• This record comes from PubMed

Tailored Functionalization of Plasmonic AgNPs/C:H:N:O Nanocomposite for Sensitive and Selective Detection

. 2025 Feb ; 18 (2) : e202400353. [epub] 20241223

Language English Country Germany Media print-electronic

Document type Journal Article

Grant support
Czech Science Foundation (Grant Number GACR 21-0503K)

We report here on the development of tailored plasmonic AgNPs/C:H:N:O plasma polymer nanocomposites for the detection of the pathogenic bacterium Borrelia afzelii , with high selectivity and sensitivity. Silver (Ag) nanoparticles, generated by a gas aggregation source, are incorporated onto a C:H:N:O plasma polymer matrix, which is deposited by magnetron sputtering of a nylon 6.6. These anchored Ag nanoparticles propagate localized surface plasmon resonance (LSPR), optically responding to changes caused by immobilized pathogens near the nanoparticles. The tailored functionalization of AgNPs/C:H:N:O nanocomposite surface allows both high selectivity for the pathogen and high sensitivity with an LSPR red-shift Δλ > (4.20 ± 0.71) nm for 50 Borrelia per area 0.785 cm2. The results confirmed the ability of LSPR modulation for the rapid and early detection of (not only) tested pathogens.

See more in PubMed

Borisov S. M. and Wolfbeis O. S., “Optical Biosensors,” Chemical Reviews 108, no. 2 (2008): 423–461. PubMed

Vo‐Dinh T., Wang H., and Scaffidi J., “Plasmonic Nanoprobes for SERS Biosensing and Bioimaging,” Journal of Biophotonics 3, no. 1–2 (2009): 89–102. PubMed PMC

Liu Y., Qiao S., Fang C., et al., “A Highly Sensitive LITES Sensor Based on a Multi‐Pass Cell With Dense Spot Pattern and a Novel Quartz Tuning Fork With Low Frequency,” Opto‐Electronic Advances 7 (2024): 230230, 10.29026/oea.2024.230230. DOI

Jing C. and Long Y.‐T., Localized Surface Plasmon Resonance Based Nanobiosensors (London: Springer, 2014).

Mayer K. M. and Hafner J. H., “Localized Surface Plasmon Resonance Sensors,” Chemical Reviews 111, no. 6 (2011): 3828–3857, 10.1021/cr100313v. PubMed DOI

Coronado E. A., Encina E. R., and Stefani F. D., “Optical Properties of Metallic Nanoparticles: Manipulating Light, Heat and Forces at the Nanoscale,” Nanoscale 3, no. 10 (2011): 4042–4059, 10.1039/c1nr10788g. PubMed DOI

Hutter E. and Fendler J. H., “Exploitation of Localized Surface Plasmon Resonance,” Advanced Materials 16, no. 19 (2004): 1685–1706, 10.1002/adma.200400271. DOI

Willets K. A. and Van Duyne R. P., “Localized Surface Plasmon Resonance Spectroscopy and Sensing,” Annual Review of Physical Chemistry 58, no. 1 (2007): 267–297, 10.1146/annurev.physchem.58.032806.104607. PubMed DOI

Sherry L. J., Jin R., Mirkin C. A., Schatz G. C., and Van Duyne R. P., “Localized Surface Plasmon Resonance Spectroscopy of Single Silver Triangular Nanoprisms,” Nano Letters 6, no. 9 (2006): 2060–2065, 10.1021/nl061286u. PubMed DOI

West P. R., Ishii S., Naik G. V., Emani N. K., Shalaev V. M., and Boltasseva A., “Searching for Better Plasmonic Materials,” Laser & Photonics Reviews 4, no. 6 (2010): 795–808, 10.1002/lpor.200900055. DOI

Cao J., Sun T., and Grattan K. T. V., “Gold Nanorod‐Based Localized Surface Plasmon Resonance Biosensors: A Review,” Sensors and Actuators B: Chemical 195 (2014): 332–351, 10.1016/j.snb.2014.01.056. DOI

