Evolution of Linoleic Acid Biosynthesis Paved the Way for Ecological Success of Termites

. 2023 Apr 04 ; 40 (4) : .

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37043525

Termites are dominant animals of tropical terrestrial ecosystems. Their success is due to their eusocial organization as well as their ability to digest dead plant tissues. While being extremely abundant, the termite diet is poor in crucial nutrients, such as fatty acids. Linoleic acid (LA) is a precursor for many vital biomolecules, and most animals depend on its dietary supply. Termites count among the exceptions known to produce LA de novo, presumably via the action of an unknown Δ12 fatty acyl desaturase (FAD) introducing the second double bond into monounsaturated oleic acid. Here, we search for the evolutionary origin of LA biosynthesis in termites. To this end, we compile the repertoire of FAD homologs from 57 species of termites and their closest relatives, the cockroaches, analyze FAD phylogeny, and identify a potential Δ12 FAD branch, which arose through duplication of a likely Δ9 FAD. We functionally characterize both paralogs and identify the Δ9 activity in the ancestral FAD-A1a and the Δ12 activity responsible for LA biosynthesis in FAD-A1b. Through the combination of homology modeling and site-directed mutagenesis, we pinpoint structural features possibly contributing to the distinct functions, regiospecificities, and substrate preferences of the two enzymes. We confirm the presence of both paralogs in all 36 studied species of the Blattoidea lineage (Blattidae, Lamproblattidae, Cryptocercidae, and termites) and conclude that we identified an evolutionary event important for the ecological success of termites, which took place in their cockroach ancestors roughly 160 My and remained conserved throughout termite diversification into 3,000 extant species.

Zobrazit více v PubMed

Aboshi T, Shimizu N, Nakajima Y, Honda Y, Kuwahara Y, Amano H, Mori N. 2013. Biosynthesis of linoleic acid in Tyrophagus mites (Acarina: Acaridae). Insect Biochem Mol Biol. 43:991–996. PubMed

Ando T, Inomata S-i, Yamamoto M. 2004. Lepidopteran sex pheromones. In: Schulz S, editors. The chemistry of pheromones and other semiochemicals I. Berlin, Heidelberg: Springer Berlin Heidelberg. p. 51–96.

Bade ML. 1964. Biosynthesis of fatty acids in the roach Eurycotis floridana. J Insect Physiol. 10:333–341.

Bai Y, McCoy JG, Levin EJ, Sobrado P, Rajashankar KR, Fox BG, Zhou M. 2015. X-ray structure of a mammalian stearoyl-CoA desaturase. Nature. 524:252–256. PubMed PMC

Blomquist GJ, Dwyer LA, Chu AJ, Ryan RO, de Renobales M. 1982. Biosynthesis of linoleic acid in a termite, cockroach and cricket. Insect Biochem. 12:349–353.

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 30:2114–2120. PubMed PMC

Bordereau C, Pasteels JM. 2011. Pheromones and chemical ecology of dispersal and foraging in termites. In: Bignell DERoisin Y and Lo N, editors. Biology of termites: a modern synthesis. Dordrecht: Springer. p. 279–320.

Breznak JA, Brill WJ. 1973. Nitrogen fixation in termites. Nature. 244:577–580. PubMed

Brune A. 2014. Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol. 12:168–180. PubMed

Buček A, Matoušková P, Vogel H, Šebesta P, Jahn U, Weißflog J, Svatoš A, Pichová I. 2015. Evolution of moth sex pheromone composition by a single amino acid substitution in a fatty acid desaturase. Proc Natl Acad Sci U S A. 112:12586–12591. PubMed PMC

Buček A, Šobotník J, He S, Shi M, McMahon DP, Holmes EC, Roisin Y, Lo N, Bourguignon T. 2019. Evolution of termite symbiosis informed by transcriptome-based phylogenies. Curr Biol. 29:3728–3734.e4. PubMed

Buček A, Vazdar M, Tupec M, Svatoš A, Pichová I. 2020. Desaturase specificity is controlled by the physicochemical properties of a single amino acid residue in the substrate binding tunnel. Comp Struct Biotechnol J. 18:1202–1209. PubMed PMC

Buček A, Vogel H, Matoušková P, Prchalová D, Žáček P, Vrkoslav V, Šebesta P, Svatoš A, Jahn U, Valterová I, et al. . 2013. The role of desaturases in the biosynthesis of marking pheromones in bumblebee males. Insect Biochem Mol Biol. 43:724–731. PubMed

Cai Y, Yu XH, Chai J, Liu CJ, Shanklin J. 2020. A conserved evolutionary mechanism permits Δ9 desaturation of very-long-chain fatty acyl lipids. J Biol Chem. 295:11337–11345. PubMed PMC

Carter FL, Dinus LA, Smythe RV. 1972. Fatty acids of the eastern subterranean termite, Reticulitermes flavipes (Isoptera: Rhinotermitidae). Ann Entomol Soc Am. 65:655–658.

