Magnetron Sputtering of Polymeric Targets: From Thin Films to Heterogeneous Metal/Plasma Polymer Nanoparticles

. 2019 Jul 25 ; 12 (15) : . [epub] 20190725

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31349580

Grantová podpora
GAČR 17-22016S Grantová Agentura České Republiky
GAČR 17-12994S Grantová Agentura České Republiky

Magnetron sputtering is a well-known technique that is commonly used for the deposition of thin compact films. However, as was shown in the 1990s, when sputtering is performed at pressures high enough to trigger volume nucleation/condensation of the supersaturated vapor generated by the magnetron, various kinds of nanoparticles may also be produced. This finding gave rise to the rapid development of magnetron-based gas aggregation sources. Such systems were successfully used for the production of single material nanoparticles from metals, metal oxides, and plasma polymers. In addition, the growing interest in multi-component heterogeneous nanoparticles has led to the design of novel systems for the gas-phase synthesis of such nanomaterials, including metal/plasma polymer nanoparticles. In this featured article, we briefly summarized the principles of the basis of gas-phase nanoparticles production and highlighted recent progress made in the field of the fabrication of multi-component nanoparticles. We then introduced a gas aggregation source of plasma polymer nanoparticles that utilized radio frequency magnetron sputtering of a polymeric target with an emphasis on the key features of this kind of source. Finally, we presented and discussed three strategies suitable for the generation of metal/plasma polymer multi-core@shell or core-satellite nanoparticles: the use of composite targets, a multi-magnetron approach, and in-flight coating of plasma polymer nanoparticles by metal.

Zobrazit více v PubMed

Greene J.E. Review Article: Tracing the recorded history of thin-film sputter deposition: From the 1800s to 2017. J. Vac. Sci. Technol. A Vac. Surf. Films. 2017;35:05C204. doi: 10.1116/1.4998940. DOI

Waits R.K. Planar magnetron sputtering. J. Vac. Sci. Technol. 1978;15:179–187. doi: 10.1116/1.569451. DOI

Musil J., Leština J., Vlček J., Tölg T. Pulsed dc magnetron discharge for high-rate sputtering of thin films. J. Vac. Sci. Technol. A Vac. Surf. Films. 2001;19:420–424. doi: 10.1116/1.1339018. DOI

Kouznetsov V., Macák K., Schneider J.M., Helmersson U., Petrov I. A novel pulsed magnetron sputter technique utilizing very high target power densities. Surf. Coat. Technol. 1999;122:290–293. doi: 10.1016/S0257-8972(99)00292-3. DOI

Anders A. Discharge physics of high power impulse magnetron sputtering. Surf. Coat. Technol. 2011;205:S1–S9. doi: 10.1016/j.surfcoat.2011.03.081. DOI

Anders A. Tutorial: Reactive high power impulse magnetron sputtering (R-HiPIMS) J. Appl. Phys. 2017;121:171101. doi: 10.1063/1.4978350. DOI

Sarakinos K., Alami J., Konstantinidis S. High power pulsed magnetron sputtering: A review on scientific and engineering state of the art. Surf. Coat. Technol. 2010;204:1661–1684. doi: 10.1016/j.surfcoat.2009.11.013. DOI

Schiller S., Goedicke K., Reschke J., Kirchhoff V., Schneider S., Milde F. Pulsed magnetron sputter technology. Surf. Coat. Technol. 1993;61:331–337. doi: 10.1016/0257-8972(93)90248-M. DOI

Davidse P.D., Maissel L.I. Dielectric Thin Films through rf Sputtering. J. Appl. Phys. 1966;37:574–579. doi: 10.1063/1.1708218. DOI

Harrop R., Harrop P. Friction of sputtered PTFE films. Thin Solid Films. 1969;3:109–117. doi: 10.1016/0040-6090(69)90083-2. DOI

Pratt I.H., Lausman T.C. Some characteristics of sputtered polytetrafluoroethylene films. Thin Solid Films. 1972;10:151–154. doi: 10.1016/0040-6090(72)90281-7. DOI

Biederman H., Ojha S.M., Holland L. The properties of fluorocarbon films prepared by r.f. sputtering and plasma polymerization in inert and active gas. Thin Solid Films. 1977;41:329–339. doi: 10.1016/0040-6090(77)90319-4. DOI

Biederman H., Osada Y. Plasma Polymerisation Processes. Elsevier; Amsterdam, The Netherlands: 1992.

