Magnetron Sputtering of Polymeric Targets: From Thin Films to Heterogeneous Metal/Plasma Polymer Nanoparticles
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GAČR 17-22016S
Grantová Agentura České Republiky
GAČR 17-12994S
Grantová Agentura České Republiky
PubMed
31349580
PubMed Central
PMC6696368
DOI
10.3390/ma12152366
PII: ma12152366
Knihovny.cz E-zdroje
- Klíčová slova
- gas aggregation sources, magnetron sputtering, nanoparticles,
- Publikační typ
- časopisecké články MeSH
Magnetron sputtering is a well-known technique that is commonly used for the deposition of thin compact films. However, as was shown in the 1990s, when sputtering is performed at pressures high enough to trigger volume nucleation/condensation of the supersaturated vapor generated by the magnetron, various kinds of nanoparticles may also be produced. This finding gave rise to the rapid development of magnetron-based gas aggregation sources. Such systems were successfully used for the production of single material nanoparticles from metals, metal oxides, and plasma polymers. In addition, the growing interest in multi-component heterogeneous nanoparticles has led to the design of novel systems for the gas-phase synthesis of such nanomaterials, including metal/plasma polymer nanoparticles. In this featured article, we briefly summarized the principles of the basis of gas-phase nanoparticles production and highlighted recent progress made in the field of the fabrication of multi-component nanoparticles. We then introduced a gas aggregation source of plasma polymer nanoparticles that utilized radio frequency magnetron sputtering of a polymeric target with an emphasis on the key features of this kind of source. Finally, we presented and discussed three strategies suitable for the generation of metal/plasma polymer multi-core@shell or core-satellite nanoparticles: the use of composite targets, a multi-magnetron approach, and in-flight coating of plasma polymer nanoparticles by metal.
Zobrazit více v PubMed
Greene J.E. Review Article: Tracing the recorded history of thin-film sputter deposition: From the 1800s to 2017. J. Vac. Sci. Technol. A Vac. Surf. Films. 2017;35:05C204. doi: 10.1116/1.4998940. DOI
Waits R.K. Planar magnetron sputtering. J. Vac. Sci. Technol. 1978;15:179–187. doi: 10.1116/1.569451. DOI
Musil J., Leština J., Vlček J., Tölg T. Pulsed dc magnetron discharge for high-rate sputtering of thin films. J. Vac. Sci. Technol. A Vac. Surf. Films. 2001;19:420–424. doi: 10.1116/1.1339018. DOI
Kouznetsov V., Macák K., Schneider J.M., Helmersson U., Petrov I. A novel pulsed magnetron sputter technique utilizing very high target power densities. Surf. Coat. Technol. 1999;122:290–293. doi: 10.1016/S0257-8972(99)00292-3. DOI
Anders A. Discharge physics of high power impulse magnetron sputtering. Surf. Coat. Technol. 2011;205:S1–S9. doi: 10.1016/j.surfcoat.2011.03.081. DOI
Anders A. Tutorial: Reactive high power impulse magnetron sputtering (R-HiPIMS) J. Appl. Phys. 2017;121:171101. doi: 10.1063/1.4978350. DOI
Sarakinos K., Alami J., Konstantinidis S. High power pulsed magnetron sputtering: A review on scientific and engineering state of the art. Surf. Coat. Technol. 2010;204:1661–1684. doi: 10.1016/j.surfcoat.2009.11.013. DOI
Schiller S., Goedicke K., Reschke J., Kirchhoff V., Schneider S., Milde F. Pulsed magnetron sputter technology. Surf. Coat. Technol. 1993;61:331–337. doi: 10.1016/0257-8972(93)90248-M. DOI
Davidse P.D., Maissel L.I. Dielectric Thin Films through rf Sputtering. J. Appl. Phys. 1966;37:574–579. doi: 10.1063/1.1708218. DOI
Harrop R., Harrop P. Friction of sputtered PTFE films. Thin Solid Films. 1969;3:109–117. doi: 10.1016/0040-6090(69)90083-2. DOI
Pratt I.H., Lausman T.C. Some characteristics of sputtered polytetrafluoroethylene films. Thin Solid Films. 1972;10:151–154. doi: 10.1016/0040-6090(72)90281-7. DOI
Biederman H., Ojha S.M., Holland L. The properties of fluorocarbon films prepared by r.f. sputtering and plasma polymerization in inert and active gas. Thin Solid Films. 1977;41:329–339. doi: 10.1016/0040-6090(77)90319-4. DOI
Biederman H., Osada Y. Plasma Polymerisation Processes. Elsevier; Amsterdam, The Netherlands: 1992.