Lu M., Zhu H., Bazuin C. G., Peng W., and Masson J.‐F., “Polymer‐Templated Gold Nanoparticles on Optical Fibers for Enhanced‐Sensitivity Localized Surface Plasmon Resonance Biosensors,” ACS Sensors 4, no. 3 (2019): 613–622, 10.1021/acssensors.8b01372. PubMed DOI

Chen P., Tran N. T., Wen X., Xiong Q., and Liedberg B., “Inflection Point of the Localized Surface Plasmon Resonance Peak: A General Method to Improve the Sensitivity,” ACS Sensors 2, no. 2 (2017): 235–242, 10.1021/acssensors.6b00633. PubMed DOI

Cao Y., Li S., Chen C., et al., “Rattle‐Type au@Cu2−xS Hollow Mesoporous Nanocrystals With Enhanced Photothermal Efficiency for Intracellular Oncogenic microRNA Detection and Chemo‐Photothermal Therapy,” Biomaterials 158 (2018): 23–33, 10.1016/j.biomaterials.2017.12.009. PubMed DOI

Yu X., Yang K., Chen X., and Li W., “Black Hollow Silicon Oxide Nanoparticles as Highly Efficient Photothermal Agents in the Second Near‐Infrared Window for In Vivo Cancer Therapy,” Biomaterials 143 (2017): 120–129, 10.1016/j.biomaterials.2017.07.037. PubMed DOI

Zhang W., Deng G., Li B., et al., “Degradable Rhenium Trioxide Nanocubes With High Localized Surface Plasmon Resonance Absorbance Like Gold for Photothermal Theranostics,” Biomaterials 159 (2018): 68–81, 10.1016/j.biomaterials.2017.12.021. PubMed DOI

Wu J., Williams G. R., Zhu Y., et al., “Ultrathin Chalcogenide Nanosheets for Photoacoustic Imaging‐Guided Synergistic Photothermal/Gas Therapy,” Biomaterials 273 (2021): 120807, 10.1016/j.biomaterials.2021.120807. PubMed DOI

Yang Y., Murray J., Haverstick J., Tripp R. A., and Zhao Y., “Silver Nanotriangle Array Based LSPR Sensor for Rapid Coronavirus Detection,” Sensors and Actuators B: Chemical 359 (2022): 131604, 10.1016/j.snb.2022.131604. PubMed DOI PMC

Bhalla N., Payam A. F., Morelli A., et al., “Nanoplasmonic Biosensor for Rapid Detection of Multiple Viral Variants in Human Serum,” Sensors and Actuators B: Chemical 365 (2022): 131906, 10.1016/j.snb.2022.131906. PubMed DOI PMC

Sepúlveda B., Angelomé P. C., Lechuga L. M., and Liz‐Marzán L. M., “LSPR‐Based Nanobiosensors,” Nano Today 4, no. 3 (2009): 244–251, 10.1016/j.nantod.2009.04.001. DOI

Shrivas K., Monisha S. P., Thakur S. S., and Shankar R., “Food Safety Monitoring of the Pesticide Phenthoate Using a Smartphone‐Assisted Paper‐Based Sensor With Bimetallic cu@ag Core‐Shell Nanoparticles,” Lab on a Chip 20 (2020): 3996–4006, 10.1039/D0LC00515K. PubMed DOI

Kim D., Kim J., Kwak C. H., et al., “Rapid and Label‐Free Bioanalytical Method of Alpha Fetoprotein Detection Using LSPR Chip,” Journal of Crystal Growth 469 (2017): 131–135, 10.1016/j.jcrysgro.2016.09.066. DOI

Jackman J. A., Ferhan A. R., and Cho N.‐J., “Nanoplasmonic Sensors for Biointerfacial Science,” Chemical Society Reviews 46, no. 12 (2017): 3615–3660, 10.1039/c6cs00494f. PubMed DOI