Friedrich J. Mechanisms of Plasma Polymerization—Reviewed from a Chemical Point of View. Plasma Process. Polym. 2011;8:783–802. doi: 10.1002/ppap.201100038. DOI

Kylián O., Choukourov A., Biederman H. Nanostructured plasma polymers. Thin Solid Films. 2013;548:1–17. doi: 10.1016/j.tsf.2013.09.003. DOI

Thiry D., Konstantinidis S., Cornil J., Snyders R. Plasma diagnostics for the low-pressure plasma polymerization process: A critical review. Thin Solid Films. 2016;606:19–44. doi: 10.1016/j.tsf.2016.02.058. DOI

Cantini M., Rico P., Moratal D., Salmerón-Sánchez M. Controlled wettability, same chemistry: Biological activity of plasma-polymerized coatings. Soft Matter. 2012;8:5575. doi: 10.1039/c2sm25413a. DOI

Siow K.S., Britcher L., Kumar S., Griesser H.J. Plasma Methods for the Generation of Chemically Reactive Surfaces for Biomolecule Immobilization and Cell Colonization—A Review. Plasma Process. Polym. 2006;3:392–418. doi: 10.1002/ppap.200600021. DOI

Desmet T., Morent R., de Geyter N., Leys C., Schacht E., Dubruel P. Nonthermal Plasma Technology as a Versatile Strategy for Polymeric Biomaterials Surface Modification: A Review. Biomacromolecules. 2009;10:2351–2378. doi: 10.1021/bm900186s. PubMed DOI

Nisol B., Oldenhove G., Preyat N., Monteyne D., Moser M., Perez-Morga D., Reniers F. Atmospheric plasma synthesized PEG coatings: Non-fouling biomaterials showing protein and cell repulsion. Surf. Coat. Technol. 2014;252:126–133. doi: 10.1016/j.surfcoat.2014.04.056. DOI

Inagaki N., Kobayashi N., Matsushima M. Gas separation membranes made by plasma polymerization of perfluorobenzene/cf4 and pentafluorobenzene/cf4 mixtures. J. Membr. Sci. 1988;38:85–95. doi: 10.1016/S0376-7388(00)83277-9. DOI

Bitar R., Cools P., de Geyter N., Morent R. Acrylic acid plasma polymerization for biomedical use. Appl. Surf. Sci. 2018;448:168–185. doi: 10.1016/j.apsusc.2018.04.129. DOI

Coad B.R., Jasieniak M., Griesser S.S., Griesser H.J. Controlled covalent surface immobilisation of proteins and peptides using plasma methods. Surf. Coat. Technol. 2013;233:169–177. doi: 10.1016/j.surfcoat.2013.05.019. DOI

Friedrich J.F., Mix R., Kühn G. Functional groups bearing plasma homo and copolymer layers as adhesion promoters in metal–polymer composites. Surf. Coat. Technol. 2003;174–175:811–815. doi: 10.1016/S0257-8972(03)00350-5. DOI

Grundmeier G., Thiemann P., Carpentier J., Barranco V. Tailored thin plasma polymers for the corrosion protection of metals. Surf. Coat. Technol. 2003;174–175:996–1001. doi: 10.1016/S0257-8972(03)00606-6. DOI

Deilmann M., Theiß S., Awakowicz P. Pulsed microwave plasma polymerization of silicon oxide films: Application of efficient permeation barriers on polyethylene terephthalate. Surf. Coat. Technol. 2008;202:1911–1917. doi: 10.1016/j.surfcoat.2007.08.034. DOI

Förch R., Zhang Z., Knoll W. Soft Plasma Treated Surfaces: Tailoring of Structure and Properties for Biomaterial Applications. Plasma Process. Polym. 2005;2:351–372. doi: 10.1002/ppap.200400083. DOI

Brétagnol F., Lejeune M., Papadopoulou-Bouraoui A., Hasiwa M., Rauscher H., Ceccone G., Colpo P., Rossi F. Fouling and non-fouling surfaces produced by plasma polymerization of ethylene oxide monomer. Acta Biomater. 2006;2:165–172. doi: 10.1016/j.actbio.2005.11.002. PubMed DOI

