Biosynthesis of Fatty Acid Derivatives by Recombinant Yarrowia lipolytica Containing MsexD2 and MsexD3 Desaturase Genes from Manduca sexta
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
APVV-17-0262
Slovak Research and Development Agency
PubMed
36675935
PubMed Central
PMC9862095
DOI
10.3390/jof9010114
PII: jof9010114
Knihovny.cz E-zdroje
- Klíčová slova
- Manduca, Yarrowia, conjugase, desaturase, metabolic engineering, pheromone,
- Publikační typ
- časopisecké články MeSH
One of the most interesting groups of fatty acid derivates is the group of conjugated fatty acids from which the most researched include: conjugated linoleic acid (CLA) and conjugated linolenic acid (CLNA), which are associated with countless health benefits. Sex pheromone mixtures of some insect species, including tobacco horn-worm (Manduca sexta), are typical for the production of uncommon C16 long conjugated fatty acids with two and three conjugated double bonds, as opposed to C18 long CLA and CLNA. In this study, M. sexta desaturases MsexD2 and MsexD3 were expressed in multiple strains of Y. lipolytica with different genotypes. Experiments with the supplementation of fatty acid methyl esters into the medium resulted in the production of novel fatty acids. Using GCxGC-MS, 20 new fatty acids with two or three double bonds were identified. Fatty acids with conjugated or isolated double bonds, or a combination of both, were produced in trace amounts. The results of this study prove that Y. lipolytica is capable of synthesizing C16-conjugated fatty acids. Further genetic optimization of the Y. lipolytica genome and optimization of the fermentation process could lead to increased production of novel fatty acid derivatives with biotechnologically interesting properties.
Zobrazit více v PubMed
Ledesma-Amaro R. Microbial Oils: A Customizable Feedstock through Metabolic Engineering. Eur. J. Lipid Sci. Technol. 2015;117:141–144. doi: 10.1002/ejlt.201400181. DOI
Ledesma-Amaro R., Nicaud J.-M. Yarrowia Lipolytica as a Biotechnological Chassis to Produce Usual and Unusual Fatty Acids. Prog. Lipid Res. 2016;61:40–50. doi: 10.1016/j.plipres.2015.12.001. PubMed DOI
Kamisaka Y., Kimura K., Uemura H., Yamaoka M. Overexpression of the Active Diacylglycerol Acyltransferase Variant Transforms Saccharomyces Cerevisiae into an Oleaginous Yeast. Appl. Microbiol. Biotechnol. 2013;97:7345–7355. doi: 10.1007/s00253-013-4915-9. PubMed DOI
Ledesma-Amaro R., Santos M.A., Jiménez A., Revuelta J.L. Strain Design of Ashbya Gossypii for Single-Cell Oil Production. Appl. Environ. Microbiol. 2014;80:1237–1244. doi: 10.1128/AEM.03560-13. PubMed DOI PMC
Groenewald M., Boekhout T., Neuvéglise C., Gaillardin C., van Dijck P.W.M., Wyss M. Yarrowia Lipolytica: Safety Assessment of an Oleaginous Yeast with a Great Industrial Potential. Crit. Rev. Microbiol. 2014;40:187–206. doi: 10.3109/1040841X.2013.770386. PubMed DOI
Zhang B., Rong C., Chen H., Song Y., Zhang H., Chen W. De Novo Synthesis of Trans-10, Cis-12 Conjugated Linoleic Acid in Oleaginous Yeast Yarrowia Lipolytica. Microb. Cell Factories. 2012;11:51. doi: 10.1186/1475-2859-11-51. PubMed DOI PMC
Zhang B., Chen H., Li M., Gu Z., Song Y., Ratledge C., Chen Y.Q., Zhang H., Chen W. Genetic Engineering of Yarrowia Lipolytica for Enhanced Production of Trans-10, Cis-12 Conjugated Linoleic Acid. Microb. Cell Factories. 2013;12:70. doi: 10.1186/1475-2859-12-70. PubMed DOI PMC
Imatoukene N., Verbeke J., Beopoulos A., Idrissi Taghki A., Thomasset B., Sarde C.-O., Nonus M., Nicaud J.-M. A Metabolic Engineering Strategy for Producing Conjugated Linoleic Acids Using the Oleaginous Yeast Yarrowia Lipolytica. Appl. Microbiol. Biotechnol. 2017;101:4605–4616. doi: 10.1007/s00253-017-8240-6. PubMed DOI PMC
Dyer J.M., Chapital D.C., Kuan J.-C.W., Mullen R.T., Turner C., McKeon T.A., Pepperman A.B. Molecular Analysis of a Bifunctional Fatty Acid Conjugase/Desaturase from Tung. Implications for the Evolution of Plant Fatty Acid Diversity. Plant Physiol. 2002;130:2027–2038. doi: 10.1104/pp.102.010835. PubMed DOI PMC
Rawat R., Yu X.-H., Sweet M., Shanklin J. Conjugated Fatty Acid Synthesis: Residues 111 and 115 influence product partitioning of momordica charantia conjugase. J. Biol. Chem. 2012;287:16230–16237. doi: 10.1074/jbc.M111.325316. PubMed DOI PMC
Buček A., Matoušková P., Vogel H., Šebesta P., Jahn U., Weißflog J., Svatoš A., Pichová I. Evolution of Moth Sex Pheromone Composition by a Single Amino Acid Substitution in a Fatty Acid Desaturase. Proc. Natl. Acad. Sci. USA. 2015;112:12586–12591. doi: 10.1073/pnas.1514566112. PubMed DOI PMC
Buček A., Vazdar M., Tupec M., Svatoš A., Pichová I. Desaturase Specificity Is Controlled by the Physicochemical Properties of a Single Amino Acid Residue in the Substrate Binding Tunnel. Comput. Struct. Biotechnol. J. 2020;18:1202–1209. doi: 10.1016/j.csbj.2020.05.011. PubMed DOI PMC
Sambrook J.F., Russell D. Molecular Cloning: A Laboratory Manual (3-Volume Set) Volume 1. Cold Spring Harbor Laboratory Press; New York, NY, USA: 2001.
