Monogenic causes of familial short stature
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
39749023
PubMed Central
PMC11693446
DOI
10.3389/fendo.2024.1506323
Knihovny.cz E-zdroje
- Klíčová slova
- autosomal dominant short stature, familial short stature, genetics, growth plate, short stature,
- MeSH
- fenotyp MeSH
- lidé MeSH
- nanismus genetika MeSH
- poruchy růstu * genetika MeSH
- tělesná výška * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Genetic factors play a crucial role in determining human height. Short stature commonly affects multiple family members and therefore, familial short stature (FSS) represents a significant proportion of growth disorders. Traditionally, FSS was considered a benign polygenic condition representing a subcategory of idiopathic short stature (ISS). However, advancements in genetic research have revealed that FSS can also be monogenic, inherited in an autosomal dominant manner and can result from different mechanisms including primary growth plate disorders, growth hormone deficiency/insensitivity or by the disruption of fundamental intracellular pathways. These discoveries have highlighted a broader phenotypic spectrum for monogenic forms of short stature, which may exhibit mild manifestations indistinguishable from ISS. Given the overlapping features and the difficulty in differentiating polygenic from monogenic FSS without genetic testing, some researchers redefine FSS as a descriptive term that encompasses any familial occurrence of short stature, regardless of the underlying cause. This shift emphasizes the complexity of diagnosing and managing short stature within families, reflecting the diverse genetic landscape that influences human growth.
Zobrazit více v PubMed
Jee YH, Baron J, Nilsson O. New developments in the genetic diagnosis of short stature. Curr Opin Pediatr. (2018) 30:541–7. doi: 10.1097/MOP.0000000000000653 PubMed DOI PMC
Willems M, Amouroux C, Barat-Houari M, Salles J-P, Edouard T. Exploring the genetic causes of isolated short stature. What has happened to idiopathic short stature? Arch Pédiatrie . (2022) 28:28/8S27–28/8S32. doi: 10.1016/S0929-693X(22)00040-9 PubMed DOI
Marouli E, Graff M, Medina-Gomez C, Lo KS, Wood AR, Kjaer TR, et al. . Rare and low-frequency coding variants alter human adult height. Nature. (2017) 542:186–90. doi: 10.1038/nature21039 PubMed DOI PMC
Cohen P, Rogol AD, Deal CL, Saenger P, Reiter EO, Ross JL, et al. . Consensus statement on the diagnosis and treatment of children with idiopathic short stature: A summary of the growth hormone research society, the Lawson Wilkins pediatric endocrine society, and the European society for paediatric endocrinology workshop. J Clin Endocrinol Metab. (2008) 93:4210–7. doi: 10.1210/jc.2008-0509 PubMed DOI
Suh SB, Kim HS. Influences of socioeconomic status on short stature in childhood. Kosin Med J. (2020) 35:15–25. doi: 10.7180/kmj.2020.35.1.15 DOI
Dauber A. Genetic testing for the child with short stature - has the time come to change our diagnostic paradigm? J Clin Endocrinol Metab. (2019) 104:2766–9. doi: 10.1210/jc.2019-00019 PubMed DOI
Grigoletto V, Occhipinti AA, Pellegrin MC, Sirchia F, Barbi E, Tornese G. Definition and prevalence of familial short stature. Ital J Pediatr. (2021) 47:56. doi: 10.1186/s13052-021-01018-3 PubMed DOI PMC