Holvoet S., Chevallier P., Turgeon S., Mantovani D. Toward High-Performance Coatings for Biomedical Devices: Study on Plasma-Deposited Fluorocarbon Films and Ageing in PBS. Materials. 2010;3:1515–1532. doi: 10.3390/ma3031515. DOI

Choukourov A., Gordeev I., Arzhakov D., Artemenko A., Kousal J., Kylián O., Slavínská D., Biederman H. Does Cross-Link Density of PEO-Like Plasma Polymers Influence their Resistance to Adsorption of Fibrinogen? Plasma Process. Polym. 2012;9:48–58. doi: 10.1002/ppap.201100122. DOI

Sardella E., Gristina R., Senesi G.S., D’Agostino R., Favia P. Homogeneous and Micro-Patterned Plasma-Deposited PEO-Like Coatings for Biomedical Surfaces. Plasma Process. Polym. 2004;1:63–72. doi: 10.1002/ppap.200400013. DOI

Drábik M., Polonskyi O., Kylián O., Čechvala J., Artemenko A., Gordeev I., Choukourov A., Slavínská D., Matolínová I., Biederman H. Super-Hydrophobic Coatings Prepared by RF Magnetron Sputtering of PTFE. Plasma Process. Polym. 2010;7:544–551. doi: 10.1002/ppap.200900164. DOI

Kuzminova A., Shelemin A., Kylián O., Petr M., Kratochvíl J., Solař P., Biederman H. From super-hydrophilic to super-hydrophobic surfaces using plasma polymerization combined with gas aggregation source of nanoparticles. Vacuum. 2014;110:58–61. doi: 10.1016/j.vacuum.2014.08.014. DOI

Asadollahi S., Profili J., Farzaneh M., Stafford L. Development of Organosilicon-Based Superhydrophobic Coatings through Atmospheric Pressure Plasma Polymerization of HMDSO in Nitrogen Plasma. Materials. 2019;12:219. doi: 10.3390/ma12020219. PubMed DOI PMC

Macgregor M., Vasilev K. Perspective on Plasma Polymers for Applied Biomaterials Nanoengineering and the Recent Rise of Oxazolines. Materials. 2019;12:191. doi: 10.3390/ma12010191. PubMed DOI PMC

Prencipe I., Fuchs J., Pascarelli S., Schumacher D.W., Stephens R.B., Alexander N.B., Briggs R., Büscher M., Cernaianu M.O., Choukourov A., et al. Targets for high repetition rate laser facilities: Needs, challenges and perspectives. High Power Laser Sci. Eng. 2017;5:e17. doi: 10.1017/hpl.2017.18. DOI

Margarone D., Kim I.J., Psikal J., Kaufman J., Mocek T., Choi I.W., Stolcova L., Proska J., Choukourov A., Melnichuk I., et al. Laser-driven high-energy proton beam with homogeneous spatial profile from a nanosphere target. Phys. Rev. Spec. Top. Accel. Beams. 2015;18:071304. doi: 10.1103/PhysRevSTAB.18.071304. DOI

Choukourov A., Hanuš J., Kousal J., Grinevich A., Pihosh Y., Slavínská D., Biederman H. Thin polymer films from polyimide vacuum thermal degradation with and without a glow discharge. Vacuum. 2006;80:923–929. doi: 10.1016/j.vacuum.2005.12.012. DOI

Robertson T., Morrison D.T. Electrical properties of r.f. sputtered PTFE. Thin Solid Films. 1975;27:19–37. doi: 10.1016/0040-6090(75)90004-8. DOI

Lehmann H.W., Frick K., Widmer R., Vossen J.L., James E. Reactive sputtering of PTFE films in argon-CF4 mixtures. Thin Solid Films. 1978;52:231–235. doi: 10.1016/0040-6090(78)90141-4. DOI

Yamada Y., Tanaka K., Saito K. Friction and damage of coatings formed by sputtering polytetrafluoroethylene and polyimide. Surf. Coat. Technol. 1990;43–44:618–628. doi: 10.1016/0257-8972(90)90006-X. DOI

Gonon P., Sylvestre A. Dielectric properties of fluorocarbon thin films deposited by radio frequency sputtering of polytetrafluoroethylene. J. Appl. Phys. 2002;92:4584–4589. doi: 10.1063/1.1505983. DOI

Maréchal N., Pauleau Y. Radio frequency sputtering process of a polytetrafluoroethylene target and characterization of fluorocarbon polymer films. J. Vac. Sci. Technol. A Vac. Surf. Films. 1992;10:477–483. doi: 10.1116/1.578174. DOI