Pepper J., Noring R., Klempner M., et al., “Detection of Proteins and Intact Microorganisms Using Microfabricated Flexural Plate Silicon Resonator Arrays,” Sensors and Actuators B: Chemical 96, no. 3 (2003): 565–575, 10.1016/S0925-4005(03)00641-5. DOI

Guerreiro J. R. L., Bochenkov V. E., Runager K., et al., “Molecular Imprinting of Complex Matrices at Localized Surface Plasmon Resonance Biosensors for Screening of Global Interactions of Polyphenols and Proteins,” ACS Sensors 1, no. 3 (2016): 258–264, 10.1021/acssensors.5b00054. DOI

Yoo S. M. and Lee S. Y., “Optical Biosensors for the Detection of Pathogenic Microorganisms,” Trends in Biotechnology 34, no. 1 (2016): 7–25, 10.1016/j.tibtech.2015.09.012. PubMed DOI

Kim D. M., Park J. S., Jung S.‐W., Yeom J., and Yoo S. M., “Biosensing Applications Using Nanostructure‐Based Localized Surface Plasmon Resonance Sensors,” Sensors 21, no. 9 (2021): 3191, 10.3390/s21093191. PubMed DOI PMC

Anker J. N., Hall W. P., Lyandres O., Shah N. C., Zhao J., and Duyne R. P. V., “Biosensing With Plasmonic Nanosensors,” Nature Materials 7 (2008): 442–453, 10.1038/nmat2162. PubMed DOI

Zopf D., Zopf D., Pittner A., et al., “Plasmonic Nanosensor Array for Multiplexed DNA‐Based Pathogen Detection,” ACS Sensors 4, no. 2 (2019): 335–343, 10.1021/acssensors.8b01073. PubMed DOI

Tang L. and Li J., “Plasmon‐Based Colorimetric Nanosensors for Ultrasensitive Molecular Diagnostics,” ACS Sensors 2, no. 7 (2017): 857–875, 10.1021/acssensors.7b00282. PubMed DOI

Tuantranont A., Applications of Nanomaterials in Sensors and Diagnostics (Berlin, Heidelberg: Springer, 2013).

Haes A. J., Zou S., Schatz G. C., and Van Duyne R. P., “A Nanoscale Optical Biosensor: The Long Range Distance Dependence of the Localized Surface Plasmon Resonance of Noble Metal Nanoparticles,” Journal of Physical Chemistry B 108, no. 1 (2003): 109–116, 10.1021/jp0361327. DOI

Shao M., Ji C., Tan J., et al., “Ferroelectrically Modulate the Fermi Level of Graphene Oxide to Enhance SERS Response,” Opto‐Electronic Advnces 6 (2023): 230094, 10.29026/oea.2023.230094. DOI

Tan J., Du B., Ji C., et al., “Thermoelectric Field‐Assisted Raman Scattering and Photocatalysis With GaN‐Plasmonic Metal Composites,” ACS Photonics 10, no. 7 (2023): 2216–2225, 10.1021/acsphotonics.2c01121. DOI

Zhao C., Tan J., Du B., et al., “Reversible Thermoelectric Regulation of Electromagnetic and Chemical Enhancement for Rapid SERS Detection,” ACS Applied Materials & Interfaces 16, no. 9 (2024): 12085–12094, 10.1021/acsami.3c18409. PubMed DOI

Stanek G. and Strle F., “Lyme Borreliosis–From Tick Bite to Diagnosis and Treatment,” FEMS Microbiology Reviews 42, no. 3 (2018): 233–258, 10.1093/femsre/fux047. PubMed DOI

Hirsch A. G., Poulsen M. N., Nordberg C., et al., “Risk Factors and Outcomes of Treatment Delays in Lyme Disease: A Population‐Based Retrospective Cohort Study,” Frontiers in Medicine 7 (2020): 560018, 10.3389/fmed.2020.560018. PubMed DOI PMC

