Exploring Nature and Predicting Strength of Hydrogen Bonds: A Correlation Analysis Between Atoms-in-Molecules Descriptors, Binding Energies, and Energy Components of Symmetry-Adapted Perturbation Theory
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31518004
DOI
10.1002/jcc.26068
Knihovny.cz E-zdroje
- Klíčová slova
- binding energy, correlation analysis, coupled cluster, hydrogen bond, quantum theory of atoms-in-molecules, supermolecular approach, symmetry-adapted perturbation theory,
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
This work studies the underlying nature of H-bonds (HBs) of different types and strengths and tries to predict binding energies (BEs) based on the properties derived from wave function analysis. A total of 42 HB complexes constructed from 28 neutral and 14 charged monomers were considered. This set was designed to sample a wide range of HB strengths to obtain a complete view about HBs. BEs were derived with the accurate coupled cluster singles and doubles with perturbative triples correction (CCSD(T))(T) method and the physical components of the BE were investigated by symmetry-adapted perturbation theory (SAPT). Quantum theory of atoms-in-molecules (QTAIM) descriptors and other HB indices were calculated based on high-quality density functional theory wave functions. We propose a new and rigorous classification of H-bonds (HBs) based on the SAPT decomposition. Neutral complexes are either classified as "very weak" HBs with a BE ≥ -2.5 kcal/mol that are mainly dominated by both dispersion and electrostatic interactions or as "weak-to-medium" HBs with a BE varying between -2.5 and -14.0 kcal/mol that are only dominated by electrostatic interactions. On the other hand, charged complexes are divided into "medium" HBs with a BE in the range of -11.0 to -15.0 kcal/mol, which are mainly dominated by electrostatic interactions, or into "strong" HBs whose BE is more negative than -15.0 kcal/mol, which are mainly dominated by electrostatic together with induction interactions. Among various explored correlations between BEs and wave function-based HB descriptors, a fairly satisfactory correlation was found for the electron density at the bond critical point (BCP; ρBCP ) of HBs. The fitted equation for neutral complexes is BE/kcal/mol = - 223.08 × ρBCP /a. u. + 0.7423 with a mean absolute percentage error (MAPE) of 14.7%, while that for charged complexes is BE/kcal/mol = - 332.34 × ρBCP /a. u. - 1.0661 with a MAPE of 10.0%. In practice, these equations may be used for a quick estimation of HB BEs, for example, for intramolecular HBs or large HB networks in biomolecules. © 2019 Wiley Periodicals, Inc.
Beijing Kein Research Center for Natural Sciences Beijing 100022 People's Republic of China
Chemistry Department Shahrood Branch Islamic Azad University Shahrood Iran
Zobrazit více v PubMed
T. Steiner, Angew. Chem. Int. Ed. 2002, 41, 48.
J. A. Gerlt, M. M. Kreevoy, W. W. Cleland, P. A. Frey, Chem. Biol. 1997, 4, 259.
C. L. Perrin, J. B. Nielson, Annu. Rev. Phys. Chem. 1997, 48, 511.
G. Zundel, Hydrogen Bonds with Large Proton Polarizability and Proton Transfer Processes in Electrochemistry and Biology. In Advances in Chemical Physics, Vol. 111; I. Prigogine, S. A. Rice, Eds., Wiley, New York, 1999.
L. Leiserowitz, Acta Crystallogr., Sect. B 1976, 32, 775.
J. Bernstein, M. C. Etter, L. Leiserowitz, The Role of Hydrogen Bonding in Molecular Assemblies. In Structure Correlation; H. B. Bürgi, J. D. Dunitz, Eds., VCH Verlagsgesellschaft mbH, weinheim, 1994, p. 431.
J.-M. Lehn, Angew. Chem. Int. Ed. Engl. 1990, 29, 1304.
P. Pokorná, M. Krepl, H. Kruse, J. Šponer, J. Chem. Theory Comput. 2017, 13, 5658.
E. Arunan, R. Desiraju Gautam, A. Klein Roger, J. Sadlej, S. Scheiner, I. Alkorta, C. Clary David, H. Crabtree Robert, J. Dannenberg Joseph, P. Hobza, G. Kjaergaard Henrik, C. Legon Anthony, B. Mennucci, J. Nesbitt David, Pure Appl. Chem. 2011, 83, 1637.
