Desaturase specificity is controlled by the physicochemical properties of a single amino acid residue in the substrate binding tunnel

. 2020 ; 18 () : 1202-1209. [epub] 20200514

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32542106
Odkazy

PubMed 32542106
PubMed Central PMC7283083
DOI 10.1016/j.csbj.2020.05.011
PII: S2001-0370(20)30274-9
Knihovny.cz E-zdroje

Membrane fatty acyl desaturases (mFAD) are ubiquitous enzymes in eukaryotes. They introduce double bonds into fatty acids (FAs), producing structurally diverse unsaturated FAs which serve as membrane lipid components or precursors of signaling molecules. The mechanisms controlling enzymatic specificity and selectivity of desaturation are, however, poorly understood. We found that the physicochemical properties, particularly side chain volume, of a single amino acid (aa) residue in insect mFADs (Lepidoptera: Bombyx mori and Manduca sexta) control the desaturation products. Molecular dynamics simulations of systems comprising wild-type or mutant mFADs with fatty acyl-CoA substrates revealed that the single aa substitution likely directs the outcome of the desaturation reaction by modulating the distance between substrate fatty acyl carbon atoms and active center metal ions. These findings, as well as our methodology combining mFAD mutational screening with molecular dynamics simulations, will facilitate prediction of desaturation products and facilitate engineering of mFADs for biotechnological applications.

Zobrazit více v PubMed

Behrouzian B., Buist P.H. Fatty acid desaturation: variations on an oxidative theme. Curr Opin Chem Biol. 2002;6:577–582. PubMed

Shanklin J., Guy J.E., Mishra G., Lindqvist Y. Desaturases: emerging models for understanding functional diversification of diiron-containing enzymes. J Biol Chem. 2009;284:18559–18563. doi: 10.1074/jbc.R900009200. PubMed DOI PMC

Sperling P., Ternes P., Zank T.K., Heinz E. The evolution of desaturases. Prostaglandins Leukot Essent Fatty Acids. 2003;68:73–95. PubMed

Tupec M., Buček A., Valterová I., Pichová I. Biotechnological potential of insect fatty acid-modifying enzymes. Zeitschrift Für Naturforsch C. 2017;72:387–403. doi: 10.1515/znc-2017-0031. PubMed DOI

Bai Y., McCoy J.G., Levin E.J., Sobrado P., Rajashankar K.R., Fox B.G. X-ray structure of a mammalian stearoyl-CoA desaturase. Nature. 2015;524:252–256. doi: 10.1038/nature14549. PubMed DOI PMC

Wang H., Klein M.G., Zou H., Lane W., Snell G., Levin I. Crystal structure of human stearoyl–coenzyme A desaturase in complex with substrate. Nat Struct Mol Biol. 2015;22:581–585. doi: 10.1038/nsmb.3049. PubMed DOI

Meesapyodsuk D., Qiu X. Structure determinants for the substrate specificity of acyl-CoA Δ9 desaturases from a marine copepod. ACS Chem Biol. 2014;9:922–934. doi: 10.1021/cb400675d. PubMed DOI

Gagné S.J., Reed D.W., Gray G.R., Covello P.S. Structural control of chemoselectivity, stereoselectivity, and substrate specificity in membrane-bound fatty acid acetylenases and desaturases. Biochemistry. 2009;48:12298–12304. doi: 10.1021/bi901605d. PubMed DOI

Rawat R., Yu X.H., Sweet M., Shanklin J. Conjugated fatty acid synthesis: Residues 111 and 115 influence product partitioning of Momordica charantia conjugase. J Biol Chem. 2012;287:16230–16237. doi: 10.1074/jbc.M111.325316. PubMed DOI PMC

Broadwater J.a., Whittle E., Shanklin J. Desaturation and hydroxylation. Residues 148 and 324 of Arabidopsis FAD2, in addition to substrate chain length, exert a major influence in partitioning of catalytic specificity. J Biol Chem. 2002;277:15613–15620. doi: 10.1074/jbc.M200231200. PubMed DOI

Broun P., Shanklin J., Whittle E., Somerville C. Catalytic plasticity of fatty acid modification enzymes underlying chemical diversity of plant lipids. Science. 1998;282:1315–1317. doi: 10.1126/science.282.5392.1315. PubMed DOI

Vanhercke T., Shrestha P., Green A.G., Singh S.P. Mechanistic and structural insights into the regioselectivity of an Acyl-CoA fatty acid desaturase via directed molecular evolution. J Biol Chem. 2011;286:12860–12869. doi: 10.1074/jbc.M110.191098. PubMed DOI PMC

Watanabe K., Ohno M., Taguchi M., Kawamoto S., Ono K., Aki T. Identification of amino acid residues that determine the substrate specificity of mammalian membrane-bound front-end fatty acid desaturases. J Lipid Res. 2016;57:89–99. doi: 10.1194/jlr.M064121. PubMed DOI PMC