Tang G., Ma X., Sun M. Composition and chemical structure of ultra-thin a-C:F films deposited by RF magnetron sputtering with high pulsed bias. Diam. Relat. Mater. 2007;16:1586–1588. doi: 10.1016/j.diamond.2007.01.020. DOI

Oya T., Kusano E. Characterization of organic polymer thin films deposited by rf magnetron sputtering. Vacuum. 2008;83:564–568. doi: 10.1016/j.vacuum.2008.04.040. DOI

Kylián O., Drábik M., Polonskyi O., Čechvala J., Artemenko A., Gordeev I., Choukourov A., Matolínová I., Slavínská D., Biederman H. Deposition of nanostructured fluorocarbon plasma polymer films by RF magnetron sputtering of polytetrafluoroethylene. Thin Solid Films. 2011;519:6426–6431. doi: 10.1016/j.tsf.2011.04.213. DOI

Li L., Jones P.M., Hsia Y.T. Characterization of a nanometer-thick sputtered polytetrafluoroethylene film. Appl. Surf. Sci. 2011;257:4478–4485. doi: 10.1016/j.apsusc.2010.12.104. DOI

Roy R.A., Messier R., Krishnaswamy S.V. Preparation and properties of r.f.-sputtered polymer-metal thin films. Thin Solid Films. 1983;109:27–35. doi: 10.1016/0040-6090(83)90028-7. DOI

Biederman H. RF sputtering of polymers and its potential application. Vacuum. 2000;59:594–599. doi: 10.1016/S0042-207X(00)00321-3. DOI

Biederman H. Organic films prepared by polymer sputtering. J. Vac. Sci. Technol. A Vac. Surf. Films. 2000;18:1642–1648. doi: 10.1116/1.582399. DOI

Uemura A., Kezuka K., Iwamori S., Nishiyama I. Effects of substrate temperature on the surface of polymer thin films prepared by R.F. sputtering with a polyimide target. Vacuum. 2009;84:607–611. doi: 10.1016/j.vacuum.2009.06.036. DOI

Choukourov A., Hanuš J., Kousal J., Grinevich A., Pihosh Y., Slavínská D., Biederman H. Plasma polymer films from sputtered polyimide. Vacuum. 2006;81:517–526. doi: 10.1016/j.vacuum.2006.07.010. DOI

Kholodkov I. Plasma polymers prepared by RF sputtering of polyethylene. Vacuum. 2003;70:505–509. doi: 10.1016/S0042-207X(02)00702-9. DOI

Pihosh Y., Biederman H., Slavinska D., Kousal J., Choukourov A., Trchova M., Mackova A., Boldyreva A. Composite SiOx/hydrocarbon plasma polymer films prepared by RF magnetron sputtering of SiO2 and polyethylene or polypropylene. Vacuum. 2006;81:32–37. doi: 10.1016/j.vacuum.2006.02.006. DOI

Hishmeh G.A., Barr T.L., Sklyarov A., Hardcastle S. Thin polymer films prepared by radio frequency plasma sputtering of polytetrafluoroethylene and polyetherimide targets. J. Vac. Sci. Technol. A Vac. Surf. Films. 1996;14:1330–1338. doi: 10.1116/1.579950. DOI

Stelmashuk V., Biederman H., Slavínská D., Trchová M., Hlidek P. Rf magnetron sputtering of polypropylene. Vacuum. 2004;75:207–215. doi: 10.1016/j.vacuum.2004.02.007. DOI

Hanus J., Kousal J., Choukourov A., Biederman H., Slavinska D. RF magnetron sputtering of poly(propylene) in a mixture of argon and nitrogen. Plasma Process. Polym. 2007;4:806–811. doi: 10.1002/ppap.200731910. DOI

Kousal J., Hanuš J., Choukourov A., Polonskyi O., Biederman H., Slavínská D. In Situ Diagnostics of RF Magnetron Sputtering of Nylon. Plasma Process. Polym. 2009;6:S803–S807. doi: 10.1002/ppap.200932001. DOI

Haberland H., Karrais M., Mall M. A new type of cluster and cluster ion source. Z. Phys. D At. Mol. Clust. 1991;20:413–415. doi: 10.1007/BF01544025. DOI

