The stereospecificity of flobufen metabolism in isolated guinea pig hepatocytes

. 2003 Jun 05 ; 3 () : 5. [epub] 20030605

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid12791169

BACKGROUND: Flobufen (F) is an original nonsteroidal anti-inflammatory drug with one center of chirality. 4-Dihydroflobufen (DHF), compound with two chiral centers, is the main metabolite of F in microsomes and cytosol in all standard laboratory animals. This work describes the biotransformation of F enantiomers and DHF stereoisomers in isolated male guinea pig hepatocytes. Guinea pigs were chosen with respect to similarities in F metabolism as in Man found earlier. R-F, S-F, (2R;4S)-DHF, (2S;4R)-DHF, (2S;4S)-DHF and (2R;4R)-DHF, structurally very similar compounds, served as substrates in order to observe their interaction with enzymes. Stereospecificity of the respective enzymes was studied in vitro, using hepatocytes monolayer. Chiral HPLC using R,R-ULMO column as chiral stationary phase was used for detection and quantitation of metabolites. RESULTS: (2R;4S)-DHF and (2S;4S)-DHF were the principle stereoisomers detected after incubation with rac-F, R-F and S-F. The ratio of (2R;4S)-DHF/(2S;4S)-DHF ranged from 1.1 to 2.4 depending on the substrate used. (2R;4S)-DHF was the major stereoisomer found after incubation with (2S;4S)-DHF and (2R;4R)-DHF. (2S;4S)-DHF was the principle stereoisomer found after incubation with (2R;4S)-DHF and (2S;4R)-DHF. Besides DHF stereoisomers, other metabolites (M-17203, UM-1 and UM-2) were also detected after incubation of hepatocytes monolayer with F. Interestingly, these metabolites were not found in incubation of all F forms and DHF with fresh liver homogenate. CONCLUSIONS: Different activities and stereospecificities of the respective enzymes were observed for each substrate in primary culture of hepatocytes. Cell integrity is crucial for formation of secondary metabolites M-17203, UM-1 and UM-2.

Zobrazit více v PubMed

Rainsdorf KD. Profile and mechanisms of gastrointestinal and other side effects of nonsteroidal anti-inflammatory drugs (NSAIDs) Am J Med. 1999;107:27S–35S. PubMed

Flig E, Hermann T, Glowka F. Studies on the metabolism of ibuprofen in isolated rat hepatocytes. Acta Pol Pharm. 1997;54:197–202. PubMed

Evans AM. Pharmacodynamics and pharmacokinetics of the profens: enantioselectivity, clinical implications, and special reference to S(+)-ibuprofen. J Clin Pharmacol. 1996;36:7S–15S. PubMed

Kuchar M, Maturova E, Brunova B, Grimova J, Tomkova H, Holoubek J. Quantitative relationships between structure and antiinflammatory activity of aryloxoalkanoic acids. Collect Czech Chem Commun. 1988;53:1862–1872.

Kuchar M, Vosatka V, Poppova M, Knizova E, Panajotovova V, Tomkova H, Taimr J. Some analogs of 4-(2',4'-difluorobiphenyl-4-yl)-4-oxobutanoic acid: synthesis and antiinflammatory activity. Collect Czech Chem Commun. 1995;60:1026–1033. doi: 10.1135/cccc19951026. DOI

Chicarelli FS, Eisner HJ, Van GE Lear. Metabolic and pharmacokinetic studies with fenbufen in Man. Arzneim-Forsch. 1980;30:728–735. PubMed

Insel PA. Analgesic-antipyretic and antiinflammatory agents and drugs employed in the treatments of gout. In: Hardman JG, Limbird LE, Molinoff PB, Ruddon RW, Gilman AG, editor. The pharmacological basis of therapeutics. 9. International edition, The McGraw-Hill Companies; 1997. pp. 617–658.

Stovickova J, Stol M, Trnavsky K. Influence of flobufen on the activity of proteinases degrading cartilage matrix and the comparison with the influence of tetracycline, tiaprofenic acid and arteparon. Rheumatol. 1995;9:41–44.

Wsol V, Kral R, Skalova L, Szotakova B, Trejtnar F, Flieger M. Stereospecificity and stereoselectivity of flobufen metabolic profile in rats in vitro and in vivo: phase I of biotransformation. Chirality. 2001;13:754–759. doi: 10.1002/chir.10005. PubMed DOI

Kvasnickova E, Szotakova B, Wsol V, Trejtnar F, Skalova L, Hais IM, Kuchar M, Poppova M. Metabolic pathways of flobufen – a new antirheumatic and antiarthritic drug. Interspecies comparison. Exp Toxic Pathol. 1999;51:352–356. PubMed

Fujimoto R. Flobufen VUFB. Current Opinion in CPNS Investigational Drugs. 1999;1:142–147.

