• This record comes from PubMed

Dominant-negative STAT5B mutations cause growth hormone insensitivity with short stature and mild immune dysregulation

. 2018 May 29 ; 9 (1) : 2105. [epub] 20180529

Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't

Grant support
G0801265 Medical Research Council - United Kingdom
K23 HD073351 NICHD NIH HHS - United States
MR/K020455/1 Medical Research Council - United Kingdom
R01 HD078592 NICHD NIH HHS - United States

Links

PubMed 29844444
PubMed Central PMC5974024
DOI 10.1038/s41467-018-04521-0
PII: 10.1038/s41467-018-04521-0
Knihovny.cz E-resources

Growth hormone (GH) insensitivity syndrome (GHIS) is a rare clinical condition in which production of insulin-like growth factor 1 is blunted and, consequently, postnatal growth impaired. Autosomal-recessive mutations in signal transducer and activator of transcription (STAT5B), the key signal transducer for GH, cause severe GHIS with additional characteristics of immune and, often fatal, pulmonary complications. Here we report dominant-negative, inactivating STAT5B germline mutations in patients with growth failure, eczema, and elevated IgE but without severe immune and pulmonary problems. These STAT5B missense mutants are robustly tyrosine phosphorylated upon stimulation, but are unable to nuclear localize, or fail to bind canonical STAT5B DNA response elements. Importantly, each variant retains the ability to dimerize with wild-type STAT5B, disrupting the normal transcriptional functions of wild-type STAT5B. We conclude that these STAT5B variants exert dominant-negative effects through distinct pathomechanisms, manifesting in milder clinical GHIS with general sparing of the immune system.

Center for the Study of Rare Hereditary Diseases Niguarda Ca' Granda Metropolitan Hospital Milan Italy

Centre for Endocrinology William Harvey Research Institute Queen Mary University of London 1st Floor North John Vane Building Charterhouse Square London EC1M 6BQ UK

Department of Clinical Immunology and Allergology Faculty of Medicine University Hospital Hradec Kralove Charles University Prague 500 05 Hradec Kralove Czech Republic

Department of Molecular Microbiology and Immunology Oregon Health and Science University 3181 SW Sam Jackson Park Rd Portland OR 97239 USA

Department of Pediatric Endocrinology Royal London Children's Hospital Barts Health NHS Trust Whitechapel Road London E1 1 BB UK

Department of Pediatrics Faculty of Medicine University Hospital Hradec Kralove Charles University Prague 500 05 Hradec Kralove Czech Republic

Department of Pediatrics Oregon Health and Science University Portland OR USA

Department of Women's and Child Health University Hospital Leipzig Liebigstrasse 20a 04103 Leipzig Germany

Division of Endocrinology 240 Albert Sabin Way Cincinnati Children's Hospital Medical Center University of Cincinnati College of Medicine Cincinnati OH 45229 USA

Institute of Clinical Biochemistry Faculty of Medicine Catholic University and IRCCS Policlinico Agostino Gemelli Largo Francesco Vito 1 1 00168 Rome Italy

Mercy Kids Pediatric Endocrinology and Diabetes Mercy Children's Hospital and Mercy Clinic 1965 S Fremont Suite 260 Springfield MO 65804 USA

Section of Genetics and Epigenetics in Health and Disease Genetics and Genomic Medicine Programme University College London Great Ormond Street Institute of Child Health 30 Guilford Street London WC1N 1EH UK

See more in PubMed

David A, et al. Evidence for a continuum of genetic, phenotypic, and biochemical abnormalities in children with growth hormone insensitivity. Endocr. Rev. 2011;32:472–497. doi: 10.1210/er.2010-0023. PubMed DOI

Rosenfeld RG, Rosenbloom AL, Guevara-Aguirre J. Growth hormone (GH) insensitivity due to primary GH receptor deficiency. Endocr. Rev. 1994;15:369–390. doi: 10.1210/edrv-15-3-369. PubMed DOI

Laron Z. Laron syndrome (primary growth hormone resistance or insensitivity): the personal experience 1958-2003. J. Clin. Endocrinol. Metab. 2004;89:1031–1044. doi: 10.1210/jc.2003-031033. PubMed DOI

Ayling RM, et al. A dominant-negative mutation of the growth hormone receptor causes familial short stature. Nat. Genet. 1997;16:13–14. doi: 10.1038/ng0597-13. PubMed DOI

