Hypermetabolic Conversion of Plant Oil into Water: Endothermic Biochemical Process Stimulated by Juvenile Hormone in the European Firebug, Pyrrhocoris apterus L
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
27790049
PubMed Central
PMC5072462
DOI
10.4137/ijis.s40566
PII: ijis-8-2016-081
Knihovny.cz E-zdroje
- Klíčová slova
- JH, O2 consumption, O2), Pyrrhocoris apterus, endothermic energy, hypermetabolism, juvenile hormone, respiratory quotient (CO2, uncoupling of oxidation, “warm” and “cold” larvae,
- Publikační typ
- časopisecké články MeSH
The physiological and biochemical mechanisms that enable insects to feed on dry food to secure enough water for larval growth were investigated. The study was carried out with a plethora of physiological methods, ranging from the simple volumetric determination of O2 consumption and water intake to more advanced methods such as scanning microrespirography and thermovision imaging of insect's body temperature. The experiments were done on the European firebug, Pyrrhocoris apterus, which feeds exclusively on dry linden seeds. In order to survive, it needs to drink water or suck a sap from plants occasionally. It was found that the young larval instars compensate the occasional water deficiency by the increased production of metabolic water. The juvenile hormone (JH)-dependent production of metabolic water, which was previously found in other species consuming dry food, was achieved in P. apterus by total metabolic combustion of the dietary lipid (neutral seed oil). The water-producing, hypermetabolic larvae were heated from inside by endothermic energy released from the uncoupling of oxidation from oxidative phosphorylation. The "warm", hypermetabolic larvae burning the dietary oil into CO2 and water showed the increased rates of respiratory metabolism. Microrespirographic recording of these larvae revealed the ratio of the respiratory quotient (RQ, CO2/O2) of 0.7, which indicated the breakdown of a pure triglyceride. The warm hypermetabolic larvae could be easily spotted and distinguished from the "cold" larvae on the screen of a thermovision camera. The last instar larvae lacking the JH were always only cold. They metabolized a carbohydrate substrate exclusively (RQ = 1.0), while the dietary lipid was stored in the fat body. In comparison with the hypermetabolic larvae of some other species fed on dry food, which exhibited the highest rates of O2 consumption ever recorded in a living organism (10-20 mL O2/g per hour), the metabolic difference between the warm and cold larvae of P. apterus was only some 30% (not a reported 10-fold difference), which was presumably due to their ability to drink. We conclude that a very important, though still largely neglected, epigenetic biochemical role of insect JH depends on switchover between the utilization of dietary lipid (+JH; production of metabolic water) and carbohydrate (-JH; lipid storage in the fat body). The hypermetabolic water supply in insects fed on dry food, which is associated with enormous rates of O2 consumption, liberates endothermic energy that heats the body and potentially influences the insect thermoregulation. A possibility that the JH-dependent lipolytic hormone stimulates the total metabolic breakdown of nutritional lipids may be absolutely different from the currently known adipokinetic peptides that have been emphasized.
Crop Research Institute Drnovská Praha Czech Republic
Laboratory of Insect Physiology Intereco Evropská Praha Czech Republic
Zobrazit více v PubMed
Thomsen E. Influence of the corpus allatum on the oxygen consumption of adult Calliphora erythrocephala (Meig) J Exp Biol. 1947;26:137–149. PubMed
Sägesser H. Über die Wirkung der Corpora allata auf den Sauerstoffverbrauch bei der Schabe Leucophaea maderae (F.) J Insect Physiol. 1960;5:264–285.
Roussel JP. Consommation d’ oxygène après ablation des corps allates chez des femelles adultes de Locusta migratoria. J Insect Physiol. 1983;9:721–729.
Sláma K. Hormonal control of respiratory metabolism during growth, reproduction and diapause in female adults of Pyrrhocoris apterus L. (Hemiptera) J Insect Physiol. 1964;10:283–303.
Novák VJA. Insect Hormones. London: Methuen; 1966. p. 478.
Novák VJA. Insect Hormones. 2nd English ed. London: Chapman and Hall; 1975. p. 600.
Novák VJA, Sláma K. The influence of juvenile hormone on the oxygen consumption of the last larval instar of Pyrrhocoris apterus L. J Insect Physiol. 1962;8:145–153.
Novák VJA, Sláma K, K Wenig. Influence of implantation of corpus allatum on the oxygen consumption of Pyrrhocoris apterus. In: Hrdy I, editor. The Ontogeny of Insects. Prague: 1959. pp. 147–151.
Sláma K. Insect hormones: more than 50-years after discovery of insect juvenile hormone analogues (JHA, juvenoids) Terr Arthropod Rev. 2013;6:1–77.
