Fabrication of Plasmonic Indium Tin Oxide Nanoparticles by Means of a Gas Aggregation Cluster Source
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36816637
PubMed Central
PMC9933235
DOI
10.1021/acsomega.2c08070
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
In this work, we demonstrate, for the first time, the possibility to fabricate indium tin oxide nanoparticles (ITO NPs) using a gas aggregation cluster source. A stable and reproducible deposition rate of ITO NPs has been achieved using magnetron sputtering of an In2O3/SnO2 target (90/10 wt %) at an elevated pressure of argon. Remarkably, most of the generated NPs possess a crystalline structure identical to the original target material, which, in combination with their average size of 17 nm, resulted in a localized surface plasmon resonance peak at 1580 nm in the near-infrared region.
Zobrazit více v PubMed
Kim H.; Gilmore C. M.; Piqué A.; Horwitz J. S.; Mattoussi H.; Murata H.; Kafafi Z. H.; Chrisey D. B. Electrical, Optical, and Structural Properties of Indium-Tin-Oxide Thin Films for Organic Light-Emitting Devices. J. Appl. Phys. 1999, 86, 6451–6461. 10.1063/1.371708. DOI
Park D.; Park W.; Song J.; Kim S. S. High-Performance ITO Thin Films for on-Cell Touch Sensor of Foldable OLED Displays. J. Inf. Disp. 2022, 23, 77–85. 10.1080/15980316.2021.1999867. DOI
Granqvist C. G.; Hultåker A. Transparent and Conducting ITO Films: New Developments and Applications. Thin Solid Films 2002, 411, 1–5. 10.1016/S0040-6090(02)00163-3. DOI
Toušková J.; Kovanda J.; Dobiášová L.; Pařèzek V.; Kielar P. Sputtered Indium-Tin Oxide Substrates for CdSCdTe Solar Cells. Sol. Energy Mater. Sol. Cells 1995, 37, 357–365. 10.1016/0927-0248(95)00029-1. DOI
Du J.; Chen X.-L.; Liu C.-C.; Ni J.; Hou G.-F.; Zhao Y.; Zhang X.-D. Highly Transparent and Conductive Indium Tin Oxide Thin Films for Solar Cells Grown by Reactive Thermal Evaporation at Low Temperature. Appl. Phys. Mater. Sci. Process. 2014, 117, 815–822. 10.1007/s00339-014-8436-x. DOI
Ren Y.; Zhou X.; Wang Q.; Zhao G. Novel Preparation of ITO Nanocrystalline Films with Plasmon Electrochromic Properties by the Sol-Gel Method Using Benzoylacetone as a Chemical Modifier. Ceram. Int. 2018, 44, 3394–3399. 10.1016/j.ceramint.2017.11.130. DOI
Dong L.; Zhu G. S.; Xu H. R.; Jiang X. P.; Zhang X. Y.; Zhao Y. Y.; Yan D. L.; Yuan L.; Yu A. B. Preparation of Indium Tin Oxide (ITO) Thin Film with (400) Preferred Orientation by Sol–Gel Spin Coating Method. J. Mater. Sci.: Mater. Electron. 2019, 30, 8047–8054. 10.1007/s10854-019-01126-1. DOI
Xia N.; Gerhardt R. A. Fabrication and Characterization of Highly Transparent and Conductive Indium Tin Oxide Films Made with Different Solution-Based Methods. Mater. Res. Express 2016, 3, 116408.10.1088/2053-1591/3/11/116408. DOI
Fang X.; Mak C. L.; Zhang S.; Wang Z.; Yuan W.; Ye H. Pulsed Laser Deposited Indium Tin Oxides as Alternatives to Noble Metals in the Near-Infrared Region. J. Phys. Condens. Matter 2016, 28, 224009.10.1088/0953-8984/28/22/224009. PubMed DOI