Iida K, et al. Growth hormone (GH) insensitivity syndrome with high serum GH-binding protein levels caused by a heterozygous splice site mutation of the GH receptor gene producing a lack of intracellular domain. J. Clin. Endocrinol. Metab. 1998;83:531–537. PubMed

Iida K, et al. Functional characterization of truncated growth hormone (GH) receptor- (1-277) causing partial GH insensitivity syndrome with high GH-binding protein. J. Clin. Endocrinol. Metab. 1999;84:1011–1016. PubMed

Aisenberg J, et al. Atypical growth hormone insensitivity syndrome (GHIS) and severe insulin-like growth factor-I deficiency (IGFD) resulting from compound heterozygous mutations of the GH receptor (GHR), including a novel frameshift mutation affecting the intracellular domain. Horm. Res. Paediatr. 2010;74:406–411. doi: 10.1159/000314968. PubMed DOI

Takagi M, et al. A novel dominant negative mutation in the intracellular domain of GHR is associated with growth hormone insensitivity. Clin. Endocrinol. (Oxf.). 2016;85:669–671. doi: 10.1111/cen.13116. PubMed DOI

Vairamani K, et al. Novel dominant-negative GH receptor mutations expands the spectrum of GHI and IGF-I deficiency. J. Endocr. Soc. 2017;1:345–358. doi: 10.1210/js.2016-1119. PubMed DOI PMC

Kofoed EM, et al. Growth-hormone insensitivity (GHI) associated with a STAT-5b mutation. N. Engl. J. Med. 2003;349:1139–1147. doi: 10.1056/NEJMoa022926. PubMed DOI

Cohen AC, et al. Cutting edge: decreased accumulation and regulatory function of CD4 + CD25high T cells in human STAT5b deficiency. J. Immunol. 2006;177:2770–2774. doi: 10.4049/jimmunol.177.5.2770. PubMed DOI

Bezrodnik L, et al. Long-term follow-up of STAT5B deficiency in three Argentinian patients: clinical and immunological features. J. Clin. Immunol. 2015;35:264–272. doi: 10.1007/s10875-015-0145-5. PubMed DOI

Hwa V. STAT5B deficiency: impacts on human growth and immunity. Growth Horm. IGF Res. 2016;28:16–20. doi: 10.1016/j.ghir.2015.12.006. PubMed DOI PMC

Scalco RC, et al. STAT5B mutations in heterozygous state have negative impact on height: another clue in human stature heritability. Eur. J. Endocrinol. 2015;173:291–296. doi: 10.1530/EJE-15-0398. PubMed DOI PMC

Kiel MJ, et al. Genomic analyses reveal recurrent mutations in epigenetic modifiers and the JAK-STAT pathway in Sezary syndrome. Nat. Commun. 2015;6:8470. doi: 10.1038/ncomms9470. PubMed DOI PMC

Kucuk C, et al. Activating mutations of STAT5B and STAT3 in lymphomas derived from gammadelta-T or NK cells. Nat. Commun. 2015;6:6025. doi: 10.1038/ncomms7025. PubMed DOI PMC

Jiang L, et al. Exome sequencing identifies somatic mutations of DDX3X in natural killer/T-cell lymphoma. Nat. Genet. 2015;47:1061–1066. doi: 10.1038/ng.3358. PubMed DOI

Wit JM, et al. Genetic analysis of short children with apparent growth hormone insensitivity. Horm. Res. Paediatr. 2012;77:320–333. doi: 10.1159/000338462. PubMed DOI

Walenkamp MJ, et al. Genetic analysis of GHR should contain sequencing of all coding exons and specific intron sequences, and screening for exon deletions. Horm. Res. Paediatr. 2013;80:406–412. doi: 10.1159/000355928. PubMed DOI

Hwa V, Nadeau K, Wit JM, Rosenfeld RG. STAT5b deficiency: lessons from STAT5b gene mutations. Best. Pract. Res. Clin. Endocrinol. Metab. 2011;25:61–75. doi: 10.1016/j.beem.2010.09.003. PubMed DOI

Scaglia PA, et al. A novel missense mutation in the SH2 domain of the STAT5B gene results in a transcriptionally inactive STAT5b associated with severe IGF-I deficiency, immune dysfunction, and lack of pulmonary disease. J. Clin. Endocrinol. Metab. 2012;97:E830–E839. doi: 10.1210/jc.2011-2554. PubMed DOI