Sláma K. Hormonal control of respiratory metabolism during growth, reproduction and diapause in male adults of Pyrrhocoris apterus L. (Hemiptera) Biol Bull. 1964;127:499–510.
Sláma K. Effect of hormones on growth and respiratory metabolism in the larvae of Pyrrhocoris apterus L. (Hemiptera) J Insect Physiol. 1965;11:113–122. PubMed
Sláma K. Hormonal control of metabolism in Pyrrhocoris. Endocrinol Exp. 1971;5:85–90. PubMed
Sehnal F, Sláma K. The effect of corpus allatum hormone on respiratory metabolism during larval development and metamorphosis of Galleria mellonella L. J Insect Physiol. 1966;12:1333–1342.
Sláma K. Pharmacology of insect juvenile hormones. In: Gilbert LI, Kerkutt BA, editors. Comprehensive Insect Physiol Biochem Phramacol. Vol. 11. Oxford, New York: Pergamon Press; 1985. pp. 357–394.
Sláma K, Romaňuk M, Šorm F. Insect Hormones and Bioanalogues. Wien, New York: Springer; 1974. p. 477.
Sláma K, Hodková M. Insect hormones and bioanalogues: their effect on respiratory metabolism in Dermestes vulpinus L. (Coleoptera) Biol Bull. 1975;148:320–332. PubMed
Sláma K, Kryspin-Sørensen I. Hypermetabolic response induced by juvenile hormone analogues in an insect. Z Naturforsch. 1979;34c:599–607.
Němec V. Effect of the hypermetabolic response to juvenoids on nutrient content in the larvae of Dermestes maculatus (Coleoptera) Acta Entomol Bohemoslov. 1985;82:81–87.
Sláma K, Lukáš J. Role of juvenile hormone in the hypermetabolic production of water revealed by O2 consumption and thermovision images of larvae of insects fed a diet of dry food. Eur J Entomol. 2013;110:221–230.
Heinrich B. Thermoregulation in endothermic insects. Science. 1974;185:747–756. PubMed
Heinrich B. The origin of insect thermoregulatory studies. J Exp Biol. 2007;210:177–179. PubMed
Sláma K, Jedlička P. Respiratory metabolism of the pea aphid, Acyrthosiphon pisum (Hemiptera: Aphididae) Eur J Entomol. 2012;109:491–502.
Sláma K, Denlinger DL. Infradian cycles of oxygen consumption in diapausing pupae of the flesh fly, Sarcophaga crassipalpis, monitored by a scanning microrespirographic method. Arch Ins Biochem Physiol. 1992;20:135–143. PubMed
Sláma K, Šobotník J, Hanus R. Respiratory concerts revealed by scanning microrespirography in termite Prorhinotermes simplex (Isoptera: Rhinotermitidae) J Insect Physiol. 2007;53:295–311. PubMed
Sláma K. Oxygen consumption during the postembryonic development of Pyrrhocoris apterus L. (Heterometabola: Heteroptera) and its comparison with that of Holometabola. Ann Entomol Soc Am. 1960;53:606–610.
Sláma K, Žďárek J. Effect of hormones on water metabolism in Pyrrhocoris apterus L. Zool Jb Physiol. 1974;78:397–408.
Sláma K. A new look at the nature of insect juvenile hormone with particular reference to studies carried out in the Czech Republic. Eur J Entomol. 2015;112:567–590.
Kuznetzoff NY. Osnovy Fyziologii Nasekomykh (Principles of Insect Physiology) Part I. Moscow: Izdatelstvo Akademii Nauk; 1953. p. 402. In Russian.
Wigglesworth VB. The Principles of Insect Physiology. Frome; London: Butler & Tanner Ltd; 1965. p. 739.
Babu TH, Sláma K. Systemic activity of a juvenile hormone analog. Science. 1972;175:78–79. PubMed
Lindauer M. Temperaturregulierung und Wasserhaushalt im Bienenstaat. J Comp Physiol. 1954;36:391–432.
Karlson P. Kurzes Lehrbuch der Biochemie fűr Mediziner und Naturwissenschaftler. Stuttgart: Georg Thieme Verlag; 1977. p. 501.
Lighton JRB. Measuring Metabolic Rates. Oxford: Oxford University Press; 2008. p. 201. (A Manual For Scientists).
Kryspin-Sørensen I, Gelbič I, Sláma K. Juvenoid action on the total body metabolism in larvae of a noctuid moth. J Insect Physiol. 1977;23:531–535.
Sláma K. An alternative look at insect hormones. Life Excit Biol. 2015;3:188–204.
Pflugfelder O. Entwicklungsphysiologie der Insekten. Leipzig: Akademische Verlagsgesellschaft Geest und Portig; 1958. p. 490.