Cripps C, Blomquist GJ, de Renobales M. 1986. De novo biosynthesis of linoleic acid in insects. Biochim Biophys Acta-Lipids Lipid Metab. 876:572–580.

Dallerac R, Labeur C, Jallon JM, Knipple DC, Roelofs WL, Wicker-Thomas C. 2000. A delta 9 desaturase gene with a different substrate specificity is responsible for the cuticular diene hydrocarbon polymorphism in Drosophila melanogaster. Proc Natl Acad Sci U S A. 97:9449–9454. PubMed PMC

de Renobales M, Cripps C, Stanley-Samuelson DW, Jurenka RA, Blomquist GJ. 1987. Biosynthesis of linoleic acid in insects. Trends Biochem Sci. 12:364–366.

Ding B-J, Carraher C, Löfstedt C. 2016. Sequence variation determining stereochemistry of a Δ11 desaturase active in moth sex pheromone biosynthesis. Insect Biochem Mol Biol. 74:68–75. PubMed

Ding B-J, Liénard MA, Wang H-L, Zhao C-H, Löfstedt C. 2011. Terminal fatty-acyl-CoA desaturase involved in sex pheromone biosynthesis in the winter moth (Operophtera brumata). Insect Biochem Mol Biol. 41:715–722. PubMed

Dunkelblum E, Tan SH, Silk PJ. 1985. Double-bond location in monounsaturated fatty acids by dimethyl disulfide derivatization and mass spectrometry: application to analysis of fatty acids in pheromone glands of four lepidoptera. J Chem Ecol. 11:265–277. PubMed

Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32:1792–1797. PubMed PMC

Esenther GR, Allen TC, Casida JE, Shenefelt RD. 1961. Termite attractant from fungus-infected wood. Science. 134:50. PubMed

Evangelista DA, Wipfler B, Béthoux O, Donath A, Fujita M, Kohli Manpreet K, Legendre F, Liu S, Machida R, Misof B, et al. . 2019. An integrative phylogenomic approach illuminates the evolutionary history of cockroaches and termites (Blattodea). Proceedings of the Royal Society B: Biological Sciences. 286:20182076. PubMed PMC

Fang S, Ting CT, Lee CR, Chu KH, Wang CC, Tsaur SC. 2009. Molecular evolution and functional diversification of fatty acid desaturases after recurrent gene duplication in Drosophila. Mol Biol Evol. 26:1447–1456. PubMed PMC

Fay L, Richli U. 1991. Location of double bonds in polyunsaturated fatty acids by gas chromatography-mass spectrometry after 4,4-dimethyloxazoline derivatization. J Chromatogr A. 541:89–98.

Gouy M, Guindon S, Gascuel O. 2010. Seaview version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol. 27:221–224. PubMed

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, et al. . 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 29:644–652. PubMed PMC

Grimaldi DA, Engel MS. 2005. Evolution of the insects. Cambridge: Cambridge University Press.

Groot AT, Dekker T, Heckel DG. 2016. The genetic basis of pheromone evolution in moths. Annu Rev Entomol. 61:99–117. PubMed

Haritos VS, Horne I, Damcevski K, Glover K, Gibb N, Okada S, Hamberg M. 2012. The convergent evolution of defensive polyacetylenic fatty acid biosynthesis genes in soldier beetles. Nat Commun. 3:1150. PubMed

Harrison MC, Jongepier E, Robertson HM, Arning N, Bitard-Feildel T, Chao H, Childers CP, Dinh H, Doddapaneni H, Dugan S, et al. . 2018. Hemimetabolous genomes reveal molecular basis of termite eusociality. Nat Ecol Evol. 2:557–566. PubMed PMC