Friedrich J. Mechanisms of Plasma Polymerization—Reviewed from a Chemical Point of View. Plasma Process. Polym. 2011;8:783–802. doi: 10.1002/ppap.201100038. DOI
Kylián O., Choukourov A., Biederman H. Nanostructured plasma polymers. Thin Solid Films. 2013;548:1–17. doi: 10.1016/j.tsf.2013.09.003. DOI
Thiry D., Konstantinidis S., Cornil J., Snyders R. Plasma diagnostics for the low-pressure plasma polymerization process: A critical review. Thin Solid Films. 2016;606:19–44. doi: 10.1016/j.tsf.2016.02.058. DOI
Cantini M., Rico P., Moratal D., Salmerón-Sánchez M. Controlled wettability, same chemistry: Biological activity of plasma-polymerized coatings. Soft Matter. 2012;8:5575. doi: 10.1039/c2sm25413a. DOI
Siow K.S., Britcher L., Kumar S., Griesser H.J. Plasma Methods for the Generation of Chemically Reactive Surfaces for Biomolecule Immobilization and Cell Colonization—A Review. Plasma Process. Polym. 2006;3:392–418. doi: 10.1002/ppap.200600021. DOI
Desmet T., Morent R., de Geyter N., Leys C., Schacht E., Dubruel P. Nonthermal Plasma Technology as a Versatile Strategy for Polymeric Biomaterials Surface Modification: A Review. Biomacromolecules. 2009;10:2351–2378. doi: 10.1021/bm900186s. PubMed DOI
Nisol B., Oldenhove G., Preyat N., Monteyne D., Moser M., Perez-Morga D., Reniers F. Atmospheric plasma synthesized PEG coatings: Non-fouling biomaterials showing protein and cell repulsion. Surf. Coat. Technol. 2014;252:126–133. doi: 10.1016/j.surfcoat.2014.04.056. DOI
Inagaki N., Kobayashi N., Matsushima M. Gas separation membranes made by plasma polymerization of perfluorobenzene/cf4 and pentafluorobenzene/cf4 mixtures. J. Membr. Sci. 1988;38:85–95. doi: 10.1016/S0376-7388(00)83277-9. DOI
Bitar R., Cools P., de Geyter N., Morent R. Acrylic acid plasma polymerization for biomedical use. Appl. Surf. Sci. 2018;448:168–185. doi: 10.1016/j.apsusc.2018.04.129. DOI
Coad B.R., Jasieniak M., Griesser S.S., Griesser H.J. Controlled covalent surface immobilisation of proteins and peptides using plasma methods. Surf. Coat. Technol. 2013;233:169–177. doi: 10.1016/j.surfcoat.2013.05.019. DOI
Friedrich J.F., Mix R., Kühn G. Functional groups bearing plasma homo and copolymer layers as adhesion promoters in metal–polymer composites. Surf. Coat. Technol. 2003;174–175:811–815. doi: 10.1016/S0257-8972(03)00350-5. DOI
Grundmeier G., Thiemann P., Carpentier J., Barranco V. Tailored thin plasma polymers for the corrosion protection of metals. Surf. Coat. Technol. 2003;174–175:996–1001. doi: 10.1016/S0257-8972(03)00606-6. DOI
Deilmann M., Theiß S., Awakowicz P. Pulsed microwave plasma polymerization of silicon oxide films: Application of efficient permeation barriers on polyethylene terephthalate. Surf. Coat. Technol. 2008;202:1911–1917. doi: 10.1016/j.surfcoat.2007.08.034. DOI
Förch R., Zhang Z., Knoll W. Soft Plasma Treated Surfaces: Tailoring of Structure and Properties for Biomaterial Applications. Plasma Process. Polym. 2005;2:351–372. doi: 10.1002/ppap.200400083. DOI
Brétagnol F., Lejeune M., Papadopoulou-Bouraoui A., Hasiwa M., Rauscher H., Ceccone G., Colpo P., Rossi F. Fouling and non-fouling surfaces produced by plasma polymerization of ethylene oxide monomer. Acta Biomater. 2006;2:165–172. doi: 10.1016/j.actbio.2005.11.002. PubMed DOI