Shin HY, Reich NC. Dynamic trafficking of STAT5 depends on an unconventional nuclear localization signal. J. Cell Sci. 2013;126:3333–3343. doi: 10.1242/jcs.123042. PubMed DOI PMC

Liu L, et al. Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J. Exp. Med. 2011;208:1635–1648. doi: 10.1084/jem.20110958. PubMed DOI PMC

Zhong M, et al. Implications of an antiparallel dimeric structure of nonphosphorylated STAT1 for the activation-inactivation cycle. Proc. Natl. Acad. Sci. USA. 2005;102:3966–3971. doi: 10.1073/pnas.0501063102. PubMed DOI PMC

Depner M, et al. The extended clinical phenotype of 26 patients with chronic mucocutaneous candidiasis due to gain-of-function mutations in STAT1. J. Clin. Immunol. 2016;36:73–84. doi: 10.1007/s10875-015-0214-9. PubMed DOI PMC

Bocchini CE, et al. Protein stabilization improves STAT3 function in autosomal dominant hyper-IgE syndrome. Blood. 2016;128:3061–3072. PubMed PMC

Hambleton S, et al. STAT2 deficiency and susceptibility to viral illness in humans. Proc. Natl. Acad. Sci. USA. 2013;110:3053–3058. doi: 10.1073/pnas.1220098110. PubMed DOI PMC

Yildiz M, et al. Activating STAT6 mutations in follicular lymphoma. Blood. 2015;125:668–679. doi: 10.1182/blood-2014-06-582650. PubMed DOI PMC

Holland SM, et al. STAT3 mutations in the hyper-IgE syndrome. N. Engl. J. Med. 2007;357:1608–1619. doi: 10.1056/NEJMoa073687. PubMed DOI

Minegishi Y, et al. Dominant-negative mutations in the DNA-binding domains of STAT3 cause hyper-IgE syndrome. Nature. 2007;448:1058–1062. doi: 10.1038/nature06096. PubMed DOI

Renner ED, et al. Novel signal transducer and activator of transcription 3 (STAT3) mutations, reduced T(H)17 cell numbers, and variably defective STAT3 phosphorylation in hyper-IgE syndrome. J. Allergy Clin. Immunol. 2008;122:181–187. doi: 10.1016/j.jaci.2008.04.037. PubMed DOI PMC

Schimke LF, et al. Diagnostic approach to the hyper-IgE syndromes: immunologic and clinical key findings to differentiate hyper-IgE syndromes from atopic dermatitis. J. Allergy Clin. Immunol. 2010;126:611–617 e611. doi: 10.1016/j.jaci.2010.06.029. PubMed DOI

Chen X, et al. Crystal Structure of a tyrosine phosphorylated STAT-1 dimer bound to DNA. Cell. 1998;93:827–839. doi: 10.1016/S0092-8674(00)81443-9. PubMed DOI

Becker S, Groner B, Muller M. Three-dimensional structure of the STAT3 beta homodimer bound to DNA. Nature. 1998;394:145–151. doi: 10.1038/28101. PubMed DOI

Li J, et al. Structural basis for DNA recognition by STAT6. Proc. Natl. Acad. Sci. USA. 2016;113:13015–13020. doi: 10.1073/pnas.1611228113. PubMed DOI PMC

Gevers EF, Hannah MJ, Waters MJ, Robinson IC. Regulation of rapid signal transducer and activator of transcription-5 phosphorylation in the resting cells of the growth plate and in the liver by growth hormone and feeding. Endocrinology. 2009;150:3627–3636. doi: 10.1210/en.2008-0985. PubMed DOI

Baxter EJ, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365:1054–1061. doi: 10.1016/S0140-6736(05)74230-6. PubMed DOI

James C, et al. A unique cloncal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434:1144–1148. doi: 10.1038/nature03546. PubMed DOI

Kralovics R, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N. Engl. J. Med. 2005;352:1779–1790. doi: 10.1056/NEJMoa051113. PubMed DOI

Jenks JA, et al. Differentiating the roles of STAT5B and STAT5A in human CD4 + T cells. Clin. Immunol. 2013;148:227–236. doi: 10.1016/j.clim.2013.04.014. PubMed DOI PMC

Nadeau K, Hwa V, Rosenfeld RG. STAT5b deficiency: an unsuspected cause of growth failure, immunodeficiency, and severe pulmonary disease. J. Pediatr. 2011;158:701–708. doi: 10.1016/j.jpeds.2010.12.042. PubMed DOI