Prepelita P.; Stavarache I.; Craciun D.; Garoi F.; Negrila C.; Sbarcea B. G.; Craciun V. Rapid Thermal Annealing for High-Quality ITO Thin Films Deposited by Radio-Frequency Magnetron Sputtering. Beilstein J. Nanotechnol. 2019, 10, 1511–1522. 10.3762/bjnano.10.149. PubMed DOI PMC
Kurdesau F.; Khripunov G.; da Cunha A. F.; Kaelin M.; Tiwari A. N. Comparative Study of ITO Layers Deposited by DC and RF Magnetron Sputtering at Room Temperature. J. Non-Cryst. Solids 2006, 352, 1466–1470. 10.1016/j.jnoncrysol.2005.11.088. DOI
Wang Y.; Overvig A. C.; Shrestha S.; Zhang R.; Wang R.; Yu N.; Dal Negro L. Tunability of Indium Tin Oxide Materials for Mid-Infrared Plasmonics Applications. Opt. Mater. Express 2017, 7, 2727.10.1364/ome.7.002727. DOI
Ma K.; Zhou N.; Yuan M.; Li D.; Yang D. Tunable Surface Plasmon Resonance Frequencies of Monodisperse Indium Tin Oxide Nanoparticles by Controlling Composition, Size, and Morphology. Nanoscale Res. Lett. 2014, 9, 1–7. 10.1186/1556-276X-9-547. PubMed DOI PMC
Katagiri K.; Takabatake R.; Inumaru K. Robust Infrared-Shielding Coating Films Prepared Using Perhydropolysilazane and Hydrophobized Indium Tin Oxide Nanoparticles with Tuned Surface Plasmon Resonance. ACS Appl. Mater. Interfaces 2013, 5, 10240–10245. 10.1021/am403011t. PubMed DOI
Garcia G.; Buonsanti R.; Runnerstrom E. L.; Mendelsberg R. J.; Llordes A.; Anders A.; Richardson T. J.; Milliron D. J. Dynamically Modulating the Surface Plasmon Resonance of Doped Semiconductor Nanocrystals. Nano Lett. 2011, 11, 4415–4420. 10.1021/nl202597n. PubMed DOI
Kanehara M.; Koike H.; Yoshinaga T.; Teranishi T. Indium Tin Oxide Nanoparticles with Compositionally Tunable Surface Plasmon Resonance Frequencies in the Near-IR Region. J. Am. Chem. Soc. 2009, 131, 17736–17737. 10.1021/ja9064415. PubMed DOI
Kim C.; Park J.-W.; Kim J.; Hong S.-J.; Lee M. J. A Highly Efficient Indium Tin Oxide Nanoparticles (ITO-NPs) Transparent Heater Based on Solution-Process Optimized with Oxygen Vacancy Control. J. Alloys Compd. 2017, 726, 712–719. 10.1016/j.jallcom.2017.07.322. DOI
Matsui H.; Tabata H. Assembled Films of Sn-Doped In2O3 Plasmonic Nanoparticles on High-Permittivity Substrates for Thermal Shielding. ACS Appl. Nano Mater. 2019, 2, 2806–2816. 10.1021/acsanm.9b00293. DOI
Korgel B. A. Composite for Smarter Windows. Nature 2013, 500, 278–279. 10.1038/500278a. PubMed DOI
Granqvist C. G. Electrochromics for Smart Windows: Oxide-Based Thin Films and Devices. Thin Solid Films 2014, 564, 1–38. 10.1016/j.tsf.2014.02.002. DOI
Yoon S.; Kim H.; Cha S. J.; Shin E. S.; Noh Y. Y.; Hong S. J.; Park B.; Hwang I. Role of ITO Nanoparticles Embedded into Electrospun ITO Nanofibers. J. Phys. D: Appl. Phys 2017, 50, 475305.10.1088/1361-6463/AA8F8F. DOI
Otanicar T. P.; DeJarnette D.; Hewakuruppu Y.; Taylor R. A. Filtering Light with Nanoparticles: A Review of Optically Selective Particles and Applications. Adv. Opt. Photon. 2016, 8, 541.10.1364/AOP.8.000541. DOI