Holvoet S., Chevallier P., Turgeon S., Mantovani D. Toward High-Performance Coatings for Biomedical Devices: Study on Plasma-Deposited Fluorocarbon Films and Ageing in PBS. Materials. 2010;3:1515–1532. doi: 10.3390/ma3031515. DOI
Choukourov A., Gordeev I., Arzhakov D., Artemenko A., Kousal J., Kylián O., Slavínská D., Biederman H. Does Cross-Link Density of PEO-Like Plasma Polymers Influence their Resistance to Adsorption of Fibrinogen? Plasma Process. Polym. 2012;9:48–58. doi: 10.1002/ppap.201100122. DOI
Sardella E., Gristina R., Senesi G.S., D’Agostino R., Favia P. Homogeneous and Micro-Patterned Plasma-Deposited PEO-Like Coatings for Biomedical Surfaces. Plasma Process. Polym. 2004;1:63–72. doi: 10.1002/ppap.200400013. DOI
Drábik M., Polonskyi O., Kylián O., Čechvala J., Artemenko A., Gordeev I., Choukourov A., Slavínská D., Matolínová I., Biederman H. Super-Hydrophobic Coatings Prepared by RF Magnetron Sputtering of PTFE. Plasma Process. Polym. 2010;7:544–551. doi: 10.1002/ppap.200900164. DOI
Kuzminova A., Shelemin A., Kylián O., Petr M., Kratochvíl J., Solař P., Biederman H. From super-hydrophilic to super-hydrophobic surfaces using plasma polymerization combined with gas aggregation source of nanoparticles. Vacuum. 2014;110:58–61. doi: 10.1016/j.vacuum.2014.08.014. DOI
Asadollahi S., Profili J., Farzaneh M., Stafford L. Development of Organosilicon-Based Superhydrophobic Coatings through Atmospheric Pressure Plasma Polymerization of HMDSO in Nitrogen Plasma. Materials. 2019;12:219. doi: 10.3390/ma12020219. PubMed DOI PMC
Macgregor M., Vasilev K. Perspective on Plasma Polymers for Applied Biomaterials Nanoengineering and the Recent Rise of Oxazolines. Materials. 2019;12:191. doi: 10.3390/ma12010191. PubMed DOI PMC
Prencipe I., Fuchs J., Pascarelli S., Schumacher D.W., Stephens R.B., Alexander N.B., Briggs R., Büscher M., Cernaianu M.O., Choukourov A., et al. Targets for high repetition rate laser facilities: Needs, challenges and perspectives. High Power Laser Sci. Eng. 2017;5:e17. doi: 10.1017/hpl.2017.18. DOI
Margarone D., Kim I.J., Psikal J., Kaufman J., Mocek T., Choi I.W., Stolcova L., Proska J., Choukourov A., Melnichuk I., et al. Laser-driven high-energy proton beam with homogeneous spatial profile from a nanosphere target. Phys. Rev. Spec. Top. Accel. Beams. 2015;18:071304. doi: 10.1103/PhysRevSTAB.18.071304. DOI
Choukourov A., Hanuš J., Kousal J., Grinevich A., Pihosh Y., Slavínská D., Biederman H. Thin polymer films from polyimide vacuum thermal degradation with and without a glow discharge. Vacuum. 2006;80:923–929. doi: 10.1016/j.vacuum.2005.12.012. DOI
Robertson T., Morrison D.T. Electrical properties of r.f. sputtered PTFE. Thin Solid Films. 1975;27:19–37. doi: 10.1016/0040-6090(75)90004-8. DOI
Lehmann H.W., Frick K., Widmer R., Vossen J.L., James E. Reactive sputtering of PTFE films in argon-CF4 mixtures. Thin Solid Films. 1978;52:231–235. doi: 10.1016/0040-6090(78)90141-4. DOI
Yamada Y., Tanaka K., Saito K. Friction and damage of coatings formed by sputtering polytetrafluoroethylene and polyimide. Surf. Coat. Technol. 1990;43–44:618–628. doi: 10.1016/0257-8972(90)90006-X. DOI
Gonon P., Sylvestre A. Dielectric properties of fluorocarbon thin films deposited by radio frequency sputtering of polytetrafluoroethylene. J. Appl. Phys. 2002;92:4584–4589. doi: 10.1063/1.1505983. DOI
Maréchal N., Pauleau Y. Radio frequency sputtering process of a polytetrafluoroethylene target and characterization of fluorocarbon polymer films. J. Vac. Sci. Technol. A Vac. Surf. Films. 1992;10:477–483. doi: 10.1116/1.578174. DOI