K. E. Riley, P. Hobza, WIREs: Comp. Mol. Sci. 2011, 1, 3.
J. Řezáč, P. Hobza, Chem. Rev. 2016, 116, 5038.
E. G. Hohenstein, C. D. Sherrill, WIREs: Comp. Mol. Sci. 2012, 2, 304.
K. Raghavachari, G. W. Trucks, J. A. Pople, M. Head-Gordon, Chem. Phys. Lett. 1989, 157, 479.
H. Kruse, P. Banas, J. ı. Šponer, J. Chem. Theory Comput. 2018, 15, 95.
T. M. Parker, L. A. Burns, R. M. Parrish, A. G. Ryno, C. D. Sherrill, J. Chem. Phys. 2014, 140, 094106.
T. Lu, F. Chen, J. Mol. Model. 2013, 19, 5387.
Y. Jiao, Y. Liu, W. Zhao, Z. Wang, X. Ding, H. Liu, T. Lu, Int. J. Quantum Chem. 2017, 117, e25443.
R. W. F. Bader, Atoms in Molecules: A Quantum Theory, Oxford University Press, New York, 1990.
B. Bankiewicz, P. Matczak, M. Palusiak, J. Phys. Chem. A 2011, 116, 452.
A. V. Afonin, A. V. Vashchenko, M. V. Sigalov, Org. Biomol. Chem. 2016, 14, 11199.
A. Shahi, E. Arunan, Phys. Chem. Chem. Phys. 2014, 16, 22935.
S. J. Grabowski, Chem. Rev. 2011, 111, 2597.
F. Fuster, S. J. Grabowski, J. Phys. Chem. A 2011, 115, 10078.
S. J. Grabowski, P. Lipkowski, J. Phys. Chem. A 2011, 115, 4765.
T. Lu, S. Manzetti, Struct. Chem. 2014, 25, 1521.
F. Fuster, B. Silvi, Theor. Chem. Acc. 2000, 104, 13.
A. D. Becke, K. E. Edgecombe, J. Chem. Phys. 1990, 92, 5397.
T. Lu, F. Chen, Acta Phys. -Chim. Sin. 2011, 27, 2786.
N. Mohan, C. H. Suresh, J. Phys. Chem. A 2014, 118, 1697.
E. Espinosa, E. Molins, C. Lecomte, Chem. Phys. Lett. 1998, 285, 170.
L. Goerigk, S. Grimme, J. Chem. Theory Comput. 2010, 7, 291.
F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.
J. Zheng, X. Xu, D. G. Truhlar, Theor. Chem. Acc. 2011, 128, 295.
R. J. Bartlett, J. Phys. Chem. 1989, 93, 1697.
E. Papajak, J. Zheng, X. Xu, H. R. Leverentz, D. G. Truhlar, J. Chem. Theory Comput. 2011, 7, 3027.
T. H. Dunning, Jr.., J. Chem. Phys. 1989, 90, 1007.
D. E. Woon, T. H. Dunning, Jr.., J. Chem. Phys. 1993, 98, 1358.
S. F. Boys, F. d. Bernardi, Mol. Phys. 1970, 19, 553.
L. A. Burns, M. S. Marshall, C. D. Sherrill, J. Chem. Theory Comput. 2013, 10, 49.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, F. D. Williams, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16 A.03, Gaussian, Inc, Wallingford, CT, 2016.
R. M. Parrish, L. A. Burns, D. G. A. Smith, A. C. Simmonett, A. E. DePrince, E. G. Hohenstein, U. Bozkaya, A. Y. Sokolov, R. Di Remigio, R. M. Richard, J. F. Gonthier, A. M. James, H. R. McAlexander, A. Kumar, M. Saitow, X. Wang, B. P. Pritchard, P. Verma, H. F. Schaefer, K. Patkowski, R. A. King, E. F. Valeev, F. A. Evangelista, J. M. Turney, T. D. Crawford, C. D. Sherrill, J. Chem. Theory Comput. 2017, 13, 3185.
T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580.
M. G. Medvedev, I. S. Bushmarinov, J. Sun, J. P. Perdew, K. A. Lyssenko, Science 2017, 355, 49.
P. D. Mezei, G. I. Csonka, M. Kállay, J. Chem. Theory Comput. 2017, 13, 4753.
P. Macchi, D. M. Proserpio, A. Sironi, J. Am. Chem. Soc. 1998, 120, 13429.
T. A. Keith, M. J. Frisch, J. Phys. Chem. A 2011, 115, 12879.
T. Lu, F. Chen, J. Phys. Chem. A 2013, 117, 3100.
T. Lu, Q. Chen, Acta Phys. -Chim. Sin. 2018, 34, 503.
E. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A. J. Cohen, W. Yang, J. Am. Chem. Soc. 2010, 132, 6498.
A. J. Misquitta, J. Chem. Theory Comput. 2013, 9, 5313.
J. Řezáč, K. E. Riley, P. Hobza, J. Chem. Theory Comput. 2011, 7, 2427.
I. G. Kaplan, Theory of molecular interactions, Elsevier, Amsterdam, 1986.
I. Alkorta, I. Rozas, J. Elguero, Chem. Soc. Rev. 1998, 27, 163.
S. J. Grabowski, Annu. Rep. Prog. Chem., Sect. C 2006, 102, 131.
I. Rozas, I. Alkorta, J. Elguero, J. Am. Chem. Soc. 2000, 122, 11154.
F. Weinhold, C. R. Landis, A natural bond orbital donor-acceptor perspective, Cambridge University Press, New York, 2005.
A. J. Stone, J. Phys. Chem. A 2017, 121, 1531.
E. Espinosa, I. Alkorta, J. Elguero, E. Molins, J. Chem. Phys. 2002, 117, 5529.
Z. Wang, Y. Liu, B. Zheng, F. Zhou, Y. Jiao, Y. Liu, X. Ding, T. Lu, J. Chem. Phys. 2018, 148, 194106.
B. Zheng, Y. Liu, Z. Wang, F. Zhou, Y. Liu, X. Ding, T. Lu, Mol. Phys. 2019, 117, 2443.
K. E. Riley, M. Pitoňák, P. Jurečka, P. Hobza, Chem. Rev. 2010, 110, 5023.