Δ12-Fatty acid desaturase from Candida parapsilosis is a multifunctional desaturase producing a range of polyunsaturated and hydroxylated fatty acids
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24681902
PubMed Central
PMC3969366
DOI
10.1371/journal.pone.0093322
PII: PONE-D-13-48665
Knihovny.cz E-zdroje
- MeSH
- Candida metabolismus MeSH
- desaturasy mastných kyselin metabolismus MeSH
- fylogeneze MeSH
- kyselina linolová metabolismus MeSH
- kyseliny ricinolejové metabolismus MeSH
- molekulární sekvence - údaje MeSH
- nenasycené mastné kyseliny metabolismus MeSH
- Saccharomyces cerevisiae metabolismus MeSH
- sekvence aminokyselin MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- desaturasy mastných kyselin MeSH
- kyselina linolová MeSH
- kyseliny ricinolejové MeSH
- nenasycené mastné kyseliny MeSH
- ricinoleic acid MeSH Prohlížeč
Numerous Δ12-, Δ15- and multifunctional membrane fatty acid desaturases (FADs) have been identified in fungi, revealing great variability in the enzymatic specificities of FADs involved in biosynthesis of polyunsaturated fatty acids (PUFAs). Here, we report gene isolation and characterization of novel Δ12/Δ15- and Δ15-FADs named CpFad2 and CpFad3, respectively, from the opportunistic pathogenic yeast Candida parapsilosis. Overexpression of CpFad3 in Saccharomyces cerevisiae strains supplemented with linoleic acid (Δ9,Δ12-18:2) and hexadecadienoic acid (Δ9,Δ12-16:2) leads to accumulation of Δ15-PUFAs, i.e., α-linolenic acid (Δ9,Δ12,Δ15-18:3) and hexadecatrienoic acid with an unusual terminal double bond (Δ9,Δ12,Δ15-16:3). CpFad2 produces a range of Δ12- and Δ15-PUFAs. The major products of CpFad2 are linoleic and hexadecadienoic acid (Δ9,Δ12-16:2), accompanied by α-linolenic acid and hexadecatrienoic acid (Δ9,Δ12,Δ15-16:3). Using GC/MS analysis of trimethylsilyl derivatives, we identified ricinoleic acid (12-hydroxy-9-octadecenoic acid) as an additional product of CpFad2. These results demonstrate that CpFAD2 is a multifunctional FAD and indicate that detailed analysis of fatty acid derivatives might uncover a range of enzymatic selectivities in other Δ12-FADs from budding yeasts (Ascomycota: Saccharomycotina).
Zobrazit více v PubMed
Aguilar PS, de Mendoza D (2006) Control of fatty acid desaturation: a mechanism conserved from bacteria to humans. Mol Microbiol 62: 1507–1514. PubMed
Sperling P, Ternes P, Zank TK, Heinz E (2003) The evolution of desaturases. Prostaglandins Leukot Essent Fatty Acids 68: 73–95. PubMed
Shanklin J, Cahoon EB (1998) Desaturation and related modifications of fatty acids. Annu Rev Plant Physiol Plant Mol Biol 49: 611–641. PubMed
Meesapyodsuk D, Reed DW, Covello PS, Qiu X (2007) Primary structure, regioselectivity, and evolution of the membrane-bound fatty acid desaturases of Claviceps purpurea. J Biol Chem 282: 20191–20199. PubMed