Tang G., Ma X., Sun M. Composition and chemical structure of ultra-thin a-C:F films deposited by RF magnetron sputtering with high pulsed bias. Diam. Relat. Mater. 2007;16:1586–1588. doi: 10.1016/j.diamond.2007.01.020. DOI
Oya T., Kusano E. Characterization of organic polymer thin films deposited by rf magnetron sputtering. Vacuum. 2008;83:564–568. doi: 10.1016/j.vacuum.2008.04.040. DOI
Kylián O., Drábik M., Polonskyi O., Čechvala J., Artemenko A., Gordeev I., Choukourov A., Matolínová I., Slavínská D., Biederman H. Deposition of nanostructured fluorocarbon plasma polymer films by RF magnetron sputtering of polytetrafluoroethylene. Thin Solid Films. 2011;519:6426–6431. doi: 10.1016/j.tsf.2011.04.213. DOI
Li L., Jones P.M., Hsia Y.T. Characterization of a nanometer-thick sputtered polytetrafluoroethylene film. Appl. Surf. Sci. 2011;257:4478–4485. doi: 10.1016/j.apsusc.2010.12.104. DOI
Roy R.A., Messier R., Krishnaswamy S.V. Preparation and properties of r.f.-sputtered polymer-metal thin films. Thin Solid Films. 1983;109:27–35. doi: 10.1016/0040-6090(83)90028-7. DOI
Biederman H. RF sputtering of polymers and its potential application. Vacuum. 2000;59:594–599. doi: 10.1016/S0042-207X(00)00321-3. DOI
Biederman H. Organic films prepared by polymer sputtering. J. Vac. Sci. Technol. A Vac. Surf. Films. 2000;18:1642–1648. doi: 10.1116/1.582399. DOI
Uemura A., Kezuka K., Iwamori S., Nishiyama I. Effects of substrate temperature on the surface of polymer thin films prepared by R.F. sputtering with a polyimide target. Vacuum. 2009;84:607–611. doi: 10.1016/j.vacuum.2009.06.036. DOI
Choukourov A., Hanuš J., Kousal J., Grinevich A., Pihosh Y., Slavínská D., Biederman H. Plasma polymer films from sputtered polyimide. Vacuum. 2006;81:517–526. doi: 10.1016/j.vacuum.2006.07.010. DOI
Kholodkov I. Plasma polymers prepared by RF sputtering of polyethylene. Vacuum. 2003;70:505–509. doi: 10.1016/S0042-207X(02)00702-9. DOI
Pihosh Y., Biederman H., Slavinska D., Kousal J., Choukourov A., Trchova M., Mackova A., Boldyreva A. Composite SiOx/hydrocarbon plasma polymer films prepared by RF magnetron sputtering of SiO2 and polyethylene or polypropylene. Vacuum. 2006;81:32–37. doi: 10.1016/j.vacuum.2006.02.006. DOI
Hishmeh G.A., Barr T.L., Sklyarov A., Hardcastle S. Thin polymer films prepared by radio frequency plasma sputtering of polytetrafluoroethylene and polyetherimide targets. J. Vac. Sci. Technol. A Vac. Surf. Films. 1996;14:1330–1338. doi: 10.1116/1.579950. DOI
Stelmashuk V., Biederman H., Slavínská D., Trchová M., Hlidek P. Rf magnetron sputtering of polypropylene. Vacuum. 2004;75:207–215. doi: 10.1016/j.vacuum.2004.02.007. DOI
Hanus J., Kousal J., Choukourov A., Biederman H., Slavinska D. RF magnetron sputtering of poly(propylene) in a mixture of argon and nitrogen. Plasma Process. Polym. 2007;4:806–811. doi: 10.1002/ppap.200731910. DOI
Kousal J., Hanuš J., Choukourov A., Polonskyi O., Biederman H., Slavínská D. In Situ Diagnostics of RF Magnetron Sputtering of Nylon. Plasma Process. Polym. 2009;6:S803–S807. doi: 10.1002/ppap.200932001. DOI
Haberland H., Karrais M., Mall M. A new type of cluster and cluster ion source. Z. Phys. D At. Mol. Clust. 1991;20:413–415. doi: 10.1007/BF01544025. DOI