Gkourogianni A, Andrew M, Tyzinski L, Crocker M, Douglas J, Dunbar N, et al. . Clinical characterization of patients with autosomal dominant short stature due to aggrecan mutations. J Clin Endocrinol Metab. (2016) 102:460–9. doi: 10.1210/jc.2016-3313 PubMed DOI PMC
Vasques GA, Andrade NLM, Jorge AAL. Genetic causes of isolated short stature. Arch Endocrinol Metab. (2019) 63:70–8. doi: 10.20945/2359-3997000000105 PubMed DOI PMC
Plachy L, Petruzelkova L, Dušátková P, Maratova K, Zemkova D, Elblova L, et al. . Analysis of children with familial short stature: who should be indicated for genetic testing? Endocr Connect. (2023) 12:e230238. doi: 10.1530/EC-23-0238 PubMed DOI PMC
Plachy L, Strakova V, Elblova L, Obermannova B, Kolouskova S, Snajderova M, et al. . High prevalence of growth plate gene variants in children with familial short stature treated with GH. J Clin Endocrinol Metab. (2019) 104:4273–81. doi: 10.1210/jc.2018-02288 PubMed DOI
Kim Y-M, Lim H-H, Kim E, Kim G, Kim M, So H, et al. . Exploring the genetic causes for postnatal growth failure in children born non-small for gestational age. J Clin Med. (2023) 12:6508. doi: 10.3390/jcm12206508 PubMed DOI PMC
Sun J, Jiang L, Liu G, Ma C, Zheng J, Niu L. Evaluation of growth hormone therapy in seven Chinese children with familial short stature caused by novel ACAN variants. Front Pediatr. (2022) 10:819074. doi: 10.3389/fped.2022.819074 PubMed DOI PMC
Rani D, Shrestha R, Kanchan T, Krishan K. “Short stature.” In: StatPearls [Internet]. “Treasure Island (FL): StatPearls Publishing. (2023). Available online at: https://www.ncbi.nlm.nih.gov/books/NBK556031/. PubMed
Wood AR, Esko T, Yang J, Vedantam S, Pers TH, Gustafsson S, et al. . Defining the role of common variation in the genomic and biological architecture of adult human height. Nat Genet. (2014) 46:1173–86. doi: 10.1038/ng.3097 PubMed DOI PMC
Baron J, Sävendahl L, De Luca F, Dauber A, Phillip M, Wit JM, et al. . Short and tall stature: A new paradigm emerges. Nat Rev Endocrinol. (2015) 11:736–46. doi: 10.1038/nrendo.2015.165 PubMed DOI PMC
Plachý L, Zemková D, Průhová, Lebl J. Growth plate disorders causing familiar short stature. Cesk Pediatr. (2018) 73:110–7.
Plachy L, Dusatkova P, Maratova K, Petruzelkova L, Elblova L, Kolouskova S, et al. . Familial Short Stature - a novel phenotype of growth plate collagenopathies. J Clin Endocrinol Metab. (2021) 106:1742–9. doi: 10.1210/clinem/dgab084 PubMed DOI
Plachy L, Dusatkova P, Maratova K, Petruzelkova L, Zemkova D, Elblova L, et al. . NPR2 variants are frequent among children with familiar short stature and respond well to growth hormone therapy. J Clin Endocrinol Metab. (2020) 105:dgaa037. doi: 10.1210/clinem/dgaa037 PubMed DOI
Dauber A, Rosenfeld RG, Hirschhorn JN. Genetic evaluation of short stature. J Clin Endocrinol Metab. (2014) 99:3080–92. doi: 10.1210/jc.2014-1506 PubMed DOI PMC
Binder G. Short stature due to SHOX deficiency: Genotype, phenotype, and therapy. Horm Res Paediatr. (2011) 75:81–9. doi: 10.1159/000324105 PubMed DOI
Marchini A, Ogata T, Rappold GA. A track record on SHOX: from basic research to complex models and therapy. Endocr Rev. (2016) 37:417–48. doi: 10.1210/er.2016-1036 PubMed DOI PMC
Schneider KU, Marchini A, Sabherwal N, Röth R, Niesler B, Marttila T, et al. . Alteration of DNA binding, dimerization, and nuclear translocation of SHOX homeodomain mutations identified in idiopathic short stature and Leri-Weill dyschondrosteosis. Hum Mutat. (2005) 26:44–52. doi: 10.1002/humu.20187 PubMed DOI
