Polymer Bionanocomposites Based on a P3BH/Polyurethane Matrix with Organomodified Montmorillonite-Mechanical and Thermal Properties, Biodegradability, and Cytotoxicity
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
no number
Manuscript financed by the Minister of Science and Higher Education Republic of Poland within the program "Regional Excellence Initiative".
PubMed
39339144
PubMed Central
PMC11435496
DOI
10.3390/polym16182681
PII: polym16182681
Knihovny.cz E-zdroje
- Klíčová slova
- biodegradability, cytotoxicity, mechanical properties, polyester, polyurethane, structure–properties relationship, thermal stability,
- Publikační typ
- časopisecké články MeSH
In the present work, hybrid nanobiocomposites based on poly(3-hydroxybutyrate), P3HB, with the use of aromatic linear polyurethane as modifier and organic nanoclay, Cloisite 30B, as a nanofiller were produced. The aromatic linear polyurethane (PU) was synthesized in a reaction of diphenylmethane 4,4'-diisocyanate and polyethylene glycol with a molecular mass of 1000 g/mole. The obtained nanobiocomposites were characterized by the small-angle X-ray scattering technique, scanning electron microscopy, Fourier infrared spectroscopy, thermogravimetry, and differential scanning calorimetry, and moreover, their selected mechanical properties, biodegradability, and cytotoxicity were tested. The effect of the organomodified montmorillonite presence in the biocomposites on their properties was investigated and compared to those of the native P3HB and the P3HB-PU composition. The obtained hybrid nanobiocomposites have an exfoliated structure. The presence and content of Cloisite 30B influence the P3HB-PU composition's properties, and 2 wt.% Cloisite 30B leads to the best improvement in the aforementioned properties. The obtained results indicate that the thermal stability and mechanical properties of P3HB were improved, particularly in terms of increasing the degradation temperature, reducing hardness, and increasing impact strength, which were also confirmed by the morphological analysis of these bionanocomposites. However, the presence of organomodified montmorillonite in the obtained polymer biocomposites decreased their biodegradability slightly. The produced hybrid polymer nanobiocomposites have tailored mechanical and thermal properties and processing conditions for their expected application in the production of biodegradable, short-lived products for agriculture. Moreover, in vitro studies on human skin fibroblasts and keratinocytes showed their satisfactory biocompatibility and low cytotoxicity, which make them safe when in contact with the human body, for instance, in biomedical applications.
Zobrazit více v PubMed
Howarth G. Polyurethanes, polyurethane dispersions and polyureas: Past, present and future. Surf. Coatings Int. B Coatings Trans. 2003;86:111–118. doi: 10.1007/BF02699621. DOI
Szycher M., Siciliano A.A., Reed A.M. Polyurethanes in medical devices. Med. Des. Mat. 1991;1:18–25. PubMed
Krol P. Linear Polyurethanes: Synthesis Methods, Chemical Structures, Properties and Applications. Brill Academic Publishers; Leiden, The Netherlands: 2008.
Ismail E.A., Motawie A.M., Sadek E.M. Synthesis and characterization of polyurethane coatings based on soybean oil–polyester polyols. Egypt J. Pet. 2011;20:1–8. doi: 10.1016/j.ejpe.2011.06.009. DOI
Zia K.M., Zuber M., Saif M.J., Jawaid M., Mahmood K., Shahid M., Ahmad M.N. Chitin based polyurethanes using hydroxyl terminated polybutadiene, part III: Surface characteristics. Int. J. Biol. Macromol. 2013;62:670–676. doi: 10.1016/j.ijbiomac.2013.10.001. PubMed DOI
Zia K.M., Bhatti H.N., Ahmad Bhatti I. Methods for polyurethane and polyurethane composites, recycling and recovery: A review. React. Funct. Polym. 2007;67:675–692. doi: 10.1016/j.reactfunctpolym.2007.05.004. DOI
Ionescu M. Chemistry and Technology of Polyols for Polyurethanes. Volume 56 Rapra Technology; Shrewsbury, UK: Polymer International; Shawbury, UK: 2007.
Rafiee Z., Keshavarz V. Synthesis and characterization of polyurethane/microcrystalline cellulose bionanocomposites. Prog. Org. Coatings. 2015;86:190–193. doi: 10.1016/j.porgcoat.2015.05.013. DOI
Prisacariu C. Polyurethane Elastomers: From Morphology to Mechanical Aspects. Springer Science & Business Media; Berlin/Heidelberg, Germany: 2011.