Helmkampf M, Cash E, Gadau J. 2015. Evolution of the insect desaturase gene family with an emphasis on social Hymenoptera. Mol Biol Evol. 32:456–471. PubMed PMC

Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. 2018. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol. 35:518–522. PubMed PMC

Holz C, Hesse O, Bolotina N, Stahl U, Lang C. 2002. A micro-scale process for high-throughput expression of cDNAs in the yeast Saccharomyces cerevisiae. Protein Expr Purif. 25:372–378. PubMed

Jirošová A, Sillam-Dussès D, Kyjaková P, Kalinová B, Dolejšová K, Jančařík A, Majer P, Cristaldo PF, Hanus R. 2016. Smells like home: chemically mediated co-habitation of two termite species in a single nest. J Chem Ecol. 42:1070–1081. PubMed

Jouquet P, Traoré S, Choosai C, Hartmann C, Bignell D. 2011. Influence of termites on ecosystem functioning. Ecosystem services provided by termites. Eur J Soil Biol. 47:215–222.

Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, et al. . 2021. Highly accurate protein structure prediction with AlphaFold. Nature. 596:583–589. PubMed PMC

Jurenka R, Blomquist GJ, Schal C, Tittiger C. 2017. Biochemistry and molecular biology of pheromone production. In: Gilbert LI, editors. Comprehensive molecular insect science. Chapel Hill: (NC: ): University of North Carolina. p. 705–751.

Knipple DC, Rosenfield CL, Nielsen R, You KM, Jeong SE. 2002. Evolution of the integral membrane desaturase gene family in moths and flies. Genetics. 162:1737–1752. PubMed PMC

Koubová J, Pangrácová M, Jankásek M, Lukšan O, Jehlík T, Brabcová J, Jedlička P, Křivánek J, Čapková Frydrychová R, Hanus R. 2021. Long-lived termite kings and queens activate telomerase in somatic organs. Proc R Soc B. 288:20210511. PubMed PMC

Krishna K, Grimaldi DA, Krishna V, Engel MS. 2013. Treatise on the Isoptera of the world. Vol. 1. Introduction. Bull Amer Mus Nat Hist. 377:1–200.

Kyjaková P, Roy V, Jirošová A, Krasulová J, Dolejšová K, Křivánek J, Hadravová R, Rybáček J, Pohl R, Roisin Y, et al. . 2017. Chemical systematics of Neotropical termite genera with symmetrically snapping soldiers (Termitidae: Termitinae). Zool J Linn Soc. 180:66–81.

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods. 9:357–359. PubMed PMC

Lassance JM, Groot AT, Lienard MA, Antony B, Borgwardt C, Andersson F, Hedenström E, Heckel DG, Löfstedt C. 2010. Allelic variation in a fatty-acyl reductase gene causes divergence in moth sex pheromones. Nature. 466:486–489. PubMed

Legendre A, Miao X-X, Da Lage JL, Wicker-Thomas C. 2008. Evolution of a desaturase involved in female pheromonal cuticular hydrocarbon biosynthesis and courtship behavior in Drosophila. Insect Biochem Mol Biol. 38:244–255. PubMed

Lienard MA, Hagström AK, Lassance JM, Löfstedt C. 2010. Evolution of multicomponent pheromone signals in small ermine moths involves a single fatty-acyl reductase gene. Proc Natl Acad Sci U S A. 107:10955–10960. PubMed PMC

López Alonso D, García-Maroto F, Rodríguez-Ruiz J, Garrido JA, Vilches MA. 2003. Evolution of the membrane-bound fatty acid desaturases. Biochem Syst Ecol. 31:1111–1124.

Louloudes SJ, Kaplanis JN, Robbins WE, Monroe RE. 1961. Lipogenesis from C14-acetate by the American cockroach. Ann Entomol Soc Am. 54:99–103.

Malcicka M, Visser B, Ellers J. 2018. An evolutionary perspective on linoleic acid synthesis in animals. Evol Biol. 45:15–26. PubMed PMC

Matoušková P, Pichová I, Svatoš A. 2007. Functional characterization of a desaturase from the tobacco hornworm moth (Manduca sexta) with bifunctional Z11- and 10,12-desaturase activity. Insect Biochem Mol Biol. 37:601–610. PubMed

Matsumura F, Coppel HC, Tai A. 1968. Isolation and identification of termite trail following pheromone. Nature. 219:963–964. PubMed

Mauldin JK, Rich NM, Cook DW. 1978. Amino acid synthesis from 14C-acetate by normally and abnormally faunated termites, Coptotermes formosanus. Insect Biochem. 8:105–109.