Laron Z, Iluz M, Kauli R. Head circumference in untreated and IGF-I treated patients with Laron syndrome: comparison with untreated and hGH-treated children with isolated growth hormone deficiency. Growth Horm. IGF Res. 2012;22:49–52. doi: 10.1016/j.ghir.2012.02.005. PubMed DOI

Wang SR, et al. Large scale pooled next-generation sequencing of 1077 genes to identify causes of short stature. J. Clin. Endocrinol. Metab. 2013;98:E1428–1437. doi: 10.1210/jc.2013-1534. PubMed DOI PMC

Storr HL, Dunkel L, Kowalczyk J, Savage MO, Metherell LA. Genetic characterisation of a cohort of children clinically labelled as GH or IGF1 insensitive: diagnostic value of serum IGF1 and height at presentation. Eur. J. Endocrinol. 2015;172:151–161. doi: 10.1530/EJE-14-0541. PubMed DOI

Shapiro L, et al. Whole-exome sequencing gives additional benefits compared to candidate gene sequencing in the molecular diagnosis of children with growth hormone or IGF-1 insensitivity. Eur. J. Endocrinol. 2017;177:485–501. doi: 10.1530/EJE-17-0453. PubMed DOI

Hattori A, et al. Next generation sequencing-based mutation screening of 86 patients with idiopathic short stature. Endocr. J. 2017;64:947–954. doi: 10.1507/endocrj.EJ17-0150. PubMed DOI

Rajala HL, et al. Discovery of somatic STAT5b mutations in large granular lymphocytic leukemia. Blood. 2013;121:4541–4550. doi: 10.1182/blood-2012-12-474577. PubMed DOI PMC

Andersson EI, et al. High incidence of activating STAT5B mutations in CD4-positive T-cell large granular lymphocyte leukemia. Blood. 2016;128:2465–2468. doi: 10.1182/blood-2016-06-724856. PubMed DOI PMC

Liu Y, et al. The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat. Genet. 2017;49:1211–1218. doi: 10.1038/ng.3909. PubMed DOI PMC

Teglund S, et al. Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell. 1998;93:841–850. doi: 10.1016/S0092-8674(00)81444-0. PubMed DOI

Yao Z, et al. Nonredundant roles for STAT5a/b in directly regulating Foxp3. Blood. 2007;109:4368–4375. doi: 10.1182/blood-2006-11-055756. PubMed DOI PMC

Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC

DePristo MA, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 2011;43:491–498. doi: 10.1038/ng.806. PubMed DOI PMC

Hwa V, Little B, Kofoed EM, Rosenfeld RG. Transcriptional regulation of insulin-like growth factor-I (IGF-I) by interferon-gamma (IFN-g) requires Stat-5b. J. Biol. Chem. 2004;279:2728–2736. doi: 10.1074/jbc.M310495200. PubMed DOI

Maamra M, et al. Studies with a growth hormone antagonist and dual-fluorescent confocal microscopy demonstrate that the full-length human growth hormone receptor, but not the truncated isoform, is very rapidly internalized independent of JAK2-Stat5 signaling. J. Biol. Chem. 1999;274:14791–14798. doi: 10.1074/jbc.274.21.14791. PubMed DOI

Fang P, et al. A mutant signal transducer and activator of transcription 5B, associated with growth hormone insensitivity and insulin-like growth factor-I deficiecny, cannot function as a signal transducer or transcription factor. J. Clin. Endocrinol. Metab. 2006;91:1526–1534. doi: 10.1210/jc.2005-2558. PubMed DOI

Varco-Merth B, et al. Severe growth deficiency is associated with STAT5b mutations that disrupt protein folding and activity. Mol. Endocrinol. 2013;27:150–161. doi: 10.1210/me.2012-1275. PubMed DOI PMC

Friedberg M, et al. Modulation of 11 beta-hydroxysteroid dehydrogenase type 1 in mature human subcutaneous adipocytes by hypothalamic messengers. J. Clin. Endocrinol. Metab. 2003;88:385–393. doi: 10.1210/jc.2002-020510. PubMed DOI

Newest 20 citations...

See more in
Medvik | PubMed

Monogenic causes of familial short stature

. 2024 ; 15 () : 1506323. [epub] 20241219

Analysis of children with familial short stature: who should be indicated for genetic testing?

. 2023 Oct 01 ; 12 (10) : . [epub] 20230919

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...