Meesapyodsuk D, Reed DW, Covello PS, Qiu X (2007) Primary structure, regioselectivity, and evolution of the membrane-bound fatty acid desaturases of Claviceps purpurea. J Biol Chem 282: 20191–20199. PubMed
Sakuradani E, Kobayashi M, Ashikari T, Shimizu S (1999) Identification of Delta12-fatty acid desaturase from arachidonic acid-producing mortierella fungus by heterologous expression in the yeast Saccharomyces cerevisiae and the fungus Aspergillus oryzae. Eur J Biochem 261: 812–820. PubMed
Huang YS, Chaudhary S, Thurmond JM, Bobik EG, Yuan L, et al. (1999) Cloning of delta12- and delta6-desaturases from Mortierella alpina and recombinant production of gamma-linolenic acid in Saccharomyces cerevisiae. Lipids 34: 649–659. PubMed
Sakuradani E, Abe T, Iguchi K, Shimizu S (2005) A novel fungal omega3-desaturase with wide substrate specificity from arachidonic acid-producing Mortierella alpina 1S-4. Appl Microbiol Biotechnol 66: 648–654. PubMed
Damude HG, Zhang H, Farrall L, Ripp KG, Tomb J-F, et al. (2006) Identification of bifunctional delta12/omega3 fatty acid desaturases for improving the ratio of omega3 to omega6 fatty acids in microbes and plants. Proc Natl Acad Sci U S A 103: 9446–9451. PubMed PMC
Hoffmann M, Hornung E, Busch S, Kassner N, Ternes P, et al. (2007) A small membrane-peripheral region close to the active center determines regioselectivity of membrane-bound fatty acid desaturases from Aspergillus nidulans. J Biol Chem 282: 26666–26674. PubMed
Wei DS, Li MC, Zhang XX, Zhou H, Xing LJ (2006) A novel Delta12-fatty acid desaturase gene from methylotrophic yeast Pichia pastoris GS115. Acta Biochim Pol 53: 753–759. PubMed
Zhang X, Li M, Wei D, Xing L (2008) Identification and characterization of a novel yeast omega3-fatty acid desaturase acting on long-chain n-6 fatty acid substrates from Pichia pastoris. Yeast 25: 21–27. PubMed
Kainou K, Kamisaka Y, Kimura K, Uemura H (2006) Isolation of Delta12 and omega3-fatty acid desaturase genes from the yeast Kluyveromyces lactis and their heterologous expression to produce linoleic and alpha-linolenic acids in Saccharomyces cerevisiae. Yeast 23: 605–612. PubMed
Oura T, Kajiwara S (2004) Saccharomyces kluyveri FAD3 encodes an omega3 fatty acid desaturase. Microbiology 150: 1983–1990. PubMed
Watanabe K, Oura T, Sakai H, Kajiwara S (2004) Yeast Delta 12 fatty acid desaturase: gene cloning, expression, and function. Biosci Biotechnol Biochem 68: 721–727. PubMed
Moss CW, Shinoda T, Samuels JW (1982) Determination of cellular fatty acid compositions of various yeasts by gas-liquid chromatography. J Clin Microbiol 16: 1073–1079. PubMed PMC
Yan Z, Zhuo L, Mulan J, Xia W, Yangmin G, et al. (2013) Clone and identification of bifunctional Δ12/Δ15 fatty acid desaturase LKFAD15 from Lipomyces kononenkoae. Food Sci Biotechnol 22: 573–576.