Mauldin JK, Smythe RV, Baxter CC. 1972. Cellulose catabolism and lipid synthesis by the subterranean termite, Coptotermes formosanus. Insect Biochem. 2:209–217.

Meesapyodsuk D, Qiu X. 2014. Structure determinants for the substrate specificity of acyl-CoA Δ9 desaturases from a marine copepod. ACS Chem Biol. 9:922–934. PubMed

Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. 2022. Colabfold: making protein folding accessible to all. Nat Methods. 19:679–682. PubMed PMC

Moto K, Suzuki MG, Hull JJ, Kurata R, Takahashi S, Yamamoto M, Okano K, Imai K, Ando T, Matsumoto S. 2004. Involvement of a bifunctional fatty-acyl desaturase in the biosynthesis of the silkmoth, Bombyx mori, sex pheromone. Proc Natl Acad Sci U S A. 101:8631–8636. PubMed PMC

Nagao K, Murakami A, Umeda M. 2019. Structure and function of Δ9-fatty acid desaturase. Chem Pharm Bull. 67:327–332. PubMed

Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 32:268–274. PubMed PMC

Odelson DA, Breznak JA. 1983. Volatile fatty acid production by the hindgut microbiota of xylophagous termites. Appl Environ Microbiol. 45:1602–1613. PubMed PMC

Pelley JW. 2012. 10—fatty acid and triglyceride metabolism. In: Pelley JW, editors. Elsevier’s integrated review biochemistry. 2nd ed. Philadelphia: W.B. Saunders. p. 81–88.

Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, Morris JH, Ferrin TE. 2021. UCSF Chimerax: structure visualization for researchers, educators, and developers. Protein Sci. 30:70–82. PubMed PMC

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. 2012. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41:D590–D596. PubMed PMC

Roelofs WL, Rooney AP. 2003. Molecular genetics and evolution of pheromone biosynthesis in Lepidoptera. Proc Natl Acad Sci U S A. 100:14599. PubMed PMC

Rothstein M, Götz P. 1968. Biosynthesis of fatty acids in the free-living nematode, Turbatrix aceti. Arch Biochem Biophys. 126:131–140. PubMed

Schneiter R, Tatzer V, Gogg G, Leitner E, Kohlwein SD. 2000. Elo1p-dependent carboxy-terminal elongation of C14:1Δ9 to C16:1Δ11 fatty acids in Saccharomyces cerevisiae. J Bacteriol. 182:3655–3660. PubMed PMC

Semmelmann F, Kabeya N, Malcicka M, Bruckmann A, Broschwitz B, Straub K, Merkl R, Monroig O, Sterner R, Ruther J, et al. . 2019. Functional characterisation of two Δ12-desaturases demonstrates targeted production of linoleic acid as pheromone precursor in Nasonia. J Exp Biol. 222:jeb201038. PubMed

Serra M, Pina B, Abad JL, Camps F, Fabrias G. 2007. A multifunctional desaturase involved in the biosynthesis of the processionary moth sex pheromone. Proc Natl Acad Sci U S A. 104:16444–16449. PubMed PMC

Shanklin J, Cahoon EB. 1998. Desaturation and related modifications of fatty acids. Annu Rev Plant Physiol Plant Molec Biol. 49:611–641. PubMed

Shen J, Wu G, Tsai A-L, Zhou M. 2020. Structure and mechanism of a unique diiron center in mammalian stearoyl-CoA desaturase. J Mol Biol. 432:5152–5161. PubMed PMC

Shi H, Chen H, Gu Z, Song Y, Zhang H, Chen W, Chen YQ. 2015. Molecular mechanism of substrate specificity for delta 6 desaturase from Mortierella alpina and Micromonas pusilla. J Lipid Res. 56:2309–2321. PubMed PMC

Shimizu N, Naito M, Mori N, Kuwahara Y. 2014. De novo biosynthesis of linoleic acid and its conversion to the hydrocarbon (Z, Z)-6,9-heptadecadiene in the astigmatid mite, Carpoglyphus lactis: incorporation experiments with 13C-labeled glucose. Insect Biochem Mol Biol. 45:51–57. PubMed