Jorge AAL, Souza SC, Nishi MY, Billerbeck AE, Libório DCC, Kim CA, et al. . SHOX mutations in idiopathic short stature and Leri-Weill dyschondrosteosis: frequency and phenotypic variability. Clin Endocrinol (Oxf). (2007) 66:130–5. doi: 10.1111/j.1365-2265.2006.02698.x PubMed DOI
Rappold G, Blum WF, Shavrikova EP, Crowe BJ, Roeth R, Quigley CA, et al. . Genotypes and phenotypes in children with short stature: clinical indicators of SHOX haploinsufficiency. J Med Genet. (2007) 44:306–13. doi: 10.1136/jmg.2006.046581 PubMed DOI PMC
Seki A, Jinno T, Suzuki E, Takayama S, Ogata T, Fukami M. Skeletal deformity associated with SHOX deficiency. Clin Pediatr Endocrinol. (2014) 23:65–72. doi: 10.1297/cpe.23.65 PubMed DOI PMC
Loche S, Carta L, Ibba A, Guzzetti C. Growth hormone treatment in non-growth hormone-deficient children. Ann Pediatr Endocrinol Metab. (2014) 19:1–7. doi: 10.6065/apem.2014.19.1.1 PubMed DOI PMC
Blum WF, Ross JL, Zimmermann AG, Quigley CA, Child CJ, Kalifa G, et al. . GH treatment to final height produces similar height gains in patients with SHOX deficiency and turner syndrome: Results of a multicenter trial. J Clin Endocrinol Metab. (2013) 98:1383–92. doi: 10.1210/jc.2013-1222 PubMed DOI
Irfanullah, Zeb A, Shinwari N, Shah K, Gilani SZT, Khan S, et al. . Molecular and in silico analyses validates pathogenicity of homozygous mutations in the NPR2 gene underlying variable phenotypes of Acromesomelic dysplasia, type Maroteaux. Int J Biochem Cell Biol. (2018) 102:76–86. doi: 10.1016/j.biocel.2018.07.004 PubMed DOI
Dickey DM, Edmund AB, Otto NM, Chaffee TS, Robinson JW, Potter LR. Catalytically active guanylyl cyclase B requires endoplasmic reticulum-mediated glycosylation, and mutations that inhibit this process cause dwarfism. J Biol Chem. (2016) 291:11385–93. doi: 10.1074/jbc.M115.704015 PubMed DOI PMC
Vasques GA, Amano N, Docko AJ, Funari MFA, Quedas EPS, Nishi MY, et al. . Heterozygous mutations in natriuretic peptide receptor-B (NPR2) gene as a cause of short stature in patients initially classified as idiopathic short stature. J Clin Endocrinol Metab. (2013) 98:1636–44. doi: 10.1210/jc.2013-2142 PubMed DOI
Amano N, Mukai T, Ito Y, Narumi S, Tanaka T, Yokoya S, et al. . Identification and functional characterization of two novel NPR2 mutations in Japanese patients with short stature. J Clin Endocrinol Metab. (2014) 99:713–8. doi: 10.1210/jc.2013-3525 PubMed DOI
Yuan K, Chen J, Chen Q, Chen H, Zhu J, Fang Y, et al. . NPR2 gene variants in familial short stature: A single-center study. J Pediatr Endocrinol Metab. (2022) 35:185–90. doi: 10.1515/jpem-2021-0332 PubMed DOI
Foldynova-Trantirkova S, Wilcox WR, Krejci P. Sixteen years and counting: The current understanding of fibroblast growth factor receptor 3 (FGFR3) signaling in skeletal dysplasias. Hum Mutat. (2012) 33:29–41. doi: 10.1002/humu.21636 PubMed DOI PMC
Waller DK, Correa A, Vo TM, Wang Y, Hobbs C, Langlois PH, et al. . The population-based prevalence of achondroplasia and thanatophoric dysplasia in selected regions of the US. Am J Med Genet A. (2008) 146A:2385–9. doi: 10.1002/ajmg.a.32485 PubMed DOI PMC
Hoover-Fong JE, Schulze KJ, Alade AY, Bober MB, Gough E, Hashmi SS, et al. . Growth in achondroplasia including stature, weight, weight-for-height and head circumference from CLARITY: achondroplasia natural history study—a multi-center retrospective cohort study of achondroplasia in the US. Orphanet J Rare Dis. (2021) 16:522. doi: 10.1186/s13023-021-02141-4 PubMed DOI PMC