Haberland H., Karrais M. Thin films from energetic cluster impact: A feasibility study. J. Vac. Sci. Technol. A Vac. Surf. Films. 1992;10:3266–3271. doi: 10.1116/1.577853. DOI
Hanuš J., Steinhartová T., Kylián O., Kousal J., Malinský P., Choukourov A., Macková A., Biederman H. Deposition of Cu/a-C:H Nanocomposite Films. Plasma Process. Polym. 2016;13:879–887. doi: 10.1002/ppap.201500208. DOI
Vaidulych M., Hanuš J., Steinhartová T., Kylián O., Choukourov A., Beranová J., Khalakhan I., Biederman H. Deposition of Ag/a-C:H nanocomposite films with Ag surface enrichment. Plasma Process. Polym. 2017;14:1600256. doi: 10.1002/ppap.201600256. DOI
Kylián O., Kratochvíl J., Petr M., Kuzminova A., Slavínská D., Biederman H., Beranová J. Ag/C:F Antibacterial and hydrophobic nanocomposite coatings. Funct. Mater. Lett. 2017;10:1750029. doi: 10.1142/S1793604717500291. DOI
Petr M., Kylián O., Hanuš J., Kuzminova A., Vaidulych M., Khalakhan I., Choukourov A., Slavínská D., Biederman H. Surfaces with Roughness Gradient and Invariant Surface Chemistry Produced by Means of Gas Aggregation Source and Magnetron Sputtering. Plasma Process. Polym. 2016;13:663–671. doi: 10.1002/ppap.201500202. DOI
Kratochvíl J., Kuzminova A., Solař P., Hanuš J., Kylián O., Biederman H. Wetting and drying on gradient-nanostructured C:F surfaces synthesized using a gas aggregation source of nanoparticles combined with magnetron sputtering of polytetrafluoroethylene. Vacuum. 2019;166:50–56. doi: 10.1016/j.vacuum.2019.04.050. DOI
Kylián O., Kratochvíl J., Hanuš J., Polonskyi O., Solař P., Biederman H. Fabrication of Cu nanoclusters and their use for production of Cu/plasma polymer nanocomposite thin films. Thin Solid Films. 2014;550:46–52. doi: 10.1016/j.tsf.2013.10.029. DOI
Kuzminova A., Beranová J., Polonskyi O., Shelemin A., Kylián O., Choukourov A., Slavínská D., Biederman H. Antibacterial nanocomposite coatings produced by means of gas aggregation source of silver nanoparticles. Surf. Coat. Technol. 2016;294:225–230. doi: 10.1016/j.surfcoat.2016.03.097. DOI
Nikitin D., Madkour S., Pleskunov P., Tafiichuk R., Shelemin A., Hanuš J., Gordeev I., Sysolyatina E., Lavrikova A., Ermolaeva S., et al. Cu nanoparticles constrain segmental dynamics of cross-linked polyethers: A trade-off between non-fouling and antibacterial properties. Soft Matter. 2019;15:2884–2896. doi: 10.1039/C8SM02413H. PubMed DOI
Gracia-Pinilla M.Á., Ferrer D., Mejía-Rosales S., Pérez-Tijerina E. Size-selected Ag nanoparticles with five-fold symmetry. Nanoscale Res. Lett. 2009;4:896–902. doi: 10.1007/s11671-009-9328-4. PubMed DOI PMC
Polonskyi O., Solař P., Kylián O., Drábik M., Artemenko A., Kousal J., Hanuš J., Pešička J., Matolínová I., Kolíbalová E., et al. Nanocomposite metal/plasma polymer films prepared by means of gas aggregation cluster source. Thin Solid Films. 2012;520:4155–4162. doi: 10.1016/j.tsf.2011.04.100. DOI
Kuzminova A., Solař P., Kúš P., Kylián O. Double Plasmon Resonance Nanostructured Silver Coatings with Tunable Properties. J. Nanomater. 2019;2019:1–8. doi: 10.1155/2019/1592621. DOI
Dutka M.V., Turkin A.a., Vainchtein D.I., de Hosson J.T.M. On the formation of copper nanoparticles in nanocluster aggregation source. J. Vac. Sci. Technol. A Vac. Surf. Films. 2015;33:031509. doi: 10.1116/1.4917002. DOI