Ding B., Liénard M.A., Wang H., Zhao C., Löfstedt C. Terminal fatty-acyl-CoA desaturase involved in sex pheromone biosynthesis in the winter moth (Operophtera brumata) Insect Biochem Mol Biol. 2011;41:715–722. doi: 10.1016/j.ibmb.2011.05.003. PubMed DOI

Cai Y., Yu X.-H., Liu Q., Liu C.-J., Shanklin J. Two clusters of residues contribute to the activity and substrate specificity of Fm1, a bifunctional oleate and linoleate desaturase of fungal origin. J Biol Chem. 2018 jbc.RA118.005972. 10.1074/jbc.RA118.005972. PubMed PMC

Ding B.-J., Carraher C., Löfstedt C. Sequence variation determining stereochemistry of a Δ11 desaturase active in moth sex pheromone biosynthesis. Insect Biochem Mol Biol. 2016;74:68–75. doi: 10.1016/j.ibmb.2016.05.002. PubMed DOI

Buček A., Matoušková P., Vogel H., Šebesta P., Jahn U., Weißflog J. Evolution of moth sex pheromone composition by a single amino acid substitution in a fatty acid desaturase. Proc Natl Acad Sci. 2015;112:12586–12591. doi: 10.1073/pnas.1514566112. PubMed DOI PMC

Libisch B., Michaelson L.V., Lewis M.J., Shewry P.R., Napier J.A. Chimeras of Δ6-fatty acid and Δ8-sphingolipid desaturases. Biochem Biophys Res Commun. 2000;279:779–785. PubMed

Hoffmann M., Hornung E., Busch S., Kassner N., Ternes P., Braus G.H. A small membrane-peripheral region close to the active center determines regioselectivity of membrane-bound fatty acid desaturases from Aspergillus nidulans. J Biol Chem. 2007;282:26666–26674. doi: 10.1074/jbc.M705068200. PubMed DOI

Hongsthong A., Subudhi S., Sirijuntarat M., Cheevadhanarak S. Mutation study of conserved amino acid residues of Spirulina delta 6-acyl-lipid desaturase showing involvement of histidine 313 in the regioselectivity of the enzyme. Appl Microbiol Biotechnol. 2004;66:74–84. doi: 10.1007/s00253-004-1655-x. PubMed DOI

Land H., Humble M.S. YASARA: A Tool to Obtain Structural Guidance in Biocatalytic Investigations. In: Bornscheuer U.T., Höhne M., editors. Protein Eng. Methods Protoc. Springer; 2018. pp. 43–67. PubMed DOI

Xiang Z. Advances in homology protein structure modeling. Curr Protein Pept Sci. 2006;7:217–227. PubMed PMC

Holz C., Hesse O., Bolotina N., Stahl U., Lang C. A micro-scale process for high-throughput expression of cDNAs in the yeast Saccharomyces cerevisiae. Protein Expr Purif. 2002;25:372–378. PubMed

Moto K., Suzuki M.G., Hull J.J., Kurata R., Takahashi S., Yamamoto M. Involvement of a bifunctional fatty-acyl desaturase in the biosynthesis of the silkmoth, Bombyx mori, sex pheromone. Proc Natl Acad Sci U S A. 2004;101:8631–8636. doi: 10.1073/pnas.0402056101. PubMed DOI PMC

Schneiter R., Tatzer V., Gogg G., Leitner E., Kohlwein S.D. Elo1p-dependent carboxy-terminal elongation of C14:1Delta(9) to C16:1Delta(11) fatty acids in Saccharomyces cerevisiae. J Bacteriol. 2000;182:3655–3660. PubMed PMC

Buček A., Matoušková P., Sychrová H., Pichová I., Hrušková-Heidingsfeldová O. Δ12-Fatty acid desaturase from Candida parapsilosis is a multifunctional desaturase producing a range of polyunsaturated and hydroxylated fatty acids. PLoS ONE. 2014;9 doi: 10.1371/journal.pone.0093322. PubMed DOI PMC

Buček A., Vogel H., Matoušková P., Prchalová D., Žáček P., Vrkoslav V. The role of desaturases in the biosynthesis of marking pheromones in bumblebee males. Insect Biochem Mol Biol. 2013;43:724–731. doi: 10.1016/j.ibmb.2013.05.003. PubMed DOI

Rath A., Glibowicka M., Nadeau V.G., Chen G., Deber C.M. Detergent binding explains anomalous SDS-PAGE migration of membrane proteins. Proc Natl Acad Sci. 2009;106:1760–1765. doi: 10.1073/pnas.0813167106. PubMed DOI PMC

Matoušková P., Pichová I., Svatoš A. Functional characterization of a desaturase from the tobacco hornworm moth (Manduca sexta) with bifunctional Z11- and 10,12-desaturase activity. Insect Biochem Mol Biol. 2007;37:601–610. doi: 10.1016/j.ibmb.2007.03.004. PubMed DOI

Mendiburu F. agricolae 2019. https://www.rdocumentation.org/packages/agricolae.