Schmidt B. L., “PCR in Laboratory Diagnosis of Human Borrelia burgdorferi Infections,” Clinical Microbiology Reviews 10, no. 1 (1997): 185–201, 10.1128/cmr.10.1.185. PubMed DOI PMC

Schwartz I., Varde S., Nadelman R. B., Wormser G. P., and Fish D., “Inhibition ofEfficient Polymerase Chain Reaction Amplification of Borrelia burgdorferi DNA in Blood‐Fed Ticks,” American Journal of Tropical Medicine and Hygiene 56, no. 3 (1997): 339–342, 10.4269/ajtmh.1997.56.339. PubMed DOI

Thiry D., Konstantinidis S., Cornil J., and Snyders R., “Plasma Diagnostics for the Low‐Pressure Plasma Polymerization Process: A Critical Review,” Thin Solid Films 606 (2016): 19–44, 10.1016/j.tsf.2016.02.058. DOI

De Oliveira J. C., Airoudj A., Kunemann P., Gall F. B.‐L., and Roucoules V., “Mechanical Properties of Plasma Polymer Films: A Review,” SN Applied Sciences 3, no. 6 (2021): 1–15, 10.1007/s42452-021-04655-9. DOI

Desmet T., Morent R., De Geyter N., Leys C., Schacht E., and Dubruel P., “Nonthermal Plasma Technology as a Versatile Strategy for Polymeric Biomaterials Surface Modification: A Review,” Biomacromolecules 10, no. 9 (2009): 2351–2378, 10.1021/bm900186s. PubMed DOI

Kylián O., Shelemin A., Solař P., et al., “Magnetron Sputtering of Polymeric Targets: From Thin Films to Heterogeneous Metal/Plasma Polymer Nanoparticles,” Materials 12, no. 15 (2019): 2366, 10.3390/ma12152366. PubMed DOI PMC

Watkins L., Bismarck A., Lee A. F., Wilson D., and Wilson K., “An XPS Study of Pulsed Plasma Polymerised Allyl Alcohol Film Growth on Polyurethane,” Applied Surface Science 252, no. 23 (2006): 8203–8211, 10.1016/j.apsusc.2005.10.045. DOI

Denis L., Thiry D., Cossement D., et al., “Towards the Understanding of Plasma Polymer Film Behaviour in Ethanol: A Multi‐Technique Investigation,” Progress in Organic Coatings 70, no. 2–3 (2011): 134–141, 10.1016/j.porgcoat.2010.11.006. DOI

Denis L., Marsal P., Olivier Y., et al., “Deposition of Functional Organic Thin Films by Pulsed Plasma Polymerization: A Joint Theoretical and Experimental Study,” Plasma Processes and Polymers 7, no. 2 (2010): 172–181, 10.1002/ppap.200900131. DOI

Hegemann D., Schütz U., and Körner E., “Macroscopic Approach to Plasma Polymerization Using the Concept of Energy Density,” Plasma Processes and Polymers 8, no. 8 (2011): 689–694, 10.1002/ppap.201000211. DOI

Booth J. P., Mozetic M., Nikiforov A. Y., and Oehr C., “Foundations of Plasma Surface Functionalization of Polymers for Industrial and Biological Applications,” Plasma Sources Science and Technology 31, no. 10 (2022): 6595/ac70f9.

Coad B. R., Jasieniak M., Griesser S. S., and Griesser H. J., “Controlled Covalent Surface Immobilisation of Proteins and Peptides Using Plasma Methods,” Surface and Coatings Technology 233 (2013): 169–177, 10.1016/j.surfcoat.2013.05.019. DOI

Siow K. S., Britcher L., Kumar S., and Griesser H. J., “Plasma Methods for the Generation of Chemically Reactive Surfaces for Biomolecule Immobilization and Cell Colonization—A Review,” Plasma Processes and Polymers 3, no. 6–7 (2006): 392–418, 10.1002/ppap.200600021. DOI