Chattopadhyay D.K., Raju K.V.S.N. Structural engineering of polyurethane coatings for high performance applications. Prog. Polym. Sci. 2007;32:352–418. doi: 10.1016/j.progpolymsci.2006.05.003. DOI
Zia K.M., Anjum S., Zuber M., Mujahid M., Jamil T. Synthesis and molecular characterization of chitosan based polyurethane elastomers using aromatic diisocyanate. Int. J. Biol. Macromol. 2014;66:26–32. doi: 10.1016/j.ijbiomac.2014.01.073. PubMed DOI
Akindoyo J.O., Beg M.D.H., Ghazali S., Islam M.R., Jeyaratnam N., Yuvaraj A.R. Polyurethane types, synthesis and applications—A review. RSC Adv. 2016;6:114453–114482. doi: 10.1039/C6RA14525F. DOI
Lelah M.D., Cooper S.I. Polyurethane in Medicine. CRC Press; Boca Raton, FL, USA: 1986. pp. 35–71.
Hung K.-C., Tseng C.-S., Dai L.-G., Hsu S. Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering. Biomaterials. 2016;83:156–168. doi: 10.1016/j.biomaterials.2016.01.019. PubMed DOI
Poussard L., Burel F., Couvercelle J.-P., Merhi Y., Tabrizian M., Bunel C. Hemocompatibilty of new ionic polyurethanes: Influence of carboxylic group insertion modes. Biomaterials. 2004;25:3473–3483. doi: 10.1016/j.biomaterials.2003.10.069. PubMed DOI
Wang J.-H., Yao C.-H., Chuang W.-Y., Young T.-H. Development of biodegradable polyesterurethane membranes with different surface morphologies for the culture of osteoblasts. J. Biomed. Mater. Res. 2000;51:761–770. doi: 10.1002/1097-4636(20000915)51:4<761::AID-JBM26>3.0.CO;2-2. PubMed DOI
Zhou B., Hu Y., Li J., Li B. Chitosan/phosvitin antibacterial films fabricated via layer-by-layer deposition. Int. J. Biol. Macromol. 2014;64:402–408. doi: 10.1016/j.ijbiomac.2013.12.016. PubMed DOI
Wang Y., Hong Q., Chen Y., Lian X., Xiong Y. Surface properties of polyurethanes modified by bioactive polysaccharide-based polyelectrolyte multilayers. Colloids Surf. B Biointerfaces. 2012;100:77–83. doi: 10.1016/j.colsurfb.2012.05.030. PubMed DOI
Solanki A., Mehta J., Thakore S. Structure–property relationships and biocompatibility of carbohydrate crosslinked polyurethanes. Carbohydr. Polym. 2014;110:338–344. doi: 10.1016/j.carbpol.2014.04.021. PubMed DOI
Solanki A., Thakore S. Cellulose crosslinked pH-responsive polyurethanes for drug delivery: α-hydroxy acids as drug release modifiers. Int. J. Biol. Macromol. 2015;80:683–691. doi: 10.1016/j.ijbiomac.2015.07.003. PubMed DOI
Kara F., Aksoy E.A., Yuksekdag Z., Hasirci N., Aksoy S. Synthesis and surface modification of polyurethanes with chitosan for antibacterial properties. Carbohydr. Polym. 2014;112:39–47. doi: 10.1016/j.carbpol.2014.05.019. PubMed DOI
Baheiraei N., Yeganeh H., Ai J., Gharibi R., Azami M., Faghihi F. Synthesis, characterization and antioxidant activity of a novel electroactive and biodegradable polyurethane for cardiac tissue engineering application. Mater. Sci. Eng. C. 2014;44:24–37. doi: 10.1016/j.msec.2014.07.061. PubMed DOI
Gao Z., Peng J., Zhong T., Sun J., Wang X., Yue C. Biocompatible elastomer of waterborne polyurethane based on castor oil and polyethylene glycol with cellulose nanocrystals. Carbohydr. Polym. 2012;87:2068–2075. doi: 10.1016/j.carbpol.2011.10.027. DOI
Krzykowska B., Czerniecka-Kubicka A., Białkowska A., Bakar M., Kovarova M., Sedlarik V., Hanusova D., Zarzyka I. Biopolymer Compositions Based on Poly(3-hydroxybutyrate) and Linear Polyurethanes with Aromatic Rings-Preparation and Properties Evaluation. Polymers. 2024;16:1618. doi: 10.3390/polym16121618. PubMed DOI PMC
Plastics—Determination of Mechanical Properties in Static Tension—General Principles. Polish Stand-ArdsInstitution; Warszawa, Poland: 1998.