Haberland H., Karrais M. Thin films from energetic cluster impact: A feasibility study. J. Vac. Sci. Technol. A Vac. Surf. Films. 1992;10:3266–3271. doi: 10.1116/1.577853. DOI

Hanuš J., Steinhartová T., Kylián O., Kousal J., Malinský P., Choukourov A., Macková A., Biederman H. Deposition of Cu/a-C:H Nanocomposite Films. Plasma Process. Polym. 2016;13:879–887. doi: 10.1002/ppap.201500208. DOI

Vaidulych M., Hanuš J., Steinhartová T., Kylián O., Choukourov A., Beranová J., Khalakhan I., Biederman H. Deposition of Ag/a-C:H nanocomposite films with Ag surface enrichment. Plasma Process. Polym. 2017;14:1600256. doi: 10.1002/ppap.201600256. DOI

Kylián O., Kratochvíl J., Petr M., Kuzminova A., Slavínská D., Biederman H., Beranová J. Ag/C:F Antibacterial and hydrophobic nanocomposite coatings. Funct. Mater. Lett. 2017;10:1750029. doi: 10.1142/S1793604717500291. DOI

Petr M., Kylián O., Hanuš J., Kuzminova A., Vaidulych M., Khalakhan I., Choukourov A., Slavínská D., Biederman H. Surfaces with Roughness Gradient and Invariant Surface Chemistry Produced by Means of Gas Aggregation Source and Magnetron Sputtering. Plasma Process. Polym. 2016;13:663–671. doi: 10.1002/ppap.201500202. DOI

Kratochvíl J., Kuzminova A., Solař P., Hanuš J., Kylián O., Biederman H. Wetting and drying on gradient-nanostructured C:F surfaces synthesized using a gas aggregation source of nanoparticles combined with magnetron sputtering of polytetrafluoroethylene. Vacuum. 2019;166:50–56. doi: 10.1016/j.vacuum.2019.04.050. DOI

Kylián O., Kratochvíl J., Hanuš J., Polonskyi O., Solař P., Biederman H. Fabrication of Cu nanoclusters and their use for production of Cu/plasma polymer nanocomposite thin films. Thin Solid Films. 2014;550:46–52. doi: 10.1016/j.tsf.2013.10.029. DOI

Kuzminova A., Beranová J., Polonskyi O., Shelemin A., Kylián O., Choukourov A., Slavínská D., Biederman H. Antibacterial nanocomposite coatings produced by means of gas aggregation source of silver nanoparticles. Surf. Coat. Technol. 2016;294:225–230. doi: 10.1016/j.surfcoat.2016.03.097. DOI

Nikitin D., Madkour S., Pleskunov P., Tafiichuk R., Shelemin A., Hanuš J., Gordeev I., Sysolyatina E., Lavrikova A., Ermolaeva S., et al. Cu nanoparticles constrain segmental dynamics of cross-linked polyethers: A trade-off between non-fouling and antibacterial properties. Soft Matter. 2019;15:2884–2896. doi: 10.1039/C8SM02413H. PubMed DOI

Gracia-Pinilla M.Á., Ferrer D., Mejía-Rosales S., Pérez-Tijerina E. Size-selected Ag nanoparticles with five-fold symmetry. Nanoscale Res. Lett. 2009;4:896–902. doi: 10.1007/s11671-009-9328-4. PubMed DOI PMC

Polonskyi O., Solař P., Kylián O., Drábik M., Artemenko A., Kousal J., Hanuš J., Pešička J., Matolínová I., Kolíbalová E., et al. Nanocomposite metal/plasma polymer films prepared by means of gas aggregation cluster source. Thin Solid Films. 2012;520:4155–4162. doi: 10.1016/j.tsf.2011.04.100. DOI

Kuzminova A., Solař P., Kúš P., Kylián O. Double Plasmon Resonance Nanostructured Silver Coatings with Tunable Properties. J. Nanomater. 2019;2019:1–8. doi: 10.1155/2019/1592621. DOI

Dutka M.V., Turkin A.a., Vainchtein D.I., de Hosson J.T.M. On the formation of copper nanoparticles in nanocluster aggregation source. J. Vac. Sci. Technol. A Vac. Surf. Films. 2015;33:031509. doi: 10.1116/1.4917002. DOI