Edgar R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC

Clamp M., Cuff J., Searle S.M., Barton G.J. The Jalview Java alignment editor. Bioinformatics. 2004;20:426–427. doi: 10.1093/bioinformatics/btg430. PubMed DOI

Hornak V., Abel R., Okur A., Strockbine B., Roitberg A., Simmerling C. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins Struct Funct Bioinforma. 2006;65:712–725. doi: 10.1002/prot.21123. PubMed DOI PMC

Jämbeck J.P.M., Lyubartsev A.P. An Extension and Further Validation of an All-Atomistic Force Field for Biological Membranes. J Chem Theory Comput. 2012;8:2938–2948. doi: 10.1021/ct300342n. PubMed DOI

Jämbeck J.P.M., Lyubartsev A.P. Another Piece of the Membrane Puzzle: Extending Slipids Further. J Chem Theory Comput. 2013;9:774–784. doi: 10.1021/ct300777p. PubMed DOI

Jämbeck J.P.M., Lyubartsev A.P. Derivation and Systematic Validation of a Refined All-Atom Force Field for Phosphatidylcholine Lipids. J Phys Chem B. 2012;116:3164–3179. doi: 10.1021/jp212503e. PubMed DOI PMC

Singh U.C., Kollman P.A. An approach to computing electrostatic charges for molecules. J Comput Chem. 1984;5:129–145. doi: 10.1002/jcc.540050204. DOI

Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79:926–935. doi: 10.1063/1.445869. DOI

Essmann U., Perera L., Berkowitz M.L., Darden T., Lee H., Pedersen L.G. A smooth particle mesh Ewald method. J Chem Phys. 1995;103:8577–8593. doi: 10.1063/1.470117. DOI

Parrinello M., Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. J Appl Phys. 1981;52:7182–7190. doi: 10.1063/1.328693. DOI

Nosé S. A molecular dynamics method for simulations in the canonical ensemble. Mol Phys. 1984;52:255–268. doi: 10.1080/00268978400101201. DOI

Hess B., Bekker H., Berendsen H.J.C., Fraaije J.G.E.M. LINCS: A linear constraint solver for molecular simulations. J Comput Chem. 1997;18:1463–1472. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI

Miyamoto S., Kollman P.A. Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J Comput Chem. 1992;13:952–962. doi: 10.1002/jcc.540130805. DOI

Hess B., Kutzner C., van der Spoel D., Lindahl E. GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J Chem Theory Comput. 2008;4:435–447. doi: 10.1021/ct700301q. PubMed DOI

Liu W., Jiao H., O’Connor M., Roelofs W.L. Moth desaturase characterized that produces both Z and E isomers of delta 11-tetradecenoic acids. Insect Biochem Mol Biol. 2002;32:1489–1495. PubMed

Liu W., Jiao H., Murray N.C., O’Connor M., Roelofs W.L. Gene characterized for membrane desaturase that produces (E)-11 isomers of mono- and diunsaturated fatty acids. Proc Natl Acad Sci U S A. 2002;99:620–624. doi: 10.1073/pnas.221601498. PubMed DOI PMC

Hao G., Liu W., O’Connor M., Roelofs W.L. Acyl-CoA Z9-and Z10-desaturase genes from a New Zealand leafroller moth species. Planotortrix octo. Insect Biochem Mol Biol. 2002;32:961–966. PubMed

Hao G., O’Connor M., Liu W., Roelofs W.L. Characterization of Z/E11- and Z9-desaturases from the obliquebanded leafroller moth. Choristoneura rosaceana. J Insect Sci. 2002;2:26. PubMed PMC

Liu W., Rooney A.P., Xue B., Roelofs W.L. Desaturases from the spotted fireworm moth (Choristoneura parallela) shed light on the evolutionary origins of novel moth sex pheromone desaturases. Gene. 2004;342:303–311. doi: 10.1016/j.gene.2004.08.017. PubMed DOI

Harpaz Y., Gerstein M., Chothia C. Volume changes on protein folding. Structure. 1994;2:641–649. doi: 10.1016/S0969-2126(00)00065-4. PubMed DOI

Rodríguez S., Clapés P., Camps F., Fabriàs G. Stereospecificity of an Enzymatic Monoene 1,4-Dehydrogenation Reaction: Conversion of (Z)-11-Tetradecenoic Acid into (E, E)-10,12-Tetradecadienoic Acid. J Org Chem. 2002;67:2228–2233. doi: 10.1021/jo0109927. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...