Sehnal F. Action of juvenoids on different groups of insects. In: Gilbert LI, editor. The Juvenile Hormones. New York and London: Plenum Press; 1976. pp. 301–322.
Wigglesworth VB. Insect Hormones. Edinburgh: Oliver & Boyd; 1970. p. 159.
Sláma K. The history and present status of juvenoids. In: Robinson W, Rettich F, Rambo GW, editors. Proc. 3rd Internat. Conf. Urban Pests. Hronov: 1999. pp. 9–25.
Gilbert LI. Insect Endocrinology. Amsterdam: Elsevier; 2012. p. 577.
Jindra M, Palli SR, Riddiford LM. The juvenile hormone signaling pathway in insect development. Annu Rev Entomol. 2013;58:181–204. PubMed
Riddiford LM. Juvenile hormone action. A 2007 perspective. J Insect Physiol. 2008;59:895–901. PubMed
Sehnal F. The juvenile hormone of insects. Nova Acta Leopold. 1984;56:251–266.
Devillers J. Juvenile Hormones and Juvenoids Modeling Biological Effects and Environmental Fate. Boca Raton: CRC Press; 2013. p. 387.
Willis JH. Metamorphosis starts with Met. Proc Natl Acad Sci U S A. 2007;104:10297–10298. PubMed PMC
Jindra M, Bellés X, Shinoda T. Molecular basis of juvenile hormone signaling. Curr Opin Insect Sci. 2015;11:39–46. PubMed
De Loof A, Boerjan B, Ernst UR, Schoofs L. The mode of action of juvenile hormone and ecdysone: towards an epi-endocrinological paradigm? Gen Comp Endocrinol. 2013;188:35–45. PubMed
Riddiford LM. Juvenile hormone and insect embryogenesis. Mitt Schweiz Entomol Ges. 1971;44:177–186.
Sláma K, Williams CM. “Paper factor” as an inhibitor of the embryonic development of the European bug, Pyrrhocoris apterus. Nature. 1966;210:329–330. PubMed
Chefurka W. Sesquiterpene juvenile hormone: novel uncouplers of oxidative phosphorylation. Biochem Biophys Res Commun. 1978;83:571–578. PubMed
Chown SL, Nicolson SW. Insect Physiological Ecology, Mechanism and Patterns. Oxford University Press; 2004. p. 243.
Wirkner CS, Tögel M, Paas G. The arthropod circulatory system. In: Minelli A, Boxhall G, Fusco G, editors. Arthropod Biology and Evolution: Molecules, Development, Morphology. Heidelberg: Springer; 2013. pp. 343–391.
Kodrík D, Marco HG, Šimek P, Socha R, Štys P, Gäde G. The adipokinetic hormones of Heteroptera: a comparative study. Physiol Entomol. 2010;35:117–127.
Kodrík D, Vinokurov K, Tomčala A, Socha R. The effect of adipokinetic hormone on midgut characteristics in Pyrrhocoris apterus L. (Heteroptera) J Insect Physiol. 2012;58:194–204. PubMed
Martin JS. Lipid composition of fat body and its contribution to the maturing oocytes in Pyrrhocoris apterus. J Insect Physiol. 1969;15:1025–1045.
Martin JS. Studies on assimilation, mobilization, and transport of lipids by the fat body and haemolymph of Pyrrhocoris apterus. J Insect Physiol. 1969;15:2319–2344.
Bártů I, Tomčala A, Socha R, Šimek P, Kodrỉk D. The metabolically active C16 and C18 FAs are preferentially absorbed from the linden seeds and accumulated in the FB. Eur J Entomol. 2010;107:509–520.
Vinokurov K, Bednářová A, Tomčala A, Stašková T, Krishnan N, Kodrỉk D. Role of adipokinetic hormone in stimulation of salivary gland activities: the fire bug Pyrrhocoris apterus L. (Heteroptera) as a model species. J Insect Physiol. 2014;60:58–67. PubMed
Janda V., Jr Reservestoffumsatz und Stickstoffmetabolismus bei der Larven von Pyrrhocoris apterus L. Zool Jb Physiol. 1969;74:506–513.
Janda V., Jr Einfluβ einer juvenilhormonwirksamen Substanz auf den Protein, Fett- und Glykogenmetabolismus der Larven von Dysdercus cingulatus (Fabr.) Zool Jb Physiol. 1970;75:361–369.
Janda V, Jr, Sláma K. Über den Einfluss von Hormonen auf den Glykogen-, Fett- und Stickstoffmetabolismus bei den Imagines von Pyrrhocoris apterus L. (Hemiptera) Zool Jb Physiol. 1965;71:345–358.