Comparative study of antibacterial properties of polystyrene films with TiO x and Cu nanoparticles fabricated using cluster beam technique
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29600147
PubMed Central
PMC5870157
DOI
10.3762/bjnano.9.80
Knihovny.cz E-zdroje
- Klíčová slova
- antibacterial properties, cluster beam technique, nanoparticles, polymers,
- Publikační typ
- časopisecké články MeSH
Background: Antibacterial materials are of high importance for medicine, and for the production and conservation of food. Among these materials, polymer films with metal nanoparticles (NPs) are of considerable interest for many practical applications. Results: The paper describes a novel approach for the formation of bactericidal polymer thin films (polystyrene in this case), produced by spin-coating, with Ti and Cu NPs deposited from cluster beams. Ti NPs are treated in three different ways in order to study different approaches for oxidation and, thus, efficiency in formation of the particles with semiconducting properties required for the catalytic formation of reactive oxygen species. Cu NPs are used as deposited. Partial NP embedding into polystyrene is realised in a controllable manner using thermal annealing in order to improve surface adhesion and make the particles resistant against wash-out. The formed composite films with TiO x and Cu species are tested as bactericidal media using E.coli bacteria as model microorganisms. Conclusion: The obtained results show considerable efficiency in destroying the bacteria and a good possibility of multiple re-use of the same composite films making the suggested approach attractive for the cases requiring reusable polymer-based antibacterial media.
Zobrazit více v PubMed
Lemire J A, Harrison J J, Turner R J. Nat Rev Microbiol. 2013;11:371–384. doi: 10.1038/nrmicro3028. PubMed DOI
Hajipour M J, Fromm K M, Ashkarran A A, de Aberasturi D J, de Larramendi I R, Rojo T, Serpooshan V, Parak W J. Trends Biotechnol. 2012;30:499–511. doi: 10.1016/j.tibtech.2012.06.004. PubMed DOI
Moritz M, Geszke-Moritz M. Chem Eng J. 2013;228:596–613. doi: 10.1016/j.cej.2013.05.046. DOI
Palza H. Int J Mol Sci. 2015;16:2099–2116. doi: 10.3390/ijms16012099. PubMed DOI PMC
Kubacka A, Ferrer M, Cerrada M L, Serrano C, Sánchez-Chaves M, Fernández-Garcia M, de Andrés A, Jiménez Riobóo R J, Fernández-Martın F, Fernández-Garcia M. Appl Catal, B. 2009;89:441–447. doi: 10.1016/j.apcatb.2009.01.002. DOI
Kubacka A, Diaz M S, Rojo D, Bargiela R, Ciordia S, Zapico I, Albar J P, Barbas C, Martins dos Santos V A P, Fernández-Garcia M, et al. Sci Rep. 2014;4:4134. doi: 10.1038/srep04134. PubMed DOI PMC
Silvestre C, Durracio D, Cimmino S. Prog Polym Sci. 2011;36:1766–1782. doi: 10.1016/j.progpolymsci.2011.02.003. DOI
Noimark S, Dunnill C W, Wilson M, Parkin I P. Chem Soc Rev. 2009;38:3435–3448. doi: 10.1039/b908260c. PubMed DOI
Vaidulych M, Hanuš J, Steinhartová T, Kylián O, Choukuorov A, Beranová J, Khalakhan I, Biederman H. Plasma Processes Polym. 2017;14:1600256. doi: 10.1002/ppap.201600256. DOI
Kuzminova A, Beranová J, Polonskyi O, Shelemin A, Kylián O, Choukourov A, Slavinská D, Biederman H. Surf Coat Technol. 2016;294:225–230. doi: 10.1016/j.surfcoat.2016.03.097. DOI
Kylián O, Kratochvil J, Petr M, Kuzminova A, Slavinská D, Biederman H, Beranová J. Funct Mater Lett. 2017;10:1750029. doi: 10.1142/S1793604717500291. DOI
Peter T, Wegner M, Zaporojtchenko V, Strunskus T, Bornholdt S, Kersten H, Faupel F. Surf Coat Technol. 2011;205:S38–S41. doi: 10.1016/j.surfcoat.2010.12.045. DOI
Kylián O, Kratochvíl J, Hanuš J, Polonskyi O, Solař P, Biederman H. Thin Solid Films. 2014;550:46–52. doi: 10.1016/j.tsf.2013.10.029. DOI
Hanif M, Juluri R R, Chirumamilla M, Popok V N. J Polym Sci, Part B: Polym Phys. 2016;54:1152–1159. doi: 10.1002/polb.24021. DOI
Popok V N, Hanif M, Ceynowa F A, Fojan P. Nucl Instrum Methods Phys Res, Sect B. 2017;409:91–95. doi: 10.1016/j.nimb.2017.05.009. DOI
Dunlop P S M, Byrne J A, Manga N, Eggins B R. J Photochem Photobiol, A: Chem. 2002;148:355–363. doi: 10.1016/S1010-6030(02)00063-1. DOI
Sunada K, Watanabe T, Hashimoto K. J Photochem Photobiol, A: Chem. 2003;156:227–233. doi: 10.1016/S1010-6030(02)00434-3. DOI
Shi M, Kwon H S, Peng Z, Elder A, Yang H. ACS Nano. 2012;6:2157–2164. doi: 10.1021/nn300445d. PubMed DOI PMC
McCullagh C, Robertson J M C, Bahnemann D W, Robertson P K J. Res Chem Intermed. 2007;33:359–375. doi: 10.1163/156856707779238775. DOI
Delgado K, Quijada R, Palma R, Palza H. Lett Appl Microbiol. 2011;53:50–54. doi: 10.1111/j.1472-765X.2011.03069.x. PubMed DOI
Petr M, Kylián O, Hanuš J, Kuzminova A, Vaidulych M, Khalakhan I, Choukourov A, Slavinská D, Biederman H. Plasma Processes Polym. 2016;13:663–671. doi: 10.1002/ppap.201500202. DOI
Hartmann H, Popok V N, Barke I, von Oeynhausen V, Meiwes-Broer K-H. Rev Sci Instrum. 2012;83:073304. doi: 10.1063/1.4732821. PubMed DOI
Biesinger M C, Lau L W M, Gerson A R, Smart R St C. Appl Surf Sci. 2010;257:887–898. doi: 10.1016/j.apsusc.2010.07.086. DOI