Drábik M.; Choukourov A.; Artemenko A.; Kousal J.; Polonskyi O.; Solař P.; Kylián O.; Matoušek J.; Pešička J.; Matolènová I.; Slavènská D.; Biederman H. Morphology of Titanium Nanocluster Films Prepared by Gas Aggregation Cluster Source. Plasma Processes Polym. 2011, 8, 640–650. 10.1002/ppap.201000126. DOI
Kousal J.; Shelemin A.; Schwartzkopf M.; Polonskyi O.; Hanuš J.; Solař P.; Vaidulych M.; Nikitin D.; Pleskunov P.; Krtouš Z.; Strunskus T.; Faupel F.; Roth S. V.; Biederman H.; Choukourov A. Magnetron-Sputtered Copper Nanoparticles: Lost in Gas Aggregation and Found by in Situ X-Ray Scattering. Nanoscale 2018, 10, 18275–18281. 10.1039/C8NR06155F. PubMed DOI
Kylián O.; Valeš V.; Polonskyi O.; Pešička J.; Čechvala J.; Solař P.; Choukourov A.; Slavènská D.; Biederman H. Deposition of Pt Nanoclusters by Means of Gas Aggregation Cluster Source. Mater. Lett. 2012, 79, 229–231. 10.1016/j.matlet.2012.04.022. DOI
Shelemin A.; Kylián O.; Hanuš J.; Choukourov A.; Melnichuk I.; Serov A.; Slavènská D.; Biederman H. Preparation of Metal Oxide Nanoparticles by Gas Aggregation Cluster Source. Vacuum 2015, 120, 162–169. 10.1016/j.vacuum.2015.07.008. DOI
Shelemin A.; Nikitin D.; Choukourov A.; Kylián O.; Kousal J.; Khalakhan I.; Melnichuk I.; Slavènská D.; Biederman H. Preparation of Biomimetic Nano-Structured Films with Multi-Scale Roughness. J. Phys. D: Appl. Phys. 2016, 49, 254001.10.1088/0022-3727/49/25/254001. DOI
Marek A.; Valter J.; Kadlec S.; Vyskočil J. Gas aggregation nanocluster source — Reactive sputter deposition of copper and titanium nanoclusters. Surf. Coat. Technol. 2011, 205, S573–S576. 10.1016/j.surfcoat.2010.12.027. DOI
Choukourov A.; Pleskunov P.; Nikitin D.; Titov V.; Shelemin A.; Vaidulych M.; Kuzminova A.; Solař P.; Hanuš J.; Kousal J.; Kylián O.; Slavènská D.; Biederman H. Advances and Challenges in the Field of Plasma Polymer Nanoparticles. Beilstein J. Nanotechnol. 2017, 8, 2002–2014. 10.3762/bjnano.8.200. PubMed DOI PMC
Pleskunov P.; Nikitin D.; Tafiichuk R.; Shelemin A.; Hanuš J.; Kousal J.; Krtouš Z.; Khalakhan I.; Kúš P.; Nasu T.; Nagahama T.; Funaki C.; Sato H.; Gawek M.; Schoenhals A.; Choukourov A. Plasma Polymerization of Acrylic Acid for the Tunable Synthesis of Glassy and Carboxylated Nanoparticles. J. Phys. Chem. B 2020, 124, 668–678. 10.1021/acs.jpcb.9b08960. PubMed DOI
Hanuš J.; Vaidulych M.; Kylián O.; Choukourov A.; Kousal J.; Khalakhan I.; Cieslar M.; Solař P.; Biederman H. Fabrication of Ni@Ti Core-Shell Nanoparticles by Modified Gas Aggregation Source. J. Phys. D: Appl. Phys. 2017, 50, 475307.10.1088/1361-6463/aa8f25. DOI
Kretková T.; Hanuš J.; Kylián O.; Solař P.; Dopita M.; Cieslar M.; Khalakhan I.; Choukourov A.; Biederman H. In-Flight Modification of Ni Nanoparticles by Tubular Magnetron Sputtering. J. Phys. D: Appl. Phys. 2019, 52, 205302.10.1088/1361-6463/ab00d0. DOI
