMed DOI
Ang, M, Tan AC, Cheung CM. Optical coherence tomography angiography: a review of current and future clinical applications. Graefes Arch Clin Exp Ophthalmol 2018; 256:237-45. DOI
Weber KL, Jevsevar DS, McGrory BJ. AAOS Clinical Practice Guideline: Surgical Management of Osteoarthritis of the Knee: Evidence-based Guideline. J Am Acad Orthop 2016; 24(8):94-6. DOI
Waheed N, Duker J. OCT in the Management of Diabetic Macular Edema. Curr Ophthalmol Rep 2013;1:128-33. DOI
Matuskova V, Lizrova Preiningerova J, Michalec M, Kasl Z, Vlkova E. The Use of Optical Coherence Tomography in Multiple Sclerosis. Cesk Slov Neurol N 2016;79/112(1)33-40. DOI
Wu H, de Boer JF, Chen TC. Diagnostic capability of spectraldomain optical coherence tomography for glaucoma. Am J Ophthalmol 2012;153(5):815-26. DOI
ASA Physical Status Classification System. https://www.asahq.org/standardsand-guidelines/asa-physical-status-classification-system. Last amended: October 23, 2019.
Murphy MA. Bilateral posterior ischaemic optic neuropathy after lumbar spine surgery. Ophthalmology 2003;110:1454-7. PubMed DOI
Shen Y, Drum M, Roth S. The prevalence of perioperative visual loss in the United States: a 10-year study from 1996 to 2005 of spinal, orthopedic, cardiac, and general surgery. Anesth Analg 2009; 109(5):1534-45. PubMed DOI
Hironobu H, Kawaguchi M, Okamoto M, Hasuwa K, Matsuura T, Taniguchi S, Furuya H. Asymptomatic and Symptomatic Postoperative Visual Dysfunction After Cardiovascular Surgery With Cardiopulmonary Bypass: A Small-Sized Prospective Observational Study. J Cardiothorac Vasc Anesth 2013;27(5):884-9. PubMed DOI
Osborne NN, Casson RJ, Wood JP, Chidlow G, Graham M, Melena J. Retinal ischemia: mechanisms of damage and potential therapeutic strategies. Prog Retin Eye Res 2004;23(1):91-147. PubMed DOI
Rozanowska MB. Light-induced damage to the retina: current understanding of the mechanisms and unresolved questions: a symposium-in-print. Photochem Photobiol 2012;88(6):1303-8. DOI
Bhende M, Shetty S, Parthasarathy MK, Ramya S. Optical coherence tomography: A guide to interpretation of common macular diseases. Indian J Ophthalmol 2018;66(1):20-35. DOI
Trichonas G, Kaiser PK. Optical coherence tomography imaging of macular oedema. Br J Ophthalmol 2014;98(2):24-9. PubMed DOI
Herrero R, Garcia-Martin E, Almarcegui C, Ara JR, Rodriguez-Mena D, Martin J, Otin S, Satue M, Pablo LE, Fernandez FJ. Progressive degeneration of the retinal nerve fiber layer in patients with multiple sclerosis. Invest Ophthalmol Vis Sci 2012;53(13):8344-9. PubMed DOI
Kromer R, Eck B, Rahman S, Framme C. Ocular Blood Volume Index Based on Scattering Properties of Retinal Vessels Using Spectral Domain Optical Coherence Tomography. Curr Eye Res 2019;44(1):60-66. DOI
Spahr H, Hillmann D, Hain C. Darstellung von Blutfluss und Pulsation in retinalen Gefäßen mit Full-Field-Swept-Source-OCT [Imaging Blood Flow and Pulsation of Retinal Vessels with Full-Field Swept-Source OCT]. Klin Monbl Augenheilkd 2016;233(12):1324-30. PubMed DOI
ClinicalTrials.gov
NCT04311801