Savarirayan R, Ireland P, Irving M, Thompson D, Alves I, Baratela WAR, et al. . International Consensus Statement on the diagnosis, multidisciplinary management and lifelong care of individuals with achondroplasia. Nat Rev Endocrinol. (2022) 18:173–89. doi: 10.1038/s41574-021-00595-x PubMed DOI
Bober MB, Bellus GA, Nikkel SM, Tiller GE. Hypochondroplasia. 1999 Jul 15. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; (1993–2024). PubMed
Heuertz S, Le Merrer M, Zabel B, Wright M, Legeai-Mallet L, Cormier-Daire V, et al. . Novel FGFR3 mutations creating cysteine residues in the extracellular domain of the receptor cause achondroplasia or severe forms of hypochondroplasia. Eur J Hum Genet. (2006) 14:1240–7. doi: 10.1038/sj.ejhg.5201700 PubMed DOI
Kant SG, Cervenkova I, Balek L, Trantirek L, Santen GWE, de Vries MC, et al. . A novel variant of FGFR3 causes proportionate short stature. Eur J Endocrinol. (2015) 172:763–70. doi: 10.1530/EJE-14-0945 PubMed DOI
Ricard-Blum S. The collagen family. Cold Spring Harb Perspect Biol. (2011) 3:1–19. doi: 10.1101/cshperspect.a004978 PubMed DOI PMC
Shen G. The role of type X collagen in facilitating and regulating endochondral ossification of articular cartilage. Orthod Craniofac Res. (2005) 8:11–7. doi: 10.1111/j.1601-6343.2004.00308.x PubMed DOI
Deng H, Huang X, Yuan L. Molecular genetics of the COL2A1-related disorders. Mutat Res Rev Mutat Res. (2016) 768:1–13. doi: 10.1016/j.mrrev.2016.02.003 PubMed DOI
Barat-Houari M, Sarrabay G, Gatinois V, Fabre A, Dumont B, Genevieve D, et al. . Mutation update for COL2A1 gene variants associated with type II collagenopathies. Hum Mutat. (2016) 37:7–15. doi: 10.1002/humu.22915 PubMed DOI
Majava M, Hoornaert KP, Bartholdi D, Bouma MC, Bouman K, Carrera M, et al. . A report on 10 new patients with heterozygous mutations in the COL11A1 gene and a review of genotype-phenotype correlations in type XI collagenopathies. Am J Med Genet A. (2007) 143A:258–64. doi: 10.1002/ajmg.a.v143a:3 PubMed DOI
Czarny-Ratajczak M, Lohiniva J, Rogala P, Kozlowski K, Perälä M, Carter L, et al. . A mutation in COL9A1 causes multiple epiphyseal dysplasia: further evidence for locus heterogeneity. Am J Hum Genet. (2001) 69:969–80. doi: 10.1086/324023 PubMed DOI PMC
Bonnemann CG, Cox GF, Shapiro F, Wu J-J, Feener CA, Thompson TG, et al. . A mutation in the alpha 3 chain of type IX collagen causes autosomal dominant multiple epiphyseal dysplasia with mild myopathy. Proc Natl Acad Sci. (2000) 97:1212–7. doi: 10.1073/pnas.97.3.1212 PubMed DOI PMC
Mäkitie O, Susic M, Ward L, Barclay C, Glorieux FH, Cole WG. Schmid type of metaphyseal chondrodysplasia and COL10A1 mutations - Findings in 10 patients. Am J Med Genet. (2005) 137A:241–8. doi: 10.1002/ajmg.a.30855 PubMed DOI
Wagener R, Kobbe B, Aszódi A, Liu Z, Beier DR, Paulsson M. Original Contributions Structure and mapping of the mouse matrilin-3 gene (Matn3), a member of a gene family containing a U12-type AT-AC intron. Mamm Genome. (2000) 11:85–90. doi: 10.1007/s003350010018 PubMed DOI
Délot E, Brodie SG, King LM, Wilcox WR, Cohn DH. Physiological and pathological secretion of cartilage oligomeric matrix protein by cells in culture. J Biol Chem. (1998) 273:26692–7. doi: 10.1074/jbc.273.41.26692 PubMed DOI