Holdsworth J.E., Veenhuis M., Ratledge C. Enzyme Activities in Oleaginous Yeasts Accumulating and Utilizing Exogenous or Endogenous Lipids. J. Gen. Microbiol. 1988;134:2907–2915. doi: 10.1099/00221287-134-11-2907. PubMed DOI
Lazar Z., Rossignol T., Verbeke J., Crutz-Le Coq A.-M., Nicaud J.-M., Robak M. Optimized Invertase Expression and Secretion Cassette for Improving Yarrowia Lipolytica Growth on Sucrose for Industrial Applications. J. Ind. Microbiol. Biotechnol. 2013;40:1273–1283. doi: 10.1007/s10295-013-1323-1. PubMed DOI PMC
Dulermo R., Brunel F., Dulermo T., Ledesma-Amaro R., Vion J., Trassaert M., Thomas S., Nicaud J.-M., Leplat C. Using a Vector Pool Containing Variable-Strength Promoters to Optimize Protein Production in Yarrowia Lipolytica. Microb. Cell Factories. 2017;16:31. doi: 10.1186/s12934-017-0647-3. PubMed DOI PMC
Barth G., Gaillardin C. Physiology and Genetics of the Dimorphic Fungus. FEMS Microbiol. Rev. 1997;19:219–237. doi: 10.1111/j.1574-6976.1997.tb00299.x. PubMed DOI
Lazar Z., Dulermo T., Neuvéglise C., Crutz-Le Coq A.-M., Nicaud J.-M. Hexokinase—A Limiting Factor in Lipid Production from Fructose in Yarrowia Lipolytica. Metab. Eng. 2014;26:89–99. doi: 10.1016/j.ymben.2014.09.008. PubMed DOI
Le Dall M.-T., Nicaud J.-M., Gaillardin C. Multiple-Copy Integration in the Yeast Yarrowia Lipolytica. Curr. Genet. 1994;26:38–44. doi: 10.1007/BF00326302. PubMed DOI
Querol A., Barrio E., Ramón D. A Comparative Study of Different Methods of Yeast Strain Characterization. Syst. Appl. Microbiol. 1992;15:439–446. doi: 10.1016/S0723-2020(11)80219-5. DOI
Beopoulos A., Mrozova Z., Thevenieau F., Le Dall M.-T., Hapala I., Papanikolaou S., Chardot T., Nicaud J.-M. Control of Lipid Accumulation in the Yeast Yarrowia Lipolytica. Appl. Environ. Microbiol. 2008;74:7779–7789. doi: 10.1128/AEM.01412-08. PubMed DOI PMC
Lazar Z., Walczak E., Robak M. Simultaneous Production of Citric Acid and Invertase by Yarrowia Lipolytica SUC+ Transformants. Bioresour. Technol. 2011;102:6982–6989. doi: 10.1016/j.biortech.2011.04.032. PubMed DOI
Folch J., Lees M., Sloane Stanley G. A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues. J. Biol. Chem. 1957;226:497–509. doi: 10.1016/S0021-9258(18)64849-5. PubMed DOI
Gajdoš P., Nicaud J.-M., Rossignol T., Čertík M. Single Cell Oil Production on Molasses by Yarrowia Lipolytica Strains Overexpressing DGA2 in Multicopy. Appl. Microbiol. Biotechnol. 2015;99:8065–8074. doi: 10.1007/s00253-015-6733-8. PubMed DOI
Christopherson S.W., Glass R.L. Preparation of Milk Fat Methyl Esters by Alcoholysis in an Essentially Nonalcoholic Solution1. J. Dairy Sci. 1969;52:1289–1290. doi: 10.3168/jds.S0022-0302(69)86739-1. DOI
Matoušková P., Pichová I., Svatoš A. Functional Characterization of a Desaturase from the Tobacco Hornworm Moth (Manduca Sexta) with Bifunctional Z11- and 10,12-Desaturase Activity. Insect Biochem. Mol. Biol. 2007;37:601–610. doi: 10.1016/j.ibmb.2007.03.004. PubMed DOI
Rigouin C., Croux C., Borsenberger V., Ben Khaled M., Chardot T., Marty A., Bordes F. Increasing Medium Chain Fatty Acids Production in Yarrowia Lipolytica by Metabolic Engineering. Microb. Cell Factories. 2018;17:142. doi: 10.1186/s12934-018-0989-5. PubMed DOI PMC
Rigouin C., Gueroult M., Croux C., Dubois G., Borsenberger V., Barbe S., Marty A., Daboussi F., André I., Bordes F. Production of Medium Chain Fatty Acids by Yarrowia Lipolytica: Combining Molecular Design and TALEN to Engineer the Fatty Acid Synthase. ACS Synth. Biol. 2017;6:1870–1879. doi: 10.1021/acssynbio.7b00034. PubMed DOI