Sayanova O, Haslam R, Guschina I, Lloyd D, Christie WW, et al. (2006) A bifunctional Delta12,Delta15-desaturase from Acanthamoeba castellanii directs the synthesis of highly unusual n-1 series unsaturated fatty acids. J Biol Chem 281: 36533–36541. PubMed
Peyou-Ndi MM, Watts JL, Browse J (2000) Identification and characterization of an animal delta(12) fatty acid desaturase gene by heterologous expression in Saccharomyces cerevisiae. Arch Biochem Biophys 376: 399–408. PubMed
Zhou X-R, Green AG, Singh SP (2011) Caenorhabditis elegans Delta12-desaturase FAT-2 is a bifunctional desaturase able to desaturate a diverse range of fatty acid substrates at the Delta12 and Delta15 positions. J Biol Chem 286: 43644–43650. PubMed PMC
Kikukawa H, Sakuradani E, Kishino S, Park S-B, Ando A, et al... (2013) Characterization of a trifunctional fatty acid desaturase from oleaginous filamentous fungus Mortierella alpina 1S-4 using a yeast expression system. J Biosci Bioeng. PubMed
Broadwater JA, Whittle E, Shanklin J (2002) Desaturation and hydroxylation. Residues 148 and 324 of Arabidopsis FAD2, in addition to substrate chain length, exert a major influence in partitioning of catalytic specificity. J Biol Chem 277: 15613–15620. PubMed
Serra M, Gauthier LT, Fabrias G, Buist PH (2006) Delta11 desaturases of Trichoplusia ni and Spodoptera littoralis exhibit dual catalytic behaviour. Insect Biochem Mol Biol 36: 822–825. PubMed
Carvalho F, Gauthier LT, Hodgson DJ, Dawson B, Buist PH (2005) Quantitation of hydroxylated byproduct formation in a Saccharomyces cerevisiae Delta9 desaturating system. Org Biomol Chem 3: 3979–3983. PubMed
Krishnamurthy S, Plaine A, Albert J, Prasad T, Prasad R, et al. (2004) Dosage-dependent functions of fatty acid desaturase Ole1p in growth and morphogenesis of Candida albicans. Microbiology 150: 1991–2003. PubMed
Nguyen LN, Gacser A, Nosanchuk JD (2011) The stearoyl-coenzyme A desaturase 1 is essential for virulence and membrane stress in Candida parapsilosis through unsaturated fatty acid production. Infect Immun 79: 136–145. PubMed PMC
Murayama SY, Negishi Y, Umeyama T, Kaneko A, Oura T, et al. (2006) Construction and functional analysis of fatty acid desaturase gene disruptants in Candida albicans. Microbiology 152: 1551–1558. PubMed
Ghannoum MA, Janini G, Khamis L, Radwan SS (1986) Dimorphism-associated variations in the lipid composition of Candida albicans. J Gen Microbiol 132: 2367–2375. PubMed
Trofa D, Gácser A, Nosanchuk JD (2008) Candida parapsilosis, an emerging fungal pathogen. Clin Microbiol Rev 21: 606–625. PubMed PMC
Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792–1797. PubMed PMC
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739. PubMed PMC
Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305: 567–580. PubMed
Tusnády GE, Simon I (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics 17: 849–850. PubMed
Buček A, Vogel H, Matoušková P, Prchalová D, Záček P, et al. (2013) The role of desaturases in the biosynthesis of marking pheromones in bumblebee males. Insect Biochem Mol Biol 43: 724–731. PubMed
Matoušková P, Luxová A, Matoušková J, Jiroš P, Svatoš A, et al. (2008) A delta9 desaturase from Bombus lucorum males: investigation of the biosynthetic pathway of marking pheromones. Chembiochem 9: 2534–2541. PubMed
Fay L, Richli U (1991) Location of double bonds in polyunsaturated fatty acids by gas chromatography-mass spectrometry after 4,4-dimethyloxazoline derivatization. J Chromatogr A 541: 89–98.
Spitzer V (1996) Structure analysis of fatty acids by gas chromatography-low resolution electron impact mass spectrometry of their 4,4-dimethyloxazoline derivatives-a review. Prog Lipid Res 35: 387–408. PubMed
Butler G, Rasmussen MD, Lin MF, Santos MAS, Sakthikumar S, et al. (2009) Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459: 657–662. PubMed PMC
Pereira SL, Huang Y-S, Bobik EG, Kinney AJ, Stecca KL, et al. (2004) A novel omega3-fatty acid desaturase involved in the biosynthesis of eicosapentaenoic acid. Biochem J 378: 665–671. PubMed PMC
Christie WW, Robertson GW, Mcroberts WC, Hamilton JTG (2000) Mass spectrometry of the 4, 4-dimethyloxazoline derivatives of isomeric octadecenoates (monoenes). Eur J Lipid Sci Technol 102: 23–29.