Drache S., Stranak V., Berg F., Hubicka Z., Tichy M., Helm C.A., Hippler R. Pulsed gas aggregation for improved nanocluster growth and flux. Phys. Status Solidi (A) 2014;211:1189–1193. doi: 10.1002/pssa.201330399. DOI
Luo Z., Woodward W.H., Smith J.C., Castleman A.W. Growth kinetics of Al clusters in the gas phase produced by a magnetron-sputtering source. Int. J. Mass Spectrom. 2012;309:176–181. doi: 10.1016/j.ijms.2011.09.016. DOI
Drabik M., Choukourov A., Artemenko A., Polonskyi O., Kylian O., Kousal J., Nichtova L., Cimrova V., Slavinska D., Biederman H. Structure and Composition of Titanium Nanocluster Films Prepared by a Gas Aggregation Cluster Source. J. Phys. Chem. C. 2011;115:20937–20944. doi: 10.1021/jp2059485. DOI
Drábik M., Choukourov A., Artemenko A., Kousal J., Polonskyi O., Solař P., Kylián O., Matoušek J., Pešička J., Matolínová I., et al. Morphology of Titanium Nanocluster Films Prepared by Gas Aggregation Cluster Source. Plasma Process. Polym. 2011;8:640–650. doi: 10.1002/ppap.201000126. DOI
Ahadi A.M., Zaporojtchenko V., Peter T., Polonskyi O., Strunskus T., Faupel F. Role of oxygen admixture in stabilizing TiO x nanoparticle deposition from a gas aggregation source. J. Nanoparticle Res. 2013;15:2125. doi: 10.1007/s11051-013-2125-0. DOI
Morel R., Brenac A., Bayle-Guillemaud P., Portement C., la Rizza F. Growth and properties of cobalt clusters made by sputtering gas-aggregation. Eur. Phys. J. D. 2003;24:287–290. doi: 10.1140/epjd/e2003-00158-9. DOI
Gojdka B., Hrkac V., Strunskus T., Zaporojtchenko V., Kienle L., Faupel F. Study of cobalt clusters with very narrow size distribution deposited by high-rate cluster source. Nanotechnology. 2011;22:465704. doi: 10.1088/0957-4484/22/46/465704. PubMed DOI
Kylián O., Valeš V., Polonskyi O., Pešička J., Čechvala J., Solař P., Choukourov A., Slavínská D., Biederman H. Deposition of Pt nanoclusters by means of gas aggregation cluster source. Mater. Lett. 2012;79:229–231. doi: 10.1016/j.matlet.2012.04.022. DOI
Kylián O., Prokeš J., Polonskyi O., Čechvala J., Kousal J., Pešička J., Hanuš J., Biederman H. Deposition and characterization of Pt nanocluster films by means of gas aggregation cluster source. Thin Solid Films. 2014;571:13–17. doi: 10.1016/j.tsf.2014.09.064. DOI
Bray K.R., Jiao C.Q., DeCerbo J.N. Nucleation and growth of Nb nanoclusters during plasma gas condensation. J. Appl. Phys. 2013;113:234307. doi: 10.1063/1.4811448. DOI
Ayesh A.I., Qamhieh N., Ghamlouche H., Thaker S., El-Shaer M. Fabrication of size-selected Pd nanoclusters using a magnetron plasma sputtering source. J. Appl. Phys. 2010;107:034317. doi: 10.1063/1.3296131. DOI
Acsente T., Negrea R.F., Nistor L.C., Logofatu C., Matei E., Birjega R., Grisolia C., Dinescu G. Synthesis of flower-like tungsten nanoparticles by magnetron sputtering combined with gas aggregation. Eur. Phys. J. D. 2015;69:161. doi: 10.1140/epjd/e2015-60097-4. DOI
D’Addato S., Gragnaniello L., Valeri S., Rota A., di Bona A., Spizzo F., Panozaqi T., Schifano S.F. Morphology and magnetic properties of size-selected Ni nanoparticle films. J. Appl. Phys. 2010;107:104318. doi: 10.1063/1.3374467. DOI
Nielsen R.M., Murphy S., Strebel C., Johansson M., Chorkendorff I., Nielsen J.H. The morphology of mass selected ruthenium nanoparticles from a magnetron-sputter gas-aggregation source. J. Nanoparticle Res. 2010;12:1249–1262. doi: 10.1007/s11051-009-9830-8. DOI