Šobotník J, Weyda F, Hanus R, Cvačka J, Nebesářová J. 2006. Fat body of Prorhinotermes simplex (Isoptera: Rhinotermitidae): ultrastructure, inter-caste differences and lipid composition. Micron. 37:648–656. PubMed

Song L, Florea L. 2015. Rcorrector: efficient and accurate error correction for Illumina RNA-seq reads. GigaScience. 4:48. PubMed PMC

Sperling P, Ternes P, Zank TK, Heinz E. 2003. The evolution of desaturases. Prostaglandins Leukot Essent Fatty Acids. 68:73–95. PubMed

Stanley-Samuelson DW, Jurenka RA, Cripps C, Blomquist GJ, de Renobales M. 1988. Fatty acids in insects: composition, metabolism, and biological significance. Arch Insect Biochem Physiol. 9:1–33.

Symonds MRE, Elgar MA. 2008. The evolution of pheromone diversity. Trends Ecol Evol. 23:220–228. PubMed

Terrapon N, Li C, Robertson HM, Ji L, Meng X, Booth W, Chen Z, Childers CP, Glastad KM, Gokhale K, et al. . 2014. Molecular traces of alternative social organization in a termite genome. Nat Commun. 5:3636. PubMed

Tillman JA, Seybold SJ, Jurenka RA, Blomquist GJ. 1999. Insect pheromones—an overview of biosynthesis and endocrine regulation. Insect Biochem Mol Biol. 29:481–514. PubMed

Tokoro M, Takahashi M, Yamaoka R. 1992. Identification of trail pheromone precursors from subterranean termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). J Chem Ecol. 18:517–526. PubMed

Tokoro M, Yamaoka R, Hayashiya K, Takahashi M, Nishimoto K. 1990. Evidence for trail-pheromone precursor in termite Reticulitermes speratus (Kolbe) (Rhinotermitidae: Isoptera). J Chem Ecol. 16:2549–2557. PubMed

Tuma J, Eggleton P, Fayle TM. 2020. Ant-termite interactions: an important but under-explored ecological linkage. Biol Rev. 95:555–572. PubMed

Tupec M, Buček A, Janoušek V, Vogel H, Prchalová D, Kindl J, Pavlíčková T, Wenzelová P, Jahn U, Valterová I, et al. . 2019. Expansion of the fatty acyl reductase gene family shaped pheromone communication in Hymenoptera. eLife. 8:e39231. PubMed PMC

Tupec M, Buček A, Valterová I, Pichová I. 2017. Biotechnological potential of insect fatty acid-modifying enzymes. Z Naturforsch C. 72:387–403. PubMed

Vanhercke T, Shrestha P, Green AG, Singh SP. 2011. Mechanistic and structural insights into the regioselectivity of an acyl-CoA fatty acid desaturase via directed molecular evolution. J Biol Chem. 286:12860–12869. PubMed PMC

Wang H, Klein MG, Zou H, Lane W, Snell G, Levin I, Li K, Sang BC. 2015. Crystal structure of human stearoyl-coenzyme A desaturase in complex with substrate. Nat Struct Mol Biol. 22:581–585. PubMed

Wang H-L, Liénard MA, Zhao C-H, Wang C-Z, Löfstedt C. 2010. Neofunctionalization in an ancestral insect desaturase lineage led to rare Δ6 pheromone signals in the Chinese tussah silkworm. Insect Biochem Mol Biol. 40:742–751. PubMed

Weinert J, Blomquist GJ, Borgeson CE. 1993. De novo biosynthesis of linoleic acid in two non-insect invertebrates: the land slug and the garden snail. Experientia. 49:919–921.

Wilding M, Nachtschatt M, Speight R, Scott C. 2017. An improved and general streamlined phylogenetic protocol applied to the fatty acid desaturase family. Mol Phylogenet Evol. 115:50–57. PubMed

Wilson EO. 1992. Social insects as dominant organisms. In: Billen J, editors. Biology and evolution of social insects. Leuven: Leuven University Press. p. 1–7.

Zhou XR, Horne I, Damcevski K, Haritos V, Green A, Singh S. 2008. Isolation and functional characterization of two independently-evolved fatty acid Delta12-desaturase genes from insects. Insect Mol Biol. 17:667–676. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...