Manakhov A., Skládal P., Nečas D., et al., “Cyclopropylamine Plasma Polymers Deposited Onto Quartz Crystal Microbalance for Biosensing Application,” Physica Status Solidi 211, no. 12 (2014): 2801–2808, 10.1002/pssa.201431399. DOI

Long Y. T. and Jing C., Localized Surface Plasmon Resonance Based Nanobiosensors (Berlin Heidelberg: Springer, 2014), 10.1007/978-3-642-54795-9. DOI

Prysiazhnyi V., Dycka F., Kratochvil J., Stranak V., Ksirova P., and Z. Hubicka , “Silver Nanoparticles for Solvent‐Free Detection of Small Molecules and Mass‐To‐Charge Calibration of Laser Desorption/Ionization Mass Spectrometry,” Journal of Vacuum Science and Technology 37, no. 1 (2019): 12906, 10.1116/1.5050878. DOI

Drache S., Stranak V., Hubicka Z., et al., “Study of Mass and Cluster Flux in a Pulsed Gas System With Enhanced Nanoparticle Aggregation,” Journal of Applied Physics 116, no. 14 (2014): 143303, 10.1063/1.4897234. DOI

Martin P. M., Handbook of Deposition Technologies for Films and Coatings, ed. Andrew W. (UK, USA: Elsevier, 2010), ISBN‐13: 978–0–8155‐2031‐3.

Biswas S., Dutta B., and Bhattacharya S., “Dependence of the Carrier Mobility and Trapped Charge Limited Conduction on Silver Nanoparticles Embedment in Doped Polypyrrole Nanostructures,” Journal of Applied Physics 114, no. 14 (2013): 143701, 10.1063/1.4824380. DOI

Straňák V., Block S., Drache S., et al., “Size‐Controlled Formation of cu Nanoclusters in Pulsed Magnetron Sputtering System,” Surface and Coatings Technology 205, no. 8–9 (2011): 2755–2762, 10.1016/j.surfcoat.2010.10.030. DOI

Kumar S., Kratochvíl J., Al‐Muhkhrabi Y., Kylián O., Nikitin D., and Straňák V., “Ag Nanoparticles Immobilized on C:H:N:O Plasma Polymer Film by Elevated Temperature for LSPR Sensing,” Plasma Processes and Polymers 19, no. 2 (2021): 2100144, 10.1002/ppap.202100144. DOI

Kumar S., Kratochvil J., Al‐Muhkhrabi Y., et al., “Surface Anchored ag Nanoparticles Prepared by Gas Aggregation Source: Antibacterial Effect and the Role of Surface Free Energy,” Surfaces and Interfaces 30 (2022): 101818, 10.1016/j.surfin.2022.101818. DOI

Curda P., Hippler R., Cada M., et al., “Origin of Nanoparticle Nuclei: Formation of Dimers in Pulse Magnetron Discharges,” Proceedings 15th International Conference on Nanomaterials–Research & Application (2024): 348–373, 10.37904/nanocon.2023.4763. DOI

Peter T., Polonskyi O., Gojdka B., et al., “Influence of Reactive Gas Admixture on Transition Metal Cluster Nucleation in a Gas Aggregation Cluster Source,” Journal of Applied Physics 112 (2012): 114321, 10.1063/1.4768528. DOI

Kylián O., Hanuš J., Choukourov A., Kousal J., Slavínská D., and Biederman H., “Deposition of Amino‐Rich Thin Films by RF Magnetron Sputtering of Nylon,” Journal of Physics D: Applied Physics 42, no. 14 (2009): 142001, 10.1088/0022-3727/42/14/142001. DOI

Muguruma H., “Plasma‐Polymerized Films for Biosensors,” TrAC, Trends in Analytical Chemistry 18, no. 1 (1999): 62–68, 10.1016/s0165-9936(98)00098-3. DOI

Muguruma H., “Plasma‐Polymerized Films for Biosensors II,” TrAC Trends in Analytical Chemistry 26, no. 5 (2007): 433–443, 10.1016/j.trac.2007.03.003. DOI