Drache S., Stranak V., Berg F., Hubicka Z., Tichy M., Helm C.A., Hippler R. Pulsed gas aggregation for improved nanocluster growth and flux. Phys. Status Solidi (A) 2014;211:1189–1193. doi: 10.1002/pssa.201330399. DOI

Luo Z., Woodward W.H., Smith J.C., Castleman A.W. Growth kinetics of Al clusters in the gas phase produced by a magnetron-sputtering source. Int. J. Mass Spectrom. 2012;309:176–181. doi: 10.1016/j.ijms.2011.09.016. DOI

Drabik M., Choukourov A., Artemenko A., Polonskyi O., Kylian O., Kousal J., Nichtova L., Cimrova V., Slavinska D., Biederman H. Structure and Composition of Titanium Nanocluster Films Prepared by a Gas Aggregation Cluster Source. J. Phys. Chem. C. 2011;115:20937–20944. doi: 10.1021/jp2059485. DOI

Drábik M., Choukourov A., Artemenko A., Kousal J., Polonskyi O., Solař P., Kylián O., Matoušek J., Pešička J., Matolínová I., et al. Morphology of Titanium Nanocluster Films Prepared by Gas Aggregation Cluster Source. Plasma Process. Polym. 2011;8:640–650. doi: 10.1002/ppap.201000126. DOI

Ahadi A.M., Zaporojtchenko V., Peter T., Polonskyi O., Strunskus T., Faupel F. Role of oxygen admixture in stabilizing TiO x nanoparticle deposition from a gas aggregation source. J. Nanoparticle Res. 2013;15:2125. doi: 10.1007/s11051-013-2125-0. DOI

Morel R., Brenac A., Bayle-Guillemaud P., Portement C., la Rizza F. Growth and properties of cobalt clusters made by sputtering gas-aggregation. Eur. Phys. J. D. 2003;24:287–290. doi: 10.1140/epjd/e2003-00158-9. DOI

Gojdka B., Hrkac V., Strunskus T., Zaporojtchenko V., Kienle L., Faupel F. Study of cobalt clusters with very narrow size distribution deposited by high-rate cluster source. Nanotechnology. 2011;22:465704. doi: 10.1088/0957-4484/22/46/465704. PubMed DOI

Kylián O., Valeš V., Polonskyi O., Pešička J., Čechvala J., Solař P., Choukourov A., Slavínská D., Biederman H. Deposition of Pt nanoclusters by means of gas aggregation cluster source. Mater. Lett. 2012;79:229–231. doi: 10.1016/j.matlet.2012.04.022. DOI

Kylián O., Prokeš J., Polonskyi O., Čechvala J., Kousal J., Pešička J., Hanuš J., Biederman H. Deposition and characterization of Pt nanocluster films by means of gas aggregation cluster source. Thin Solid Films. 2014;571:13–17. doi: 10.1016/j.tsf.2014.09.064. DOI

Bray K.R., Jiao C.Q., DeCerbo J.N. Nucleation and growth of Nb nanoclusters during plasma gas condensation. J. Appl. Phys. 2013;113:234307. doi: 10.1063/1.4811448. DOI

Ayesh A.I., Qamhieh N., Ghamlouche H., Thaker S., El-Shaer M. Fabrication of size-selected Pd nanoclusters using a magnetron plasma sputtering source. J. Appl. Phys. 2010;107:034317. doi: 10.1063/1.3296131. DOI

Acsente T., Negrea R.F., Nistor L.C., Logofatu C., Matei E., Birjega R., Grisolia C., Dinescu G. Synthesis of flower-like tungsten nanoparticles by magnetron sputtering combined with gas aggregation. Eur. Phys. J. D. 2015;69:161. doi: 10.1140/epjd/e2015-60097-4. DOI

D’Addato S., Gragnaniello L., Valeri S., Rota A., di Bona A., Spizzo F., Panozaqi T., Schifano S.F. Morphology and magnetic properties of size-selected Ni nanoparticle films. J. Appl. Phys. 2010;107:104318. doi: 10.1063/1.3374467. DOI

Nielsen R.M., Murphy S., Strebel C., Johansson M., Chorkendorff I., Nielsen J.H. The morphology of mass selected ruthenium nanoparticles from a magnetron-sputter gas-aggregation source. J. Nanoparticle Res. 2010;12:1249–1262. doi: 10.1007/s11051-009-9830-8. DOI