Metallic Materials—Brinell Hardness Test—Part 1: Test Method. Polish Stand-ArdsInstitution; Warszawa, Poland: 2006.
Determination of Mechanical Properties under Static Stretching. Polish Stand-ArdsInstitution; Warszawa, Poland: 2013.
Plastics—Determination of Tensile-Impact Strength. ISO; Geneva, Switzerland: 2004.
Plastics—Determination of the Ultimate Aerobic Biodegradability of Plastic Materials in Soil by Measuring the Oxygen Demand in Respirometer or the Amount of Carbon Dioxide Evolved. ISO; Geneva, Switzerland: 2012.
Soil Quality—Determination of the Water Retention Characteristics—Laboratory Methods. International Organization for Standardization; Geneva, Switzerland: 2019.
Soil Quality—Determination of pH. ISO; Geneva, Switzerland: 2021.
Park J.-C., Park B.J., Lee D.H., Suh H., Kim D.-G., Kwon O.-H. Evaluation of the cytotoxicity of polyetherurethane (PU) film containing zinc diethyldithiocarbamate on various cell lines. Yonsei Med. J. 2002;43:518–526. doi: 10.3349/ymj.2002.43.4.518. PubMed DOI
US Pharmacopeia Chapter 87: Biological Reactivity Test, In Vitro. [(accessed on 13 August 2024)]. Available online: https://www.drugfuture.com/pharmacopoeia/usp32/pub/data/v32270/usp32nf27s0_c87.html.
Biological Evaluation of Medical Devices-Part 12: Sample Preparation and Reference Materials. ISO; Geneva, Switzerland: 2021.
García-Quiles L., Cuello A. F’.; Castell, P. Sustainable Materials with Enhanced Mechanical Properties Based on Industrial Polyhydroxyalkanoates Reinforced with Organomodified Sepiolite and Montmorillonite. Polymers. 2019;11:696. doi: 10.3390/polym11040696. PubMed DOI PMC
Jost V., Kopitzky R. Blending of Polyhydroxybutyrate-co-valerate with Polylactic Acid for Packaging Applications—Reflections on Miscibility and Effects on the Mechanical and Barrier Properties. Chem. Biochem. Eng. Q. 2015;29:221–246. doi: 10.15255/CABEQ.2014.2257. DOI
Jin P., Pang A., Yang R., Guo X., He J., Zhai J. Study on Mechanical Properties of Polyurethane Cross-Linked P(E-co-T)/PEG Blended Polyether Elastomer. Polymers. 2022;14:5419. doi: 10.3390/polym14245419. PubMed DOI PMC
Yeo J.C.C., Muiruri J.K., Thitsartarn W., Li Z., He C. Recent advances in the development of biodegradable PHB-based toughening materials: Approaches, advantages and applications. Mater. Sci. Eng. C. 2018;92:1092–1116. doi: 10.1016/j.msec.2017.11.006. PubMed DOI
Abbasi M., Pokhrel D., Coats E.R., Guho N.M., McDonald A.G. Effect of 3-Hydroxyvalerate Content on Thermal, Mechanical, and Rheological Properties of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Biopolymers Produced from Fermented Dairy Manure. Polymers. 2022;14:4140. doi: 10.3390/polym14194140. PubMed DOI PMC
Iron R., Mehdikhani M., Naghashzargar E., Karbasi S., Semnani D. Effects of nano-bioactive glass on structural, mechanical and bioactivity properties of Poly (3-hydroxybutyrate) electrospun scaffold for bone tissue engineering applications. Mater. Tech. 2019;34:540–548. doi: 10.1080/10667857.2019.1591728. DOI
Corre Y.M., Bruzaud S., Audic J.L., Grohens Y. Morphology and functional properties of commercial polyhydroxyalkanoates: A comprehensive and comparative study. Polym. Test. 2012;31:226–235. doi: 10.1016/j.polymertesting.2011.11.002. DOI