Shelemin A., Kylián O., Hanuš J., Choukourov A., Melnichuk I., Serov A., Slavínská D., Biederman H. Preparation of metal oxide nanoparticles by gas aggregation cluster source. Vacuum. 2015;120:162–169. doi: 10.1016/j.vacuum.2015.07.008. DOI
Polonskyi O., Ahadi A.M., Peter T., Fujioka K., Abraham J.W., Vasiliauskaite E., Hinz A., Strunskus T., Wolf S., Bonitz M., et al. Plasma based formation and deposition of metal and metal oxide nanoparticles using a gas aggregation source. Eur. Phys. J. D. 2018;72:93. doi: 10.1140/epjd/e2017-80419-8. DOI
Polonskyi O., Kylián O., Solař P., Artemenko A., Kousal J., Slavínská D., Choukourov A., Biederman H. Nylon-sputtered nanoparticles: Fabrication and basic properties. J. Phys. D Appl. Phys. 2012;45:495301. doi: 10.1088/0022-3727/45/49/495301. DOI
Drábik M., Serov A., Kylián O., Choukourov A., Artemenko A., Kousal J., Polonskyi O., Biederman H. Deposition of Fluorocarbon Nanoclusters by Gas Aggregation Cluster Source. Plasma Process. Polym. 2012;9:390–397. doi: 10.1002/ppap.201100147. DOI
Solař P., Melnichuk I., Artemenko A., Polonskyi O., Kylián O., Choukourov A., Slavínská D., Biederman H. Nylon-sputtered plasma polymer particles produced by a semi-hollow cathode gas aggregation source. Vacuum. 2015;111:124–130. doi: 10.1016/j.vacuum.2014.09.023. DOI
Choukourov A., Pleskunov P., Nikitin D., Titov V., Shelemin A., Vaidulych M., Kuzminova A., Solař P., Hanuš J., Kousal J., et al. Advances and challenges in the field of plasma polymer nanoparticles. Beilstein J. Nanotechnol. 2017;8:2002–2014. doi: 10.3762/bjnano.8.200. PubMed DOI PMC
Choukourov A., Shelemin A., Pleskunov P., Nikitin D., Khalakhan I., Hanuš J. Nanoscale morphogenesis of nylon-sputtered plasma polymer particles. J. Phys. D Appl. Phys. 2018;51:215304. doi: 10.1088/1361-6463/aabbbf. DOI
Xu Y.-H., Wang J.-P. Direct Gas-Phase Synthesis of Heterostructured Nanoparticles through Phase Separation and Surface Segregation. Adv. Mater. 2008;20:994–999. doi: 10.1002/adma.200602895. DOI
Vahl A., Strobel J., Reichstein W., Polonskyi O., Strunskus T., Kienle L., Faupel F. Single target sputter deposition of alloy nanoparticles with adjustable composition via a gas aggregation cluster source. Nanotechnology. 2017;28 doi: 10.1088/1361-6528/aa66ef. PubMed DOI
Gauter S., Haase F., Solař P., Kylián O., Kúš P., Choukourov A., Biederman H., Kersten H. Calorimetric investigations in a gas aggregation source. J. Appl. Phys. 2018;124 doi: 10.1063/1.5037413. DOI
Martínez L., Díaz M., Román E., Ruano M., Llamosa P.D., Huttel Y. Generation of nanoparticles with adjustable size and controlled stoichiometry: Recent advances. Langmuir. 2012;28:11241–11249. doi: 10.1021/la3022134. PubMed DOI
Llamosa D., Ruano M., Martínez L., Mayoral A., Roman E., García-Hernández M., Huttel Y. The ultimate step towards a tailored engineering of core@shell and core@shell@shell nanoparticles. Nanoscale. 2014;6:13483–13486. doi: 10.1039/C4NR02913E. PubMed DOI
Mayoral A., Llamosa D., Huttel Y. A novel Co@Au structure formed in bimetallic core@shell nanoparticles. Chem. Commun. 2015;51:8442–8445. doi: 10.1039/C5CC00774G. PubMed DOI
Singh V., Cassidy C., Grammatikopoulos P., Djurabekova F., Nordlund K., Sowwan M. Heterogeneous Gas-Phase Synthesis and Molecular Dynamics Modeling of Janus and Core–Satellite Si–Ag Nanoparticles. J. Phys. Chem. C. 2014;118:13869–13875. doi: 10.1021/jp500684y. DOI