Shelemin A., Kylián O., Hanuš J., Choukourov A., Melnichuk I., Serov A., Slavínská D., Biederman H. Preparation of metal oxide nanoparticles by gas aggregation cluster source. Vacuum. 2015;120:162–169. doi: 10.1016/j.vacuum.2015.07.008. DOI

Polonskyi O., Ahadi A.M., Peter T., Fujioka K., Abraham J.W., Vasiliauskaite E., Hinz A., Strunskus T., Wolf S., Bonitz M., et al. Plasma based formation and deposition of metal and metal oxide nanoparticles using a gas aggregation source. Eur. Phys. J. D. 2018;72:93. doi: 10.1140/epjd/e2017-80419-8. DOI

Polonskyi O., Kylián O., Solař P., Artemenko A., Kousal J., Slavínská D., Choukourov A., Biederman H. Nylon-sputtered nanoparticles: Fabrication and basic properties. J. Phys. D Appl. Phys. 2012;45:495301. doi: 10.1088/0022-3727/45/49/495301. DOI

Drábik M., Serov A., Kylián O., Choukourov A., Artemenko A., Kousal J., Polonskyi O., Biederman H. Deposition of Fluorocarbon Nanoclusters by Gas Aggregation Cluster Source. Plasma Process. Polym. 2012;9:390–397. doi: 10.1002/ppap.201100147. DOI

Solař P., Melnichuk I., Artemenko A., Polonskyi O., Kylián O., Choukourov A., Slavínská D., Biederman H. Nylon-sputtered plasma polymer particles produced by a semi-hollow cathode gas aggregation source. Vacuum. 2015;111:124–130. doi: 10.1016/j.vacuum.2014.09.023. DOI

Choukourov A., Pleskunov P., Nikitin D., Titov V., Shelemin A., Vaidulych M., Kuzminova A., Solař P., Hanuš J., Kousal J., et al. Advances and challenges in the field of plasma polymer nanoparticles. Beilstein J. Nanotechnol. 2017;8:2002–2014. doi: 10.3762/bjnano.8.200. PubMed DOI PMC

Choukourov A., Shelemin A., Pleskunov P., Nikitin D., Khalakhan I., Hanuš J. Nanoscale morphogenesis of nylon-sputtered plasma polymer particles. J. Phys. D Appl. Phys. 2018;51:215304. doi: 10.1088/1361-6463/aabbbf. DOI

Xu Y.-H., Wang J.-P. Direct Gas-Phase Synthesis of Heterostructured Nanoparticles through Phase Separation and Surface Segregation. Adv. Mater. 2008;20:994–999. doi: 10.1002/adma.200602895. DOI

Vahl A., Strobel J., Reichstein W., Polonskyi O., Strunskus T., Kienle L., Faupel F. Single target sputter deposition of alloy nanoparticles with adjustable composition via a gas aggregation cluster source. Nanotechnology. 2017;28 doi: 10.1088/1361-6528/aa66ef. PubMed DOI

Gauter S., Haase F., Solař P., Kylián O., Kúš P., Choukourov A., Biederman H., Kersten H. Calorimetric investigations in a gas aggregation source. J. Appl. Phys. 2018;124 doi: 10.1063/1.5037413. DOI

Martínez L., Díaz M., Román E., Ruano M., Llamosa P.D., Huttel Y. Generation of nanoparticles with adjustable size and controlled stoichiometry: Recent advances. Langmuir. 2012;28:11241–11249. doi: 10.1021/la3022134. PubMed DOI

Llamosa D., Ruano M., Martínez L., Mayoral A., Roman E., García-Hernández M., Huttel Y. The ultimate step towards a tailored engineering of core@shell and core@shell@shell nanoparticles. Nanoscale. 2014;6:13483–13486. doi: 10.1039/C4NR02913E. PubMed DOI

Mayoral A., Llamosa D., Huttel Y. A novel Co@Au structure formed in bimetallic core@shell nanoparticles. Chem. Commun. 2015;51:8442–8445. doi: 10.1039/C5CC00774G. PubMed DOI

Singh V., Cassidy C., Grammatikopoulos P., Djurabekova F., Nordlund K., Sowwan M. Heterogeneous Gas-Phase Synthesis and Molecular Dynamics Modeling of Janus and Core–Satellite Si–Ag Nanoparticles. J. Phys. Chem. C. 2014;118:13869–13875. doi: 10.1021/jp500684y. DOI