Botana A., Mollo M., Eisenberg P., Torres Sanchez R.M. Effect of modified montmorillonite on biodegradable PHB nanocomposites. Appl. Clay Sci. 2010;47:263–270. doi: 10.1016/j.clay.2009.11.001. DOI
Paşcu E.I., Stokes J., McGuinness G.B. Electrospun composites of PHBV, silk fibroin and nano-hydroxyapatite for bone tissue engineering. Mater. Sci. Eng. C. 2013;33:4905–4916. doi: 10.1016/j.msec.2013.08.012. PubMed DOI
Chandar J.V., Shanmugan S., Mutharasu D., Azlan A.A. Poly (3-hydroxybutyrate-co-15 mol% 3hydroxyhexanoate)/ZnO nanocomposites by solvent casting method: A study of optical, surface, and thermal properties. Mater. Res. Express. 2017;4:015301. doi: 10.1088/2053-1591/4/1/015301. DOI
Colombo I., Sangiovanni E., Maggio R., Mattozzi C., Zava S., Corbett Y., Fumagalli M., Carlino C., Corsetto P.A., Scaccabarozzi D., et al. HaCaT Cells as a Reliable In Vitro Differentiation Model to Dissect the Inflammatory/Repair Response of Human Keratinocytes. Mediat. Inflamm. 2017;2017:7435621. doi: 10.1155/2017/7435621. PubMed DOI PMC
Hoh A., Maier K. Comparative Cytotoxicity Test with Human Keratinocytes, HaCaT Cells, and Skin Fibroblasts to Investigate Skin-Irritating Substances. In: Bernd A., Bereiter-Hahn J., Hevert F., Holzmann H., editors. Cell and Tissue Culture Models in Dermatological Research. Springer; Berlin/Heidelberg, Germany: 1993. pp. 341–347. DOI
Freier T., Kunze C., Nischan C., Kramer S., Sternberg K., Saß M., Hopt U.T., Schmitz K.-P. In vitro and in vivo degradation studies for development of a biodegradable patch based on poly(3-hydroxybutyrate) Biomaterials. 2002;23:2649–2657. doi: 10.1016/S0142-9612(01)00405-7. PubMed DOI
García-Cerna S., Sánchez-Pacheco U., Meneses-Acosta A., Rojas-García J., Campillo-Illanes B., Segura-González D., Peña-Malacara C. Evaluation of Poly-3-Hydroxybutyrate (P3HB) Scaffolds Used for Epidermal Cells Growth as Potential Biomatrix. Polymers. 2022;14:4021. doi: 10.3390/polym14194021. PubMed DOI PMC
Hamada H., Isaksson M., Bruze M., Engfeldt M., Liljelind I., Axelsson S., Jönsson B., Tinnerberg H., Zimerson E. Dermal uptake study with 4,4′-diphenylmethane diisocyanate led to active sensitization. Contact Dermat. 2012;66:101–105. doi: 10.1111/j.1600-0536.2011.01995.x. PubMed DOI
Król P., Uram Ł., Król B., Pielichowska K., Walczak M. Study of chemical, physico-mechanical and biological properties of 4,4′-methylenebis(cyclohexyl isocyanate)-based polyurethane films. Mater. Sci. Eng. C. 2018;93:483–494. doi: 10.1016/j.msec.2018.07.082. PubMed DOI
Wagner A., Eldawud R., White A., Agarwal S., Stueckle T.A., Sierros K.A., Rojanasakul Y., Gupta R.K., Dinu C.Z. Toxicity evaluations of nanoclays and thermally degraded byproducts through spectroscopical and microscopical approaches. Biochim. Biophys. Acta BBA-Gen. Subj. 2017;1861:3406–3415. doi: 10.1016/j.bbagen.2016.09.003. PubMed DOI PMC
Maisanaba S., Gutiérrez-Praena D., Pichardo S., Moreno F.J., Jordá M., Cameán A.M., Aucejo S., Jos Á. Toxic effects of a modified montmorillonite clay on the human intestinal cell line Caco-2. J. Appl. Toxicol. 2014;34:714–725. doi: 10.1002/jat.2945. PubMed DOI