Pan Z, Rimando AM, Baerson SR, Fishbein M, Duke SO (2007) Functional characterization of desaturases involved in the formation of the terminal double bond of an unusual 16:3Delta(9,12,150) fatty acid isolated from Sorghum bicolor root hairs. J Biol Chem 282: 4326–4335. PubMed
Nicolaides N, Soukup VG, Ruth EC (1983) Mass spectrometric fragmentation patterns of the acetoxy and trimethylsilyl derivatives of all the positional isomers of the methyl hydroxypalmitates. Biol Mass Spectrom 10: 441–449.
Certik M, Shimizu S (1999) Biosynthesis and regulation of microbial polyunsaturated fatty acid production. J Biosci Bioeng 87: 1–14. PubMed
Uemura H (2012) Synthesis and production of unsaturated and polyunsaturated fatty acids in yeast: current state and perspectives. Appl Microbiol Biotechnol 95: 1–12. PubMed
Wilson RA, Calvo AM, Chang P-K, Keller NP (2004) Characterization of the Aspergillus parasiticus delta12-desaturase gene: a role for lipid metabolism in the Aspergillus-seed interaction. Microbiology 150: 2881–2888. PubMed
Calvo AM, Gardner HW, Keller NP (2001) Genetic connection between fatty acid metabolism and sporulation in Aspergillus nidulans. J Biol Chem 276: 25766–25774. PubMed
Prasad MR, Sreekrishna K, Joshi VC (1980) Topology of the delta 9 terminal desaturase in chicken liver microsomes and artificial micelles. Inhibition of the enzyme activity by the antibody and susceptibility of the enzyme to proteolysis. J Biol Chem 255: 2583–2589. PubMed
Stukey JE, McDonough VM, Martin CE (1990) The OLE1 gene of Saccharomyces cerevisiae encodes the delta 9 fatty acid desaturase and can be functionally replaced by the rat stearoyl-CoA desaturase gene. J Biol Chem 265: 20144–20149. PubMed
Diaz AR, Mansilla MC, Vila AJ, de Mendoza D (2002) Membrane topology of the acyl-lipid desaturase from Bacillus subtilis. J Biol Chem 277: 48099–48106. PubMed
Broun P, Shanklin J, Whittle E, Somerville C (1998) Catalytic plasticity of fatty acid modification enzymes underlying chemical diversity of plant lipids. Science 282: 1315–1317. PubMed
Meesapyodsuk D, Reed DW, Savile CK, Buist PH, Ambrose SJ, et al. (2000) Characterization of the regiochemistry and cryptoregiochemistry of a Caenorhabditis elegans fatty acid desaturase (FAT-1) expressed in Saccharomyces cerevisiae. Biochemistry 39: 11948–11954. PubMed
Oura T, Kajiwara S (2008) Substrate Specificity and Regioselectivity of Δ12 and ω3 Fatty Acid Desaturases from Saccharomyces kluyveri. Biosci Biotechnol Biochem 72: 3174–3179. PubMed
Kajiwara S, Shirai A, Fujii T, Toguri T, Nakamura K, et al. (1996) Polyunsaturated fatty acid biosynthesis in Saccharomyces cerevisiae: Expression of ethanol tolerance and the FAD2 gene from Arabidopsis thaliana. Appl Environ Microbiol 62: 4309–4313. PubMed PMC
Rodríguez-Vargas S, Sánchez-García A, Martínez-Rivas JM, Prieto JA, Randez-Gil F (2007) Fluidization of membrane lipids enhances the tolerance of Saccharomyces cerevisiae to freezing and salt stress. Appl Environ Microbiol 73: 110–116. PubMed PMC
Yazawa H, Iwahashi H, Kamisaka Y, Kimura K, Uemura H (2009) Production of polyunsaturated fatty acids in yeast Saccharomyces cerevisiae and its relation to alkaline pH tolerance. Yeast 26: 167–184. PubMed