Mattei J.-G., Grammatikopoulos P., Zhao J., Singh V., Vernieres J., Steinhauer S., Porkovich A., Danielson E., Nordlund K., Djurabekova F., et al. Gas-Phase Synthesis of Trimetallic Nanoparticles. Chem. Mater. 2019;31:2151–2163. doi: 10.1021/acs.chemmater.9b00129. DOI

Popok V.N., Jeppesen C.M., Fojan P., Kuzminova A., Hanuš J., Kylián O. Comparative study of antibacterial properties of polystyrene films with TiO x and Cu nanoparticles fabricated using cluster beam technique. Beilstein J. Nanotechnol. 2018;9:861–869. doi: 10.3762/bjnano.9.80. PubMed DOI PMC

Bai J., Wang J.P. High-magnetic-moment core-shell-type FeCo-Au/Ag nanoparticles. Appl. Phys. Lett. 2005;87:1–3. doi: 10.1063/1.2089171. DOI

Kylián O., Kuzminova A., Vaydulych M., Cieslar M., Khalakhan I., Hanuš J., Choukourov A., Slavínská D., Biederman H. Core@shell Cu/hydrocarbon plasma polymer nanoparticles prepared by gas aggregation cluster source followed by in-flight plasma polymer coating. Plasma Process. Polym. 2018;15:1700109. doi: 10.1002/ppap.201700109. DOI

Hanuš J., Vaidulych M., Kylián O., Choukourov A., Kousal J., Khalakhan I., Cieslar M., Solař P., Biederman H. Fabrication of Ni@Ti core–shell nanoparticles by modified gas aggregation source. J. Phys. D Appl. Phys. 2017;50:475307. doi: 10.1088/1361-6463/aa8f25. DOI

Kretková T., Hanuš J., Kylián O., Solař P., Dopita M., Cieslar M., Khalakhan I., Choukourov A., Biederman H. In-flight modification of Ni nanoparticles by tubular magnetron sputtering. J. Phys. D Appl. Phys. 2019;52:205302. doi: 10.1088/1361-6463/ab00d0. DOI

Cassidy C., Singh V., Grammatikopoulos P., Djurabekova F., Nordlund K., Sowwan M. Inoculation of silicon nanoparticles with silver atoms. Sci. Rep. 2013;3:3083. doi: 10.1038/srep03083. PubMed DOI PMC

Kylián O., Hanuš J., Choukourov A., Kousal J., Slavínská D., Biederman H. Deposition of amino-rich thin films by RF magnetron sputtering of nylon. J. Phys. D Appl. Phys. 2009;42:142001. doi: 10.1088/0022-3727/42/14/142001. DOI

Finke B., Hempel F., Testrich H., Artemenko A., Rebl H., Kylián O., Meichsner J., Biederman H., Nebe B., Weltmann K.-D., et al. Plasma processes for cell-adhesive titanium surfaces based on nitrogen-containing coatings. Surf. Coat. Technol. 2011;205:S520–S524. doi: 10.1016/j.surfcoat.2010.12.044. DOI

Kratochvíl J., Kahoun D., Štěrba J., Langhansová H., Lieskovská J., Fojtíková P., Hanuš J., Kousal J., Kylián O., Straňák V. Plasma polymerized C:H:N:O thin films for controlled release of antibiotic substances. Plasma Process. Polym. 2018;15:1700160. doi: 10.1002/ppap.201700160. DOI

Kovačević E., Stefanović I., Berndt J., Winter J. Infrared fingerprints and periodic formation of nanoparticles in Ar/C2H2 plasmas. J. Appl. Phys. 2003;93:2924–2930. doi: 10.1063/1.1541118. DOI

Solař P., Polonskyi O., Olbricht A., Hinz A., Shelemin A., Kylián O., Choukourov A., Faupel F., Biederman H. Single-step generation of metal-plasma polymer multicore@shell nanoparticles from the gas phase. Sci. Rep. 2017;7:8514. doi: 10.1038/s41598-017-08274-6. PubMed DOI PMC

Kylián O., Kuzminova A., Štefaníková R., Hanuš J., Solař P., Kúš P., Cieslar M., Choukourov A., Biederman H. Silver/plasma polymer strawberry-like nanoparticles produced by gas-phase synthesis. Mater. Lett. 2019;253:238–241. doi: 10.1016/j.matlet.2019.06.069. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...