Favia P., D'Agostino R., and Palumbo F., “Grafting of Chemical Groups Onto Polymers by Means of RF Plasma Treatments : A Technology for Biomedical Applications,” Journal de Physique IV 07, no. C4 (1997): C4–C208, 10.1051/jp4:1997415. DOI

Štěpánová‐Tresová G., Kopecký J., and Kuthejlová M., “Identification of Borrelia burgdorferi Sensu Stricto, Borrelia Garinii and Borrelia afzelii in Ixodes ricinus Ticks From Southern Bohemia Using Monoclonal Antibodies,” Zentralblatt Für Bakteriologie 289, no. 8 (2000): 797–806, 10.1016/s0934-8840(00)80005-5. PubMed DOI

Hart T. M., A. P. Dupuis, II , Tufts D. M., et al., “Host Tropism Determination by Convergent Evolution of Immunological Evasion in the Lyme Disease System,” PLoS Pathogens 17, no. 7 (2021): e1009801, 10.1371/journal.ppat.1009801. PubMed DOI PMC

Strnad M., Oh Y. J., Vancová M., et al., “Nanomechanical Mechanisms of Lyme Disease Spirochete Motility Enhancement in Extracellular Matrix,” Communications Biology 4, no. 1 (2021): 268, 10.1038/s42003-021-01783-1. PubMed DOI PMC

Riquelme M. V., Zhao H., Srinivasaraghavan V., Pruden A., Vikesland P., and Agah M., “Optimizing Blocking of Nonspecific Bacterial Attachment to Impedimetric Biosensors,” Sensing and Bio‐Sensing Research 8 (2016): 47–54, 10.1016/j.sbsr.2016.04.003. DOI

An Y. H. and Friedman R. J., “Concise Review of Mechanisms of Bacterial Adhesion to b Iomaterial Surfaces,” Journal of Biomedical Materials Research 43, no. 3 (1998): 338–348, 10.1002/(sici)10974636(199823)43:3<338::aid-jbm16>3.0.co;2-b. PubMed DOI

Shen W., Li S., Park M. K., et al., “Blocking Agent Optimization for Nonspecific Binding on Phage Based Magnetoelastic Biosensors,” Journal of the Electrochemical Society 159, no. 10 (2012): B818–B823, 10.1149/2.057210jes. DOI

Jiang X., Wu M., Albo J., and Rao Q., “Non‐Specific Binding and Cross‐Reaction of ELISA: A Case Study of Porcine Hemoglobin Detection,” Food 10, no. 8 (2021): 1708, 10.3390/foods10081708. PubMed DOI PMC

Aguero‐Rosenfeld M. E., Wang G., Schwartz I., and Wormser G. P., “Diagnosis of Lyme Borreliosis,” Clinical Microbiology Reviews 18, no. 3 (2005): 484–509, 10.1128/cmr.18.3.484-509.2005. PubMed DOI PMC

Babady N. E., Sloan L. M., Vetter E. A., Patel R., and Binnicker M. J., “Percent Positive Rate of Lyme Real‐Time Polymerase Chain Reaction in Blood, Cerebrospinal Fluid, Synovial Fluid, and Tissue,” Diagnostic Microbiology and Infectious Disease 62, no. 4 (2008): 464–466, 10.1016/j.diagmicrobio.2008.08.016. PubMed DOI

Jain K., Tagliafierro T., Marques A., et al., “Development of a Capture Sequencing Assay for Enhanced Detection and Genotyping of Tick‐Borne Pathogens,” Scientific Reports 11, no. 1 (2021): 12384, 10.1038/s41598-021-91956-z. PubMed DOI PMC

Farber C., Morey R., Krimmer M., Kurouski D., and Rogovskyy A. S., “Exploring a Possibility of Using Raman Spectroscopy for Detection of Lyme Disease,” Journal of Biophotonics 14, no. 5 (2021): 20200477, 10.1002/jbio.202000477. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...