Kylián O.; Shelemin A.; Solař P.; Pleskunov P.; Nikitin D.; Kuzminova A.; Štefanèková R.; Kúš P.; Cieslar M.; Hanuš J.; Choukourov A.; Biederman H. Magnetron Sputtering of Polymeric Targets: From Thin Films to Heterogeneous Metal/Plasma Polymer Nanoparticles. Materials 2019, 12, 2366.10.3390/ma12152366. PubMed DOI PMC
Kylián O.; Štefanèková R.; Kuzminova A.; Hanuš J.; Solař P.; Kúš P.; Cieslar M.; Biederman H. In-Flight Plasma Modification of Nanoparticles Produced by Means of Gas Aggregation Sources as an Effective Route for the Synthesis of Core-Satellite Ag/Plasma Polymer Nanoparticles. Plasma Phys. Control. Fusion 2020, 62, 01400510.1088/1361-6587/ab4115. DOI
Haberland H.History, Some Basics, and an Outlook . InGasi-Phase Synthesis of Nanoparticles ,Huttel Y., Ed.; John Wiley & Sons, Ltd. 2017; pp. 23–38. 10.1002/9783527698417.ch1. DOI
Mecea V. M. Fundamentals of Mass Measurements. J. Therm. Anal. Calorim. 2006, 86, 9–16. 10.1007/s10973-006-7570-x. DOI
Kuzminova A.; Beranová J.; Polonskyi O.; Shelemin A.; Kylián O.; Choukourov A.; Slavènská D.; Biederman H. Antibacterial Nanocomposite Coatings Produced by Means of Gas Aggregation Source of Silver Nanoparticles. Surf. Coat. Technol. 2016, 294, 225–230. 10.1016/j.surfcoat.2016.03.097. DOI
Solař P.; Kylián O.; Marek A.; Vandrovcová M.; Bačáková L.; Hanuš J.; Vyskočil J.; Slavènská D.; Biederman H. Particles Induced Surface Nanoroughness of Titanium Surface and Its Influence on Adhesion of Osteoblast-like MG-63 Cells. Appl. Surf. Sci. 2015, 324, 99–105. 10.1016/j.apsusc.2014.10.082. DOI
Shelemin A.; Pleskunov P.; Kousal J.; Drewes J.; Hanuš J.; Ali-Ogly S.; Nikitin D.; Solař P.; Kratochvèl J.; Vaidulych M.; Schwartzkopf M.; Kylián O.; Polonskyi O.; Strunskus T.; Faupel F.; Roth S. V.; Biederman H.; Choukourov A. Nucleation and Growth of Magnetron-Sputtered Ag Nanoparticles as Witnessed by Time-Resolved Small Angle X-Ray Scattering. Part. Part. Syst. Charact. 2020, 37, 1–11. 10.1002/ppsc.201900436. DOI
Popok V. N.; Kylián O. Gas-Phase Synthesis of Functional Nanomaterials. Appl. Nano 2020, 1, 25–58. 10.3390/applnano1010004. DOI
Nikitin D.; Hanuš J.; Ali-Ogly S.; Polonskyi O.; Drewes J.; Faupel F.; Biederman H.; Choukourov A. The Evolution of Ag Nanoparticles inside a Gas Aggregation Cluster Source. Plasma Processes Polym. 2019, 16, 1900079.10.1002/ppap.201900079. DOI
Gudmundsson J. T. Physics and Technology of Magnetron Sputtering Discharges. Plasma Sources Sci. Technol. 2020, 29, 113001.10.1088/1361-6595/abb7bd. DOI
Vaidulych M.; Shelemin A.; Hanuš J.; Khalakhan I.; Krakovsky I.; Kočová P.; Mašková H.; Kratochvèl J.; Pleskunov P.; Štěrba J.; Kylián O.; Choukourov A.; Biederman H. Superwettable Antibacterial Textiles for Versatile Oil/Water Separation. Plasma Processes Polym. 2019, 16, 1900003.10.1002/ppap.201900003. DOI
Cho Y.-S.; Jeong S.; Nam S. Stable Dispersion of ITO Nanoparticles for Self-Organization by Electrospinning and Electrospray. J. Dispersion Sci. Technol. 2020, 41, 1963–1975. 10.1080/01932691.2019.1645023. DOI