Mattei J.-G., Grammatikopoulos P., Zhao J., Singh V., Vernieres J., Steinhauer S., Porkovich A., Danielson E., Nordlund K., Djurabekova F., et al. Gas-Phase Synthesis of Trimetallic Nanoparticles. Chem. Mater. 2019;31:2151–2163. doi: 10.1021/acs.chemmater.9b00129. DOI
Popok V.N., Jeppesen C.M., Fojan P., Kuzminova A., Hanuš J., Kylián O. Comparative study of antibacterial properties of polystyrene films with TiO x and Cu nanoparticles fabricated using cluster beam technique. Beilstein J. Nanotechnol. 2018;9:861–869. doi: 10.3762/bjnano.9.80. PubMed DOI PMC
Bai J., Wang J.P. High-magnetic-moment core-shell-type FeCo-Au/Ag nanoparticles. Appl. Phys. Lett. 2005;87:1–3. doi: 10.1063/1.2089171. DOI
Kylián O., Kuzminova A., Vaydulych M., Cieslar M., Khalakhan I., Hanuš J., Choukourov A., Slavínská D., Biederman H. Core@shell Cu/hydrocarbon plasma polymer nanoparticles prepared by gas aggregation cluster source followed by in-flight plasma polymer coating. Plasma Process. Polym. 2018;15:1700109. doi: 10.1002/ppap.201700109. DOI
Hanuš J., Vaidulych M., Kylián O., Choukourov A., Kousal J., Khalakhan I., Cieslar M., Solař P., Biederman H. Fabrication of Ni@Ti core–shell nanoparticles by modified gas aggregation source. J. Phys. D Appl. Phys. 2017;50:475307. doi: 10.1088/1361-6463/aa8f25. DOI
Kretková T., Hanuš J., Kylián O., Solař P., Dopita M., Cieslar M., Khalakhan I., Choukourov A., Biederman H. In-flight modification of Ni nanoparticles by tubular magnetron sputtering. J. Phys. D Appl. Phys. 2019;52:205302. doi: 10.1088/1361-6463/ab00d0. DOI
Cassidy C., Singh V., Grammatikopoulos P., Djurabekova F., Nordlund K., Sowwan M. Inoculation of silicon nanoparticles with silver atoms. Sci. Rep. 2013;3:3083. doi: 10.1038/srep03083. PubMed DOI PMC
Kylián O., Hanuš J., Choukourov A., Kousal J., Slavínská D., Biederman H. Deposition of amino-rich thin films by RF magnetron sputtering of nylon. J. Phys. D Appl. Phys. 2009;42:142001. doi: 10.1088/0022-3727/42/14/142001. DOI
Finke B., Hempel F., Testrich H., Artemenko A., Rebl H., Kylián O., Meichsner J., Biederman H., Nebe B., Weltmann K.-D., et al. Plasma processes for cell-adhesive titanium surfaces based on nitrogen-containing coatings. Surf. Coat. Technol. 2011;205:S520–S524. doi: 10.1016/j.surfcoat.2010.12.044. DOI
Kratochvíl J., Kahoun D., Štěrba J., Langhansová H., Lieskovská J., Fojtíková P., Hanuš J., Kousal J., Kylián O., Straňák V. Plasma polymerized C:H:N:O thin films for controlled release of antibiotic substances. Plasma Process. Polym. 2018;15:1700160. doi: 10.1002/ppap.201700160. DOI
Kovačević E., Stefanović I., Berndt J., Winter J. Infrared fingerprints and periodic formation of nanoparticles in Ar/C2H2 plasmas. J. Appl. Phys. 2003;93:2924–2930. doi: 10.1063/1.1541118. DOI
Solař P., Polonskyi O., Olbricht A., Hinz A., Shelemin A., Kylián O., Choukourov A., Faupel F., Biederman H. Single-step generation of metal-plasma polymer multicore@shell nanoparticles from the gas phase. Sci. Rep. 2017;7:8514. doi: 10.1038/s41598-017-08274-6. PubMed DOI PMC
Kylián O., Kuzminova A., Štefaníková R., Hanuš J., Solař P., Kúš P., Cieslar M., Choukourov A., Biederman H. Silver/plasma polymer strawberry-like nanoparticles produced by gas-phase synthesis. Mater. Lett. 2019;253:238–241. doi: 10.1016/j.matlet.2019.06.069. DOI
Fabrication of Plasmonic Indium Tin Oxide Nanoparticles by Means of a Gas Aggregation Cluster Source