Cotterill SL, Jackson GC, Leighton MP, Wagener R, Mäkitie O, Cole WG, et al. . Multiple epiphyseal dysplasia mutations inMATN3 cause misfolding of the A-domain and prevent secretion of mutant matrilin-3. Hum Mutat. (2005) 26:557–65. doi: 10.1002/humu.20263 PubMed DOI PMC
Handa A, Grigelioniene G, Nishimura G. Skeletal dysplasia families: A stepwise approach to diagnosis. RadioGraphics. (2023) 43:e220067. doi: 10.1148/rg.220067 PubMed DOI
Chapman KL, Mortier GR, Chapman K, Loughlin J, Grant ME, Briggs MD. Mutations in the region encoding the von Willebrand factor A domain of matrilin-3 are associated with multiple epiphyseal dysplasia. Nat Genet. (2001) 28:393–6. doi: 10.1038/ng573 PubMed DOI
Zhou L, Chen J, Liu Q, Yang S, Xie W, Peng Y. Case Report: Whole-exome sequencing identified two novel COMP variants causing pseudoachondroplasia. Front Endocrinol (Lausanne). (2023) 14:1267946. doi: 10.3389/fendo.2023.1267946 PubMed DOI PMC
Gibson BG, Briggs MD. The aggrecanopathies; An evolving phenotypic spectrum of human genetic skeletal diseases. Orphanet J Rare Dis. (2016) 11:86. doi: 10.1186/s13023-016-0459-2 PubMed DOI PMC
Dattani MT, Malhotra N. A review of growth hormone deficiency. Pediatr Child Health. (2019) 7:285–92. doi: 10.1016/j.paed.2019.04.001 DOI
Pantel J. Loss of constitutive activity of the growth hormone secretagogue receptor in familial short stature. J Clin Invest. (2006) 116:760–8. doi: 10.1172/JCI25303 PubMed DOI PMC
Inoue H, Kangawa N, Kinouchi A, Sakamoto Y, Kimura C, Horikawa R, et al. . Identification and functional analysis of novel human growth hormone secretagogue receptor (GHSR) gene mutations in Japanese subjects with short stature. J Clin Endocrinol Metab. (2011) 96:E373–8. doi: 10.1210/jc.2010-1570 PubMed DOI
Miletta MC, Lochmatter D, Pektovic V, Mullis PE. Isolated growth hormone deficiency type 2: From gene to therapy. Endocr Dev. (2012) 23:109–20. doi: 10.1159/000341766 PubMed DOI
Alatzoglou KS, Webb EA, Le Tissier P, Dattani MT. Isolated growth hormone deficiency (GHD) in childhood and adolescence: recent advances. Endocr Rev. (2014) 35:376–432. doi: 10.1210/er.2013-1067 PubMed DOI
Sano S, Masunaga Y, Kato F, Fujisawa Y, Saitsu H, Ogata T. Combined pituitary hormone deficiency in a patient with an FGFR1 missense variant: case report and literature review. Clin Pediatr Endocrinol. (2022) 31:2022–0020. doi: 10.1297/cpe.2022-0020 PubMed DOI PMC
Kardelen AD, Najaflı A, Baş F, Karaman B, Toksoy G, Poyrazoğlu ŞChecktae, et al. . PROKR2 mutations in patients with short stature who have isolated growth hormone deficiency and multiple pituitary hormone deficiency. J Clin Res Pediatr Endocrinol. (2023) 15:338–47. doi: 10.4274/jcrpe.galenos.2023.2023-4-4 PubMed DOI PMC
Plachy L, Maratova K, Vesela K, Lebl J, Pruhova S. Current view on the diagnostics of growth hormone deficiency in childhood and adolescence. Cesslov Pediat. (2023) 78:5–10. doi: 10.55095/CSPediatrie2023/056 DOI
Vairamani K, Merjaneh L, Casano-Sancho P, Sanli ME, David A, Metherell LA, et al. . Novel dominant-negative GH receptor mutations expands the spectrum of GHI and IGF-I deficiency. J Endocr Soc. (2017) 1:345–58. doi: 10.1210/js.2016-1119 PubMed DOI PMC
Mastromauro C, Giannini C, Chiarelli F. Short stature related to Growth Hormone Insensitivity (GHI) in childhood. Front Endocrinol (Lausanne). (2023) 14:1141039. doi: 10.3389/fendo.2023.1141039 PubMed DOI PMC