Kuchar M, Jandera A, Panajotova V, Wsol V, Kvasnickova E, Jegorov A. Chiral aspects of biological activity of flobufen, the original long-lasting antirheumatic with high tolerability. Chem Pap. 1998;52:436.

Maurel P. The use of adult human hepatocytes in primary culture and other in vitro systems to investigate drug metabolism in man. Adv Drug Delivery Rew. 1996;22:105–132. doi: 10.1016/S0169-409X(96)00417-6. DOI

Mills RFN, Adams SS, Cliffe EE, Dickinson A, Nicholson JS. The metabolism of ibuprofen. Xenobiotica. 1973;3:589–598. PubMed

Trejtnar F, Wsol V, Szotakova B, Skalova L, Pavek P, Kuchar M. Stereoselective pharmacokinetics of flobufen in rats. Chirality. 1999;11:781–786. doi: 10.1002/(SICI)1520-636X(1999)11:10<781::AID-CHIR7>3.0.CO;2-9. PubMed DOI

Skalova L, Szotakova B, Lamka J, Kral R, Vankova I, Baliharova V, Wsol V. Biotransformation of flobufen enantiomers in ruminant hepatocytes and subcellular fractions. Chirality. 2001;13:760–764. doi: 10.1002/chir.10014. PubMed DOI

Xiotao Q, Hall SD. Modulation of enantioselective metabolism and inversion of ibuprofen by xenobiotics in isolated rat hepatocytes. J Pharmacol Exp Ther. 1993;266:845–851. PubMed

Tracy TS, Hall SD. Metabolic inversion of (R)-ibuprofen. Epimerization and hydrolysis of ibuprofenoyl-CoA. Drug Metab Dispos. 1992;20:322–327. PubMed

Knihinicki RD, Day RO, Williams KM. Chiral inversion of 2-arylpropionic acid nonsteroidal anti-inflammatory drugs-II. Racemization and hydrolysis of (R)- and (S)-ibuprofen-CoA thioesters. Biochem Pharmacol. 1991;42:1905–1911. doi: 10.1016/0006-2952(91)90588-V. PubMed DOI

Müller S, Mayer JM, Etter JC, Testa B. Metabolic chiral inversion of ibuprofen in isolated rat hepatocytes. Chirality. 1990;2:74–78. PubMed

Mayer JM. Stereoselective metabolism of antiinflammatory 2-arylpropinates. Acta Pharm Nord. 1990;2:197–216. PubMed

Mayer JM, Testa B, Roy-de Vos M, Audergon C, Etter JC. Interactions between the in vitro metabolism of xenobiotics and fatty acids. The case of ibuprofen and other chiral profens. Arch Toxicol. 1995;17:499–513. PubMed

Wechter WJ, Loughhead DG, Reischer RJ, VanGiessen GJ, Keiser DG. Enzymatic Inversion at saturated carbon: nature and mechanism of the inversion of R(-) p-iso-butyl hydratropic acid. Biochem Biophys Res Commun. 1974;61:833–837. PubMed

Knights KM, Drew R, Meffin PJ. Enantiospecific formation of fenoprofen coenzyme A thioester in vitro. Biochem Pharmacol. 1988;37:3539–3542. doi: 10.1016/0006-2952(88)90382-6. PubMed DOI

Shieh WR, Chen CS. Purification and characterization of novel 2-arylpropionyl-CoA epimerases from rat liver cytosol and mitochondria. J Biol Chem. 1993;268:2487–2493. PubMed

Hall SD, Xiaotao Q. The role of coenzyme A in the biotransformation of 2-arylpropionic acids. Chem-Biol Interact. 1994;90:235–251. doi: 10.1016/0009-2797(94)90013-2. PubMed DOI

Brugger R, Alia BG, Reichel C, Menzel S, Brune K, Geisslinger G. Long chain acyl-coA synthetase is a key enzyme in the inversion of R- to S-ibuprofen. Naunyn-Schmiedeberg's Arch Pharmaco. 1996;353:12.

Jamali F, Lovlin R, Aberg G. Bi-directional chiral inversion of ketoprofen in CD-1 mice. Chirality. 1997;9:29–31. doi: 10.1002/(SICI)1520-636X(1997)9:1<29::AID-CHIR6>3.3.CO;2-R. PubMed DOI

Berry MN, Edwards AM, Barritt GJ. Isolated hepatocytes – preparation, properties and applications. In: Elsevier Science, editor. Laboratory techniques in biochemistry and molecular biology. Vol. 21. Amsterodam; 1991.

Isom HC, Georgoff I. Quantitative assay for albumin-producing liver cell after simian virus transformation of rat hepatocytes maintained in chemically defined medium. Proc Natl Acad Sci USA. 1984;8:6378–6382. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...