Klammt J, Neumann D, Gevers EF, Andrew SF, Schwartz ID, Rockstroh D, et al. . Dominant-negative STAT5B mutations cause growth hormone insensitivity with short stature and mild immune dysregulation. Nat Commun. (2018) 9:2105. doi: 10.1038/s41467-018-04521-0 PubMed DOI PMC
Domené HM, Scaglia PA, Martínez AS, Keselman AC, Karabatas LM, Pipman VR, et al. . Heterozygous IGFALS gene variants in idiopathic short stature and normal children: Impact on height and the IGF system. Horm Res Paediatr. (2014) 80:413–23. doi: 10.1159/000355412 PubMed DOI
Choi J-H, Kang M, Kim G-H, Hong M, Jin HY, Lee B-H, et al. . Clinical and functional characteristics of a novel heterozygous mutation of the IGF1R gene and IGF1R haploinsufficiency due to terminal 15q26.2-<qter deletion in patients with intrauterine growth retardation and postnatal catch-up growth failure. J Clin Endocrinol Metab. (2011) 96:E130–4. doi: 10.1210/jc.2010-1789 PubMed DOI
Malaquias AC, Jorge AAL. Activation of the MAPK pathway (RASopathies) and partial growth hormone insensitivity. Mol Cell Endocrinol. (2021) 519:111040. doi: 10.1016/j.mce.2020.111040 PubMed DOI
Lebl J, Koloušková S, Toni L, Kodýtková A, Amaratunga SA, Plachý L, et al. . Syndrom Noonanové a další RASopatie: Etiologie, diagnostika a terapie. Čes-slov Pediat. (2020) 75:219–26.
Toni L, Plachy L, Dusatkova P, Amaratunga SA, Elblova L, Sumnik Z, et al. . The genetic landscape of children born small for gestational age with persistent short stature (SGA-SS). Horm Res Paediatr. (2023) 97:40–52. doi: 10.1159/000530521 PubMed DOI
Ferreira LV, Souza SCAL, Montenegro LR, Malaquias AC, Arnhold IJP, Mendonca BB, et al. . Analysis of the PTPN11 gene in idiopathic short stature children and Noonan syndrome patients. Clin Endocrinol (Oxf). (2008) 69:426–31. doi: 10.1111/j.1365-2265.2008.03234.x PubMed DOI
Hebron KE, Hernandez ER, Yohe ME. The RASopathies: from pathogenetics to therapeutics. Dis Model Mech. (2022) 15:dmm049107. doi: 10.1242/dmm.049107 PubMed DOI PMC
Noonan JA, Kappelgaard A-M. The efficacy and safety of growth hormone therapy in children with Noonan syndrome: A review of the evidence. Horm Res Paediatr. (2015) 83:157–66. doi: 10.1159/000369012 PubMed DOI
Giacomozzi C, Deodati A, Shaikh MG, Ahmed SF, Cianfarani S. The impact of growth hormone therapy on adult height in Noonan syndrome: A systematic review. Horm Res Paediatr. (2015) 83:167–76. doi: 10.1159/000371635 PubMed DOI
Danowitz M, Grimberg A. Clinical indications for growth hormone therapy. Adv Pediatr. (2022) 69:203–17. doi: 10.1016/j.yapd.2022.03.005 PubMed DOI PMC
Qiang J, Wu D, Du H, Zhu H, Chen S, Pan H. Review on facial-recognition-based applications in disease diagnosis. Bioengineering. (2022) 9:273. doi: 10.3390/bioengineering9070273 PubMed DOI PMC
Loos HS, Wieczorek D, Würtz RP, von der Malsburg C, Horsthemke B. Computer-based recognition of dysmorphic faces. Eur J Hum Genet. (2003) 11:555–60. doi: 10.1038/sj.ejhg.5200997 PubMed DOI
Kosilek RP, Frohner R, Würtz RP, Berr CM, Schopohl J, Reincke M, et al. . Diagnostic use of facial image analysis software in endocrine and genetic disorders: review, current results and future perspectives. Eur J Endocrinol. (2015) 173:M39–44. doi: 10.1530/EJE-15-0429 PubMed DOI
Porras AR, Summar M, Linguraru MG. Objective differential diagnosis of Noonan and Williams–Beuren syndromes in diverse populations using quantitative facial phenotyping. Mol Genet Genomic Med. (2021) 9:e1636. doi: 10.1002/mgg3.